TAPAS: a Tool for Stochastic Evaluation of Large Interdependent Composed Models with Absorbing States

Giulio Masetti¹, Leonardo Robol², Silvano Chiaradonna¹ and Felicita Di Giandomenico¹

¹Software Engineering and Dependable Computing laboratory, ISTI-CNR Pisa, ²University of Pisa

(ISTI-CNR & University of Pisa)

TAPAS, TOSME21

12 November 2021

1/11

Agenda

- Context & objectives
- Addressed models and measures
- Input format: (a restriction of) Stochastic Automata Network
- Descriptor matrices and vectors through Tensor Trains
- Demo
- Next steps

Context & Objectives

TAPAS, TOSME21

Context:

- Reliability CTMC models (with focus on limiting behavior) where there are absorbing states, e.g., system failure states
- Large models, in particular: the system model comprises several synchronized submodels, each with a relatively small state-space

How our tool TAPAS (Tool for Stochastic Evaluation of Large Interdependent Composed Models with Absorbing States) contributes:

- it evaluates performability measures
- it exploits (compressed) implicit representation of all the matrices and vectors

Addressed models and measures

(ISTI-CNR & University of Pisa)

TAPAS, TOSME21

12 November 2021

3/11

• Consider the CTMC $\{X_t\}_{t\geq 0}$ with absorbing states \mathcal{A} , where $\forall t.X_t \in S$ and $X_0 \notin \mathcal{A}$

(ISTI-CNR & University of Pisa)

TAPAS, TOSME21

12 November 2021

• Consider the CTMC $\{X_t\}_{t\geq 0}$ with absorbing states \mathcal{A} , where $\forall t.X_t \in S$ and $X_0 \notin \mathcal{A}$

(ISTI-CNR & University of Pisa)

TAPAS, TOSME21

12 November 2021

4/11

• Consider the CTMC $\{X_t\}_{t\geq 0}$ with absorbing states \mathcal{A} , where $\forall t.X_t \in S$ and $X_0 \notin \mathcal{A}$

Infinitesimal Generator Matrix

TAPAS, TOSME21

- Consider the CTMC $\{X_t\}_{t\geq 0}$ with absorbing states \mathcal{A} , where $\forall t.X_t \in S$ and $X_0 \notin \mathcal{A}$
- Define, for $i \in S$, a reward vector $r = [r_i]$ such that $r_i = 0$ if $i \in \mathcal{A}$

TAPAS, TOSME21

- Consider the CTMC $\{X_t\}_{t\geq 0}$ with absorbing states \mathcal{A} , where $\forall t.X_t \in S$ and $X_0 \notin \mathcal{A}$
- Define, for $i \in S$, a reward vector $r = [r_i]$ such that $r_i = 0$ if $i \in \mathcal{A}$
- Define $Y_{\infty} := \int_0^{\infty} r_{X_t} dt$

• The moments of Y_{∞} , i.e., $\mathcal{M}_k := E[Y_{\infty}^k]$, e.g., MTTA= $E[T_{abs}] = E[Y_{\infty}]$ where $r_i = 1$ for $i \in \mathcal{T}$

TAPAS, TOSME21

< □ > < 凸 →

• The moments of Y_{∞} , i.e., $\mathcal{M}_k := E[Y_{\infty}^k]$, e.g., MTTA= $E[T_{abs}] = E[Y_{\infty}]$ where $r_i = 1$ for $i \in \mathcal{T}$

(ISTI-CNR & University of Pisa)

TAPAS, TOSME21

12 November 2021

- The moments of Y_{∞} , i.e., $\mathcal{M}_k := E[Y_{\infty}^k]$, e.g., MTTA= $E[T_{abs}] = E[Y_{\infty}]$ where $r_i = 1$ for $i \in \mathcal{T}$
- π_B(∞), i.e., the probability that X is absorbed in B ⊂ A
- $E[Y_{\infty}|\mathcal{B}]$ for $\mathcal{B} \subset \mathcal{A}$, e.g., for $\{a_1\} \subseteq \{a_1, a_2, a_3\}$ evaluate $E[T_{abs}|\{a_1\}]$

TAPAS, TOSME21

Models

Measures evaluation for explicit models

TAPAS works with the following formalization:

$$\label{eq:measure} \begin{array}{|c|c|c|} \hline measure & evaluation \\ \hline \mathcal{M}_k & \begin{cases} (Q-S)x^{(1)}=r, \\ (Q-S)x^{(i)}=\operatorname{diag}(r)x^{(i-1)}, & \text{for } i=2,\ldots,k, \end{cases} \\ \hline \pi_{\mathcal{B}}(\infty) & (Q-S)x^{(1)}=Qe_{\mathcal{B}}, & \text{then } \pi_{\mathcal{B}}(\infty)=-\pi(0)\cdot x^{(1)}, \\ \hline \mathbf{MRTA}_{|\mathcal{B}} & \begin{cases} (Q-S)x^{(1)}=Qe_{\mathcal{B}}, \\ (Q-S)x^{(2)}=\operatorname{diag}(r)x^{(1)}, & \text{then } \mathrm{MRTA}_{|\mathcal{B}}=(\pi(0)\cdot x^{(2)})/(-\pi(0)\cdot x^{(1)}) \\ \hline \end{array} \\ \hline \end{array}$$

where the shift matrix S is defined so that, being $r_a = 0$ for $a \in \mathcal{A}$,

$$\pi(0) \cdot (Q-S)^{-1} \cdot r = \pi_{\mathcal{T}}(0) \cdot Q_{\mathcal{T}}^{-1} \cdot r_{\mathcal{T}}$$

there is no need to distinguish transient from absorbing states in the labeling

(ISTI-CNR &	University	of Pisa)
-------------	------------	----------

イロト イポト イヨト イヨト

Stochastic Automata Network (SAN)

(ISTI-CNR & University of Pisa)

TAPAS, TOSME21

12 November 2021

SAN models

 A_1, \ldots, A_n define the stochastic process $\tilde{X} = (X^{(1)}, \ldots, X^{(n)})$, that is indistinguishable from X, where a <u>synchronization transition</u> (dashed arrow) is enabled <u>if and only if</u> it is enabled in <u>all</u> the automata, e.g., ξ_2 can "fire" if and only if A_2 is in U and $(A_3$ is in U or in B)

The state-space (small) exploration of each automaton is performed independently from the others

To evaluate the measures of interest it is required the existence of a path from each state to the absorbing states

(ISTI-CNR & University of Pisa)

TAPAS, TOSME21

12 November 2021

Addressed technical challenge

All the quantities involved in the computations $(\tilde{Q}, \tilde{S}, \tilde{x}^{(i)}, \tilde{\pi}(0), \tilde{r})$ can be expressed as a <u>sum of Kronecker products</u> (see demo) but

SAN

the issue is that each matrix-vector multiplication squares the number of addends in $\tilde{x}^{(i)}$. Thus, there is an <u>exponential growth</u> of memory consumption in <u>iterative linear system solvers</u>.

Tensor Trains (TT)

TAPAS, TOSME21

12 November 2021

Proposed solution

- Compressed matrices and vectors were already investigated in the literature for CTMC performance and availability models (no absorbing states)
- Novelty of TAPAS: TT-based representation for CTMC reliability models (with absorbing states)

$$\boldsymbol{\mathcal{A}}_{i_1\ldots i_d} = \underbrace{\boldsymbol{\mathcal{G}}_1[i_1]}_{1\times r} \underbrace{\boldsymbol{\mathcal{G}}_2[i_2]}_{r\times r} \ldots \underbrace{\boldsymbol{\mathcal{G}}_d[i_d]}_{r\times 1}$$

An example of computing one element of 4-dimensional tensor:

• Standard iterative methods to evaluate $\tilde{x}^{(i)}$ fail because in

$$\tilde{x}^{(i,j+1)} = \tilde{x}^{(i,j)} + \Delta \tilde{x}^{(i,j)}$$

the TT-ranks can grow too quickly

(ISTI-CNR & University of Pisa)

TAPAS, TOSME21

Proposed solution

• Thus, ad hoc solution methods have been investigated (6 so far):

SAN

Method	Transposed	Published	TT	Exponential Sums
tt-regular-splitting			\checkmark	\checkmark
amen(t)		\checkmark	\checkmark	\checkmark
	\checkmark		\checkmark	\checkmark
gmres(t)			\checkmark	
	\checkmark		\checkmark	
tt-expsumst	\checkmark		\checkmark	\checkmark

- Each $\tilde{x}^{(i,j+1)}$ update has to be re-compressed (exploiting TT round, that is based on SVD), and the TAPAS user can set the corresponding tolerance ttol. This parameter impacts mainly on memory occupancy
- The result tolerance, i.e., tol, can also be set. This parameter <u>impacts</u> mainly on time and accuracy

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Demo

(ISTI-CNR & University of Pisa)

TAPAS, TOSME21

12 November 2021

<ロト < 四ト < 三ト < 三ト

10/11

2

Demo

Next steps

- Exploit the tool to evaluate <u>additional performability measures</u> of interest, with focus on specific application domains
- Fully adhere to the Stochastic Automata Network (SAN) formalism, resorting to generalized Kronecker algebra theory
- Develop new features, e.g. to allow steady-state analysis, so to emphaddress availability-related measures, and to import the model description, as elaborated by other tools
- <u>Integration</u> of TAPAS <u>in other tools</u>, in addition to MATLAB, possibly open source ones, to promote wider usability

イロト イロト イヨト

Thank you Questions?

TAPAS, TOSME21

12 November 2021

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >