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Abstract: In the context of the potential future use of unmanned ground vehicles for forest 
inventories, we present the first experiences with SPOT, a legged robot equipped with a LiDAR 
instrument and several cameras that have been used with a teleoperation approach for single-tree 
detection and measurements. This first test was carried out using the default LiDAR system (the so-
called enhanced autonomy payload - EAP, installed on the board of SPOT to guide autonomous 
movements) to understand advantages and limitations of this platform to support forest inventory 
activities. The test was carried out in the Vallombrosa forest (Italy) by assessing different data 
acquisition methods. The first results showed that EAP LiDAR generated noisy point clouds where 
only large trees (DBH ≥ 20 cm) could be identified. The results showed that the accuracy in tree 
identification and DBH measurements were strongly influenced by the path used for data 
acquisition, with average errors in tree positioning no less than 1.9 m. Despite this, the best methods 
allowed the correct identification of 97% of large trees. 
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1. Introduction 
Extensive research conducted in recent decades has focused on the use of unmanned 

platforms in forestry [1–3]. The rapid progress in the forestry industry has generated 
growing global interest in deployment of unmanned vehicle systems with different levels 
of automation [4,5]. Sun et al. [3], identified two types of forestry unmanned platforms 
(FUPs) that serve different forestry applications: unmanned ground vehicles (UGVs) and 
unmanned air vehicles (UAVs). Both platforms have been increasingly used in recent 
years to acquire different types of data and to perform various forestry tasks [3,6]. 

Although numerous studies over the past decade have explored UAVs equipped 
with different sensors for forestry applications [7–9], there has been relatively less interest 
in the use of UGVs. However, according to Oliveria et al. [6], the development of robotic 
UGV systems capable of operating autonomously in forest environments is of 
considerable importance for the public and private sectors in the context of precision 
forestry. Distinctively, Forestry 4.0 has gained recognition for the integration of robotic 
systems and electronic devices into a wide range of forestry activities, including 
environmental monitoring, fire prevention, inventory management, tree planting, 
pruning, and harvesting. 
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In the context of forest inventories where the time spent on field data acquisition is 
considerable, UGVs have the potential to bring about fundamental changes in data 
collection methods [10,11]. UGVs equipped with different sensors, such as LiDAR and 
cameras (e.g., 360°, RGB, multispectral, thermal), and with mobility, perception, and 
adaptability to different environments can autonomously collect a wide array of high-
resolution data [12]. This data acquisition capability can in principle provide detailed 
information on forest variables, including tree height, diameter and biomass, thus 
potentially contributing to comprehensive and accurate mapping of individual trees [11]. 

While UAVs today can operate with fully autonomous mission controls, robotic UGVs 
are still “teleoperated” in most cases. Teleoperation refers to the remote control and 
operation of these vehicles by a human operator. It involves using communication 
technologies, such as wireless networks or satellite links, to establish a connection between 
the operator and the UGV. The operator can then control the movements, activities and 
operations of the UGV from a remote location using various input devices, such as joysticks, 
keyboards, or graphical user interfaces. The UGV can also provide feedback to the operator, 
such as live video feeds or sensor data, to help him make informed decisions during 
operation. 

On this note, we present the first test carried out in the field of forest inventory and 
mensuration with the SPOT legged robot from Boston Dynamics [13]. Since its release on 
the market, SPOT has found applications in various fields, such as mining [14,15], 
construction [16–18], police operations [19] and in the guidance of blind people [20]. 
However, as far as we know, its use in forestry is still unexplored. 

This first test was carried out to evaluate the general behavior of SPOT in a forest 
environment and to assess whether the default LiDAR system (the so-called enhanced 
autonomy payload—EAP), installed onboard SPOT to guide its autonomous movements, can 
also be useful for the identification, mapping and DBH assessment of individual trees. 

2. Materials and Methods 
2.1. Test site 

The test site is located in the Vallombrosa Biogenetic National Nature Reserve in central 
Italy. The reserve extends for 1273 ha, with an altitude between 470 and 1447 m a.s.l. [8,21]. 
The analysis was conducted in a flat test area of 500 m2 characterized by the presence of 
silver fir (Abies alba Mill.), in the dominant layer, and European beech (Fagus sylvatica L.), 
with sporadic presence of chestnut (Castanea sativa L.), belonging to the European Forest 
Type no. 7.3—Apennine–Corsican mountainous beech forests [22] (Figure 1). 

2.2. Overview of SPOT Capabilities and Functioning 
The SPOT legged robot [15], developed by Boston Dynamics, was used as a platform 

for teleoperated data collection. The robot, inspired by the physiognomy of the dog, is 
1.10 m long and 0.50 m wide. It has an adjustable walking height from 0.52 to 0.70 m and 
a sitting height of 0.19 m for a total battery net weight of 32.7 kg. This robot can move at 
three different speeds up to 1.6 m s−1, carrying up to 14 kg with two payload ports. SPOT’s 
main parts include the body, which houses computers and cameras, and the four legs, 
each composed of a hinged knee that connects the upper and lower sections of the leg and 
a ball joint at the hip where the upper leg connects to the body, for a total of 12 degrees of 
freedom (Figure 2). The hip joints can perform an external/internal rotation of ±45° and a 
flexion/extension of ±91° with a deviation of 50° from the vertical, on the X and Y axis, 
respectively, while the knee joints have a flexion/extension range from 14° to 160°. Motors, 
cameras, sensors and payloads are powered by a single battery with a capacity of 564 Wh 
and a maximum voltage of 58.5 V, which requires a charging power of 400 W at a 
maximum current of 7 A. The battery autonomy in a typical runtime is around 90 min and 
up to 180 min in standby mode. SPOT can work in temperatures ranging from 0 °C to 40 
°C. Charging time strongly depends on the ambient temperature and the type of charger: 
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it varies between 50 min (Spot Dock charger at 25 °C) and 180 min (SPOT Dock charger at 
35 °C). The expected battery life is around 500 cycles at 80% capacity. The weight of the 
battery varies between 4.2 kg (Explorer model) and 5.2 kg (Enterprise model). 

 
Figure 1. Test site location in Italy (A) and inside Vallombrosa Reserve (B). Overview of individual 
tree position (in blue: silver fir; green: beech; yellow: chestnut) (C). SPOT on the test site (D). 

SPOT is equipped with default with five optical cameras that allow a 360° field of view 
(FOV). Camera functions include: black-and-white and color fisheye, range (depth), and 
infrared. Five stereo pairs of depth cameras are used for depth perception and obstacle 
avoidance up to a distance of 2 m, with an FOV of ~90° in each direction, with four blind 
spots near the hip joints where FOV does not overlap. Obstacle avoidance is automatic 
and fully managed by SPOT software. The user can disable the obstacle avoidance 
function or modulate the minimum distance at which obstacles are detected to suit a wide 
range of situations and terrainn even in rough and obstacle-rich environments. 
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Figure 2. (A) major parts of SPOT; (B) Spot Velodyne LiDAR; (C) mounting the payload on the SPOT 
platform (adapted from https://support.bostondynamics.com/s/article/Spot-anatomy accessed on 14 
July 2023). 

Nominally, the robot can walk in steep terrain, up to ±30°, in a temperature range of 
−20/+45 °C with illumination of at least 2 lux, making it particularly suitable for forestry 
applications. The maximum step height is 30 cm on flat terrain and 22 cm on stairs. 

The SPOT enhanced autonomy payload (EAP), consisting of a SPOT CORE I/O GXP 
and a Velodyne VLP-16 LiDAR sensor, is placed in the front payload port to improve depth 
perception and detection capabilities up to ~120 meters, recording the point cloud generated 
when working in Autowalk mode. The VLP-16 has a range of 100 m, and the sensor’s low 
power consumption (~8W), lightweight (0.83 kg), compact footprint (~Ø103mm × 72mm) 
and dual return capability make it ideal for UGVs and other mobile applications. Velodyne’s 
LiDAR Puck supports 16 channels, ~300,000 points/sec, a 360° horizontal field of view, and 
a 30° vertical field of view, with ±15° up and down shooting pulses at 903 nm wavelength. 
The Velodyne LiDAR Puck has no visible rotating parts, making it highly resistant in harsh 
environments. SPOT CORE I/O provides additional computing capability, with 48 tensor 
cores, NVIDIA Volta GPU for intensive tasks, and hosts the software required for the 
Velodyne LiDAR service to connect with the SPOT robot. SPOT GXP is a part of SPOT CORE 
and provides network and data interfaces and regulated power in an integrated package, 
greatly enhancing the computing and communications capabilities of the SPOT platform. 

The fundamental aspects of SPOT operations, including walking, posing and safety, 
can be performed from a simple tablet or smartphone using the SPOT Boston Dynamics 
application. The robot is easy to use and autonomous in everything related to stability and 
obstacle avoidance. It features stand and walking modes and can be maneuvered using the 
joysticks on the SPOT tablet controller or touch-to-go mode on the controller screen. It also 
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features an Autowalk mode that allows to record and replay autonomous behaviors. 
Autowalk consists of two parts: 
• recording missions: drive SPOT along a path and create actions (usually data 

acquisition) for the robot to carry out and perform along the way; 
• replaying a mission: SPOT will perform recorded movements and actions while 

adapting to small changes in the environment. 
In the Autowalk mode, SPOT automatically places navigation waypoints along its 

path during mission recording and walks from waypoint to waypoint during mission 
replay. The basic SPOT platform tracks visual features within 2 m of the robot with stereo 
cameras. If SPOT is equipped with a LiDAR, it can track features within that sensor’s 
range, typically beyond 50 m. The additional detection range of LiDAR allows SPOT to 
travel away from features and through more dynamic environments. During mission 
replay, SPOT calculates its position by comparing the characteristics of current sensor data 
to those of data snapshots taken at each waypoint during mission recording. SPOT 
automatically compensates for deviations in its path and small changes in the 
environment, but large discrepancies may require operator intervention. Each mission 
must begin with a Fiducial, a specially designed image similar to QR codes that SPOT uses 
to match its internal map to the world around it. Fiducials are also used in locations with 
information gaps along the mission path to determine the location of SPOT. 

2.3. Reference Measurements 
All trees with a diameter at breast height (DBH) greater than 2.5 cm within the field 

test area were measured with a traditional caliper and their positions were measured 
using a Topcon GPT3000M topographic total station in combination with global 
navigation satellite systems (GNSSs) Topcon HiPer SR three-frequency receiver, 
observing the pseudo-range of GPS, GLONASS, and GALILEO satellites. The GNSS 
receiver was used to measure the location and orientation points of the total station used 
in post-processing to obtain the geographic coordinates. All data were collected from a 
total station positioned in the center of the test area. The polar coordinates of the trees at 
a height of 1.3 m were measured by length offset of the spatial polar method, which allows 
obtainment of Cartesian coordinates (x, y). Such coordinates were converted into 
geographic coordinates (WGS84UTM32N) using the two points measured with GNSS 
receiver in postprocessing. The resulting tree positions achieved sub-centimeter accuracy. 

2.4. SPOT Data Acquisition 
We tested a total of seven acquisition protocols to evaluate the performance of SPOT 

together with the EAP Velodyne LiDAR in tree detection and mapping and to assess the 
accuracy of DBH measurements. In each scan path, SPOT was teleoperated with a Wi-Fi 
connection with the remote controller, but SPOT used its ability to autonomously avoid 
the obstacles. 

First, we simply guided SPOT to run a transect across the plot (A in Figure 3) using a 
one-way at slow speed (OW slow) and then with two back-and-forth ways with both slow 
and medium speeds (TW slow and TW med, respectively). Second, we teleguided SPOT 
through more complex paths at medium speed with diamond, zig-zag, spiral and, finally, 
with a four-petal protocol (Figure 3). 

Each scan started and ended (i.e., the initialization of each Autowalk mode) 
approximately at the center of the test area, where a fiducial was placed to ensure a closed 
loop, as required when the SLAM (simultaneous localization and mapping) algorithm is 
used [11,23]. The time required to perform each scan and the length of the path were 
recorded. 
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Figure 3. Field acquisition paths: (A) transect; (B) diamond; (C) zig-zag; (D) spiral; (E) petals. Above 
is the planned protocol in a hypothetical scenario, a distribution of simulated trees is shown in 
green, and below the SPOT recorded path. 

2.5. Tree Detection and DBH Estimation 
The final tree position and DBH assessment processing workflows were the same for 

all point clouds obtained from SPOT paths. Velodyne point cloud data were processed via 
R-CRAN using the lid-R, TreeLS, and rlas packages. 

To segment the point clouds obtained from the different protocols into a single tree, a 
common procedure was followed using terrestrial or mobile laser scanner. First, the point 
clouds were classified into ground and non-ground using the cloth simulation filter (CFS) 
algorithm by Zhang et al. [24] and implemented in the lid-r package. Second, the point 
cloud was normalized using the classified ground terrain. 

The normalized point clouds were then processed using the treeMap. StemPoint 
functions implemented in TreeLS into single tree. The Hough transform (HT) method was 
used in both functions. The HT circle search algorithm applies a constrained circle search 
on discretized point cloud layers. Tree-wise, the circular search is recursive, where the 
search for the circle parameters of a stem section is constrained to the feature space of the 
underlying stem section. Initial estimates of the stem feature space are performed on a 
baseline stem segment, i.e., a low height interval where a tree stem is expected to be clearly 
visible in the point cloud: the algorithm is described in detail by de Conto et al. [25]. The 
two functions allow extraction of the positions of each tree. Then, for each segmented tree, 
forest inventory data were automatically extracted using tlsInventory function 
implemented in TreeLS which allows obtainment of the estimates of DBH and H for a 
normalized point cloud with assigned stem points. At the end of the procedure for each 
tree, we obtained the Cartesian coordinates position in a Cartesian coordinate system. The 
results were then rototranslated in geographic coordinate system according to the 
benchmark field reference using three trees recognized in the cloud manually. The results 
were finally clipped within the test area. Indeed, since some survey protocols required 
SPOT to walk in the borders of the test area, and since the sensor has detection capabilities 
up to 120 meters, other trees had also been detected. 

2.6. Data Evaluation 
Tree positions and DBHs were calculated from the point clouds generated by each 

protocol presented in Figure 3. The estimated DBH and position of the trees were 
compared with field-measured reference data, considering only trees with DBH greater 
than 20 cm. First, manual co-registration was performed in QGIS software by identifying 
pairs of corresponding survey trees. Specifically, the raw data had relative metric 
coordinates (surveys started with coordinates 0, 0), which were converted to absolute 
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coordinates of the center of the study area. Then, each protocol was appropriately 
georeferenced by translating the surveyed trees in concordance with the reference trees. 
Finally, for each identified tree, the best match was manually identified [26] based on 
location, DBH and spatial pattern of neighboring trees. 

2.7. Position Error 
The estimated position error of each tree was calculated both as bias on the X and Y 

coordinates and as the Euclidean distance between the estimated position and the 
reference position measured by the total station. The bias was calculated as the average 
difference between the estimated coordinates and those measured with the Topcon 
station, both for X and Y. Furthermore, the azimuth in decimal degrees, ranging between 
0 and 360 clockwise from north, was calculated from each pair of estimated position and 
reference one. The final position error was calculated by averaging the individual tree 
distance within each protocol. 

2.8. DBH Error 
We calculated the estimation errors in DBH when all pairs of trees were identified. 

Errors were calculated in terms of bias, root-mean-squared error (RMSE) and percentage 
RMSE (RMSE%) with respect to the average reference DBH: 

RMSE =  ඨ∑ (𝑦௜ − 𝑦పෝ)ଶ௡௜ୀଵ 𝑛 , (1) 

where 𝑦௜ and 𝑦పෝ  are the measured and estimated DBH, respectively, and n is the number 
of trees measured in each protocol. 

3. Results 
3.1. Total Station Reference Measurements 

A total of 67 trees were measured and calipered, of which 45 had a DBH ≥ 20 cm 
(Figure 4). The mean DBH measured in the field was 58.3 cm. 

A point cloud was obtained from each one of the field-tested protocols. The acquisition 
path that allows obtaining a denser point cloud in terms of point/m2 was the “zig-zag,” 
followed by “spiral” and “petals” (Table 1). These paths allow obtainment of point clouds 
with a point density greater than 110 point/m2, while the “diamond,” “TW_slow, 
“OW_Med” paths allow obtainment of comparable densities between 74.27 and 76.48 
point/m2 (Table 1). The path OW_slow obtained the lowest point/density of 41.38 point/m2. 

Table 1. Characteristics of the point clouds obtained following the tested paths. Area is the area 
covered by the laser range, distance is the path length, recorded points are the points recorded in 
the scan, while point density is the mean point density per m2 in the scan. 

Protocol 
Area 
(m2) 

Distance 
(m) 

Recorded 
Points 

Point Density 
(points/m2) 

OW Slow 8412 61 348 K 41.38 
TW Med 9028 121 690 K 76.48 
TW Slow 9628 121 715 K 74.27 

Petals 9160 185 1.17 M 128.18 
Diamond 7884 128 596 K 75.69 

Spiral 9488 200 1.44 M 151.27 
Zig-zag 8524 196 1.3 M 152.37 
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Figure 4. Maps of single tree acquired by total station (Reference) and by the different SPOT 
protocols. The real walking path did not coincide with the theoretical path (Figure 3) due to the 
presence of obstacles on the ground (such as stems, regeneration trees, dead wood, etc.), which are 
typical in seminatural environments [27]. 

By analyzing the distribution of points along the Z for the normalized point clouds, 
the majority of the points proved to be recorded in the ground (normalized Z = 0), and the 
majority of the remaining points were located in the Z range between 0.1 and 2 m, while 
few points reached a normalized Z of 3–5 m (Figure 5). 

3.2. Tree DBH Errors 
Due to the noise in the point cloud, only a few small trees were identified. For this 

reason, we focused our comparative analysis on trees with DBH ≥ 20 cm. In the different 
protocols, the number of trees detected varied between 17 (for the zig-zag protocol) and 
44 (for the petals and spiral protocols) against the 45 measured in the benchmark. The 
mean DBH varied from 40.8 cm (zig-zag protocol) to 46.6 cm (TW med and TW slow 
protocols) (Table 2) against the true value of 58.3 cm. Figure 6 shows the DBH > 20 cm 
distribution from each protocol against the reference DBH distribution. The RMSE% 
ranged from a minimum of 39.6 for the TW slow protocol to a maximum of 56.9 for the 
zig-zag protocol. 
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Figure 5. (A) Distribution of normalized Z (m) of all the points registered within all the scans. (B) 
Distribution of normalized Z (m) equal to or above 1.3 m for each of the scan obtained following the 
different path. 
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Table 2. Result of the measurements for each protocol and related errors on the diameters in terms 
of RMSE and RMSE%. 

Protocol N Tree (DBH > 20cm) Mean DBH (cm) RMSE (cm) RMSE% 
OW Slow 35 45.6 19.4 45.4 
TW Med 37 46.6 17.2 40.3 
TW Slow 30 46.6 16.9 39.6 

Petals 44 44.9 21.7 50.8 
Diamond 40 43.1 19.6 45.9 

Spiral 44 45.8 19.9 46.6 
Zig-zag 17 40.8 24.3 56.9 

 
Figure 6. DBH distribution resulting from each protocol (gray) against the reference one (red) 
obtained with the field survey, where n is the number of trees that match the reference ones. Results 
are reported for DBH ≥ 20 cm. The dotted lines mark the mean DBH for each protocol (gray) and for 
the field survey (red). 

3.3. Tree Positioning Errors 
The average distance between observed tree position and that estimated by SPOT 

acquisitions ranged between 1.9 m (spiral protocol) and 2.9 m (OW slow protocol) (Table 3), 
with a minimum single distance of 0.09 m and a maximum of 8.13. The zig-zag protocol 
achieved the minimum bias on the X coordinate (0 m), while the petals and diamond 
protocols achieved the minimum bias on the Y one (0 m). The maximum bias on the X 
coordinate was −0.8 m (protocol OW slow), while it was ±0.3 on the Y one (protocols TW 
slow and TW med). The minimum and maximum absolute difference were 0.002 and 8.1 
m and 0.006 and 4.7 m in the X and Y coordinates, respectively (Figure 7). 
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Table 3. Result of the position measurements for each protocol and related errors in terms of mean 
distance between the reference tree positioning and the position mapped on the basis of SPOT point 
cloud, and bias on X and Y coordinates. 

Protocol Mean Distance (m) Bias X Bias Y 
OW Slow 2.9 -0.8 0.2 
TW Med 2.5 -1.0 -0.3 
TW Slow 2.0 -0.7 0.3 

Petals 2.3 -0.1 0.0 
Diamond 2.7 0.7 0.0 

Spiral 1.9 0.2 -0.1 
Zig-zag 2.7 0.0 0.1 

 
Figure 7. Density distribution of bias in X and Y coordinates for each protocol; n is the number of 
trees that match the reference ones. 

4. Discussion 
With this contribution, we have presented for the first time in the scientific literature 

the potential of the SPOT legged robot to support forest inventory and mensuration by 
individual tree detection, mapping and DBH measurements using the LiDAR EAP 
systems on board. 

SPOT was driven via teleoperation by an operator with no prior specific experience. 
From this point of view, SPOT was easy to drive and its autonomous ability to avoid 
obstacles worked well in the field, although the test area was quite flat and almost, but not 
completely, free of obstacles such as stones, small plants and deadwood. This is especially 
true when SPOT was used at slow or medium speed. For this reason, in complex forest 
terrain, we recommend avoiding use at higher speed. 

The point clouds recorded by the Velodyne LiDAR of the EAP SPOT system in the 
different acquisitions in our test area ranged between 41 and 152 pulses/m2, but the vast 
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majority of the returns were for relative heights from the ground not higher than 3 meters. 
Most of the pulses returned from the ground (Figure 5). 

Results in identifying large trees were strongly influenced by the differences in cloud 
density. However, it was impossible to identify small trees (DBH < 20 cm) regardless of 
cloud characteristics. 

When SPOT was operated at low speed, the results were slightly better, but without 
strong differences from those obtained with medium speed, while the results in DBH 
measurements when more complex paths were run resulted in denser point clouds. The 
results of DBH measurements showed RMSE% of 40% for TW at medium and low speed 
and below 50% for OW, spiral, and diamond protocols. With the petals and spiral patterns, 
it was possible to correctly identify 97% of the large trees. With the zig-zag pattern, the 
resulting point cloud was dense but the result in the identification of the trees was poor, 
most likely because the frequent changes in the walking direction of the robot negatively 
impacted the SLAM procedure and therefore the tree identification. 

Regarding the positioning of the trees, the test area elongated in the north–south 
direction resulted in less bias in identifying trees according to the y coordinate. However, 
although the bias in X and Y coordinates was quite normally distributed (Figure 7), the 
resulting error in tree positioning was consistent: only with the spiral pattern was it possible 
to have an average positioning error lower than 2 m. Once again, the density of the point 
cloud significantly influenced the results. 

5. Conclusions 
Forest tree monitoring and assessment are rapidly evolving as new information 

needs arise and new techniques and tools become available. However, the exploitation of 
the latter, as well as their implementation within operative management processes, should 
be evidence-based [28]. From this perspective, based on this first experience with SPOT 
and from the comparison with a traditional forest survey, some pros and cons clearly 
emerged so far. 

The pros are that the SPOT robot is able to move in the forest terrain, autonomously 
avoiding obstacles, at least in the conditions we experienced in this first test and if 
maneuvered at slow speed. It is therefore plausible that in the future systems could be 
developed for a more automatic acquisition of point clouds with SPOT to avoid the need 
for teleoperation. The battery use of SPOT is also good as it easily reaches its maximum 
nominal potential: this is an important aspect because SPOT is quite heavy and if it is not 
able to walk, its transportation in the field is not easy. 

The cons are mainly due to the limited capacity of its EAP LiDAR system. Even 
though the hardware (the Velodyne LiDAR) has excellent potential, a formal SLAM 
procedure is not yet implemented in the SPOT system and the resulting point clouds are 
noisy and difficult to interpret (trees smaller than 20 cm are almost not detected). SPOT’s 
ability to move its torso to direct the laser pulses in different directions is good, even 
though the resulting cloud had a maximum height above the ground of about 3 m. In this 
way, it is possible to measure the DBH of the trees, but not their height. Of course, the 
SPOT LiDAR cloud can be combined with the pulses from ALS to create a more complete 
assessment of 3D forest structure. 

It is important to note that the accuracy of the results (especially in DBH 
measurements) was highly variable in the different protocols tested, mainly due to the 
different densities of the resulting point cloud. 

In the near future, we will continue to explore SPOT capabilities for forest inventory 
support with a different TLS system connected to payload docks, capable of implementing 
a better SLAM procedure. Furthermore, the SPOT’s capabilities could be further explored 
for monitoring and analysis of forest tree plantations, both in stands for industrial timber 
production (e.g., hybrid poplar plantations) and in short-rotation forestry. In fact, these 
plantations, which play a significant role in wood production [29], are typically located in 
flat areas and with homogeneous conditions, particularly suitable for SPOT. Future 
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research could also explore the feasibility of assessing forest-floor biodiversity attributes, 
such as fallen trees, coarse woody debris, and trunk- and root-related microhabitats 
[30,31], which can usually require significant time and manual effort during field 
inventories [32]. In this context, the wide range of movements of SPOT could overcome 
the problems related to static terrestrial laser scanning in detection of microhabitats 
[33,34]. 

From these first results, the future use of legged robots seems to be promising to 
support forest inventory and mensuration, especially if systems for carrying out missions 
in a totally autonomous manner become possible, as is already possible with UAVs. 

Author Contributions: Conceptualization, G.C.; formal analysis, F.G., G.D. and E.V.; investigation, 
G.D., E.V., S.F., and C.B.; data curation, F.G., G.D. and E.V.; writing—original draft preparation, F.G., 
G.D., E.V., S.F., and C.B.; writing—review and editing, G.C., P.C., D.T. All authors have read and 
agreed to the published version of the manuscript. 

Funding: The research received support to buy the Boston Dynamics SPOT legged robot from the 
University of Florence within the call “Bando di Ateneo per l’acquisizione di strumenti finalizzati 
alla ricerca nellʹambito delle tematiche del PNR 2021-2027– Anno 2022”. 

Data Availability Statement: The data that support the findings of this study are available from the 
authors upon reasonable request. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Hamedianfar, A.; Mohamedou, C.; Kangas, A.; Vauhkonen, J. Deep learning for forest inventory and planning: A critical review 

on the remote sensing approaches so far and prospects for further applications. Forestry 2022, 95, 451–465. 
https://doi.org/10.1093/forestry/cpac002. 

2. Bechar, A.; Vigneault, C. Agricultural robots for field operations. Part 2: Operations and systems. Biosyst. Eng. 2017, 153, 110–
128. https://doi.org/10.1016/j.biosystemseng.2016.11.004. 

3. Sun, H.; Yan, H.; Hassanalian, M.; Zhang, J.; Abdelkefi, A. UAV Platforms for Data Acquisition and Intervention Practices in 
Forestry: Towards More Intelligent Applications. Aerospace 2023, 10, 317. https://doi.org/10.3390/aerospace10030317. 

4. Visser, R.; Obi, O.F. Automation and robotics in forest harvesting operations: Identifying near-term opportunities. Croat. J. For. 
Eng. J. Theory Appl. For. Eng. 2021, 42, 13–24. https://doi.org/10.5552/crojfe.2021.739. 

5. Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. 
https://doi.org/10.1007/s11676-015-0088-y. 

6. Oliveira, L.F.P.; Moreira, A.P.; Silva, M.F. Advances in Forest Robotics: A State-of-the-Art Survey. Robotics 2021, 10, 53. 
https://doi.org/10.3390/robotics10020053. 

7. Fardusi, M.J.; Chianucci, F.; Barbati, A. Concept to Practice of Geospatial-Information Tools to Assist Forest Management and 
Planning under Precision Forestry Framework: A review. Ann. Silvic. Res. 2017, 41, 3–14. https://doi.org/10.12899/asr-1354. 

8. Giannetti, F.; Puletti, N.; Puliti, S.; Travaglini, D.; Chirici, G. Assessment of UAV photogrammetric DTM-independent variables 
for modelling and mapping forest structural indices in mixed temperate forests. Ecol. Indic. 2020, 117, 106513. 
https://doi.org/10.1016/j.ecolind.2020.106513. 

9. Puliti, S.; Granhus, A. Drone data for decision making in regeneration forests: From raw data to actionable insights. J. Unmanned 
Veh. Syst. 2021, 9, 45–58. https://doi.org/10.1139/juvs-2020-0029. 

10. Fankhauser, P.; Hutter, M. ANYmal: A Unique Quadruped robot conquering harsh environments. Res. Features 2018, 126, 54–
57. 

11. Idrissi, M.; Hussain, A.; Barua, B.; Osman, A.; Abozariba, R.; Aneiba, A.; Asyhari, T. Evaluating the Forest Ecosystem through 
a Semi-Autonomous Quadruped Robot and a Hexacopter UAV. Sensors 2022, 22, 5497. https://doi.org/10.3390/s22155497. 

12. Chen, G.; Hong, L. Research on Environment Perception System of Quadruped Robots Based on LiDAR and Vision. Drones 
2023, 7, 329. https://doi.org/10.3390/drones7050329. 

13. Koval, A.; Kanellakis, C.; Nikolakopoulos, G. Evaluation of Lidar-based 3D SLAM algorithms in SubT environment. IFAC-
PapersOnLine 2022, 55, 126–131. https://doi.org/10.1016/j.ifacol.2023.01.144. 

14. Crespo, C.; Rodríguez, F. Integration of robotics in underground mining construction works. In Expanding Underground-
Knowledge and Passion to Make a Positive Impact on the World-Proceedings of the ITA-AITES World Tunnel Congress, WTC 2023, Athens, 
Greece, 12–18 May 2023; CRC Press: Boca Raton, FL, USA, 2023; pp. 2414–2421. https://doi.org/10.1201/9781003348030-290. 

15. Koval, A.; Karlsson, S.; Nikolakopoulos, G. Experimental evaluation of autonomous map-based spot navigation in confined 
environments. Biomim. Intell. Robot. 2022, 2, 100035. https://doi.org/10.1016/j.birob.2022.100035. 



Forests 2023, 14, 2170 14 of 14 
 

 

16. Afsari, K.; Halder, S.; Ensafi, M.; DeVito, S.; Serdakowski, J. Fundamentals and Prospects of Four-Legged Robot Application in 
Construction Progress Monitoring. In Proceedings of the 57th Annual Associated Schools of Construction International 
Conference, Chico, CA, USA, 5–9 April 2021; pp. 274–263. https://doi.org/10.29007/cdpd. 

17. Wetzel, E.M.; Liu, J.; Leathem, T.; Sattineni, A. The Use of Boston Dynamics SPOT in Support of LiDAR Scanning on Active 
Construction Sites. In Proceedings of the 39th ISARC, Bogotá, Colombia, 13–15 July 2022. 
https://doi.org/10.22260/ISARC2022/0014. 

18. Wetzel, E.M.; Umer, M.; Richardson, W.; Patton, J. A Step Towards Automated Tool Tracking on Construction Sites: Boston 
Dynamics SPOT and RFID. EPiC Ser. Built Environ. 2022, 3, 488–478. https://doi.org/10.29007/hxkz. 

19. Yunus, A.; Doore, S.A. Responsible use of agile robots in public spaces. In Proceedings of the IEEE International Symposium 
on Ethics in Engineering, Science and Technology, Waterloo, ON, Canada, 28–31 October 2021. 
https://doi.org/10.1109/ETHICS53270.2021.9632682. 

20. Due, B.L. A Walk in the Park with Robodog: Navigating Around Pedestrians Using a Spot Robot as a “Guide Dog.” Space Cult. 
2023, 0(0). https://doi.org/10.1177/12063312231159215. 

21. Ciancio, O. Riserva Naturale Statale Biogenetica di Vallombrosa. Piano di Gestione e Silvomuseo 2006–2025. Corpo Forestale dello 
Stato, Ufficio Territoriale per la Biodiversità di Vallombrosa, Tipografia Coppini: Firenze, Italy, 2009. 

22. Barbati, A.; Marchetti, M.; Chirici, G.; Corona, P. European forest types and forest europe SFM indicators: Tools for monitoring 
progress on forest biodiversity conservation. For. Ecol. Manag. 2014, 321, 145–157. https://doi.org/10.1016/j.foreco.2013.07.004. 

23. Tang, J.; Chen, Y.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Khoramshahi, E.; Hakala, T.; Hyyppä, J.; Holopainen, M.; Hyyppä, H. 
SLAM-aided stem mapping for forest inventory with small-footprint mobile LiDAR. Forests 2015, 6, 4588–4606. 
https://doi.org/10.3390/f6124390. 

24. Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on 
cloth simulation. Remote sensing, 2016 8(6), 501. https://doi.org/10.3390/rs8060501 

25. De Conto, T.; Olofsson, K.; Görgens, E. B.; Rodriguez, L. C. E.; Almeida, G. Performance of stem denoising and stem modelling 
algorithms on single tree point clouds from terrestrial laser scanning. Comput. Electron. Agric. , 2017, 143, 165-176. 
https://doi.org/10.1016/j.compag.2017.10.019. 

26. Mokroš, M.; Mikita, T.; Singh, A.; Tomaštík, J.; Chudá, J.; Wężyk, P.; Kuželka, K.; Surový, P.; Klimánek, M.; Zięba-Kulawik, K.; 
et al. Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. Int. J. Appl. Earth 
Obs. Geoinf. 2021, 104, 102512. https://doi.org/10.1016/j.jag.2021.102512. 

27. Giannetti, F.; Puletti, N.; Quatrini, V.; Travaglini, D.; Bottalico, F.; Corona, P.; Chirici, G. Integrating terrestrial and airborne laser 
scanning for the assessment of single-tree attributes in Mediterranean forest stands. Eur. J. Remote Sens. 2018, 51, 795–807. 
https://doi.org/10.1080/22797254.2018.1482733. 

28. Corona, P. Communicating facts, findings and thinking to support evidence-based strategies and decisions. Ann. Silvic. Res. 
2018, 42, 1–2. https ://doi.org/10.12899/asr-1617. 

29. D’Amico, G.; Francini, S.; Giannetti, F.; Vangi, E.; Travaglini, D.; Chianucci, F.; Mattioli, W.; Grotti, M.; Puletti, N.; Corona, P.; et 
al. A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery. GIScience Remote Sens. 
2021, 58, 1352–1368. https://doi.org/10.1080/15481603.2021.1988427. 

30. Bradley, H.S.; Craig, M.D.; Cross, A.T.; Tomlinson, S.; Bamford, M.J.; Bateman, P.W. Revealing microhabitat requirements of an 
endangered specialist lizard with LiDAR. Sci. Rep. 2022, 12, 5193. https://doi.org/10.1038/s41598-022-08524-2. 

31. Larrieu, L.; Paillet, Y.; Winter, S.; Bütler, R.; Kraus, D.; Krumm, F.; Lachat, T.; Michel, A.K.; Regnery, B.; Vandekerkhove, K. Tree 
related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. 
Ecol. Indic. 2018, 84, 194–207. https://doi.org/10.1016/j.ecolind.2017.08.051. 

32. Rehush, N.; Abegg, M.; Waser, L.T.; Brändli, U.B. Identifying tree-related microhabitats in TLS point clouds using machine 
learning. Remote Sens. 2018, 10, 1735. https://doi.org/10.3390/rs10111735. 

33. Siitonen, J.; Pasanen, H.; Ylänne, M.; Saaristo, L. Comparison of four alternative survey methods in assessing dead wood at the 
stand level. Scand. J. For. Res. 2023, 38, 244–253. https://doi.org/10.1080/02827581.2023.2216946. 

34. Frey, J.; Asbeck, T.; Bauhus, J. Predicting Tree-Related Microhabitats by Multisensor Close-Range Remote Sensing Structural 
Parameters for the Selection of Retention Elements. Remote Sens. 2020, 12, 867. https://doi.org/10.3390/rs12050867. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 
to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


