
Optics and Lasers in Engineering 182 (2024) 108455

Available online 5 August 2024
0143-8166/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Influence of lock-in thermography set-up parameters on the capability of a
temporal convolutional neural network to characterize defects in a CFRP

Tiziana Matarrese a,*, Roberto Marani b, Davide Palumbo a, Tiziana D’Orazio b,
Umberto Galietti a

a Department of Mechanics, Mathematics and Management (DMMM), Politecnico di Bari, Via Orabona, 4, 70125, Bari, Italy
b National Research Council of Italy, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, via Amendola 122D/O, 70126 Bari, Italy

A R T I C L E I N F O

Keywords:
Lock-in thermography
Deep learning
CFRP
1-D CNN
Defects detection

A B S T R A C T

Lock-in thermography is a well-established non-destructive technique for detecting damage in composite ma-
terials. The success of the lock-in technique in industrial applications depends on several test parameters, such as
the excitation frequency, the number of frames per cycle, and the number of excitation cycles that need to be
correctly set to reduce testing and processing time. However, quantitative analysis to characterize defects using
lock-in thermography is still a challenging task. Machine and deep learning algorithms can be useful to
automatize the classification of defects in terms of size and depth. In this regard, the aim of this work is to
investigate the influence of lock-in thermography set-up parameters on the capability of a temporal convolu-
tional neural network to characterize defects in a carbon fiber-reinforced polymer specimen. The performance of
the proposed neural network in identifying and classifying the depth of defects was evaluated as a function of the
number of cycles, the frames per cycle, and the random frames lost during the acquisition of the thermal
sequence by an infrared camera. The achieved results have been critically discussed through qualitative and
quantitative analyses.

1. Introduction

Nowadays, fiber-reinforced polymer (FRP) composite materials are
widely used in many industrial fields such as aerospace, automotive,
civil, and so on. The growing success of these materials is due to their
constituents, resin, and fiber, which have the task of directing and
withstanding mechanical loads. However, due to the heterogeneous
nature of the manufactured components, during the production phase or
operative conditions, internal defects like bridging, fiber breakage, and
matrix cracks could significantly decrease the strength of components or
structures, leading to serious safety problems. In this regard, non-
destructive tests (NDT) are necessary for characterizing defects and
estimating the residual strength. Currently, several NDT methods can be
used to control composite materials, such as ultrasound [1,2], X-ray [1],
shearography [3], and thermography techniques [4–6].
Active thermography (AT) techniques are based on the deposition of

a thermal external stimulus on the surface of the test piece through
halogen/infrared/flash lamps or laser [7]. According to the signal shape
and duration of the thermal excitation, the thermographic techniques

can be classified as pulse (PT) [8–10], step (ST) [11,12], and lock-in
thermography (LI) [9,13–20]. The first two techniques adopt a square
wave as an external stimulus, a Dirac impulse for PT, or a long pulse for
ST. Instead, the lock-in consists of modulating the heat source with sine,
square, or chip form [9,15]. Independently of the modality to excite the
surface of the test piece, the physics thermal principle is the same. The
thermal wave propagates into the body of the test piece following
Fourier’s conduction law. The presence of a defect beneath the surface,
which has different thermophysical properties with respect to the sur-
rounding area, alters heat propagation. This physics phenomenon can be
appreciated on the surface of the test piece as a thermal signature that
can help the operator localize the defects.
In recent years, AT has been successfully used for controlling com-

posite components since it is a contactless and full-field technique. This
means that a significant component area can be inspected in a few mi-
nutes [4]. Many authors focused on improving the signal-to-noise ratio
of thermal data by employing specific post-processing algorithms [5] to
help an expert operator identify defects.
It is important to highlight that these algorithms allow the operator
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to perform only qualitative analyses without characterizing defects in
terms of shape and size. The quantitative approaches remain a chal-
lenging task that the researchers are still investigating.
Currently, the approaches used in literature to get quantitative data

from LI are mainly based on analytical approximate solutions [21,22],
numerical finite element analyses [23], and experimental tests to char-
acterize defects [24]. An analytical one-dimensional model, based on a
1D hypothesis [21], has been used in [22] to estimate the thickness of a
glass-FRP (GFRP) laminate. However, this model provides reliable re-
sults only for large defects.
Another way to characterize the defects is using hybrid methods

based on numerical and analytical analyses. In this regard, in [25] an
iterative approach that minimizes the cost function to get information
on the defects in a carbon-FRP (CFRP) specimen has been adopted. The
cost function is the difference between phase lag given by the least
square algorithm applied on the acquired thermal wave and the nu-
merical phase values obtained by performing a finite element simula-
tion. However, this procedure is time-consuming and not suitable for
industrial applications.
In recent years, due to the growing success of CNNs in computer

vision, image recognition, and feature segmentation [26], many re-
searchers have adopted this kind of approach in NDT to characterize
defects [27–30]. The CNN networks were initially developed to elabo-
rate large datasets of images (2-D data). Therefore, a large amount of
data is required to train the networks correctly and create general
models to avoid overfitting. In order to apply CNNs in the NDT context,
many experimental tests on master specimens with different shapes and
size defects are necessary, significantly increasing the costs of tests [29,
31]. Numerical models can reduce the time for CNN training, but
experimental tests are always required to validate and verify the models
[32].
A feasible way to bridge the gap between the lack of a huge dataset

and the use of neural networks is to consider 1-D convolution layers
[33–37] to train the network with thermal temporal signals. In this way,
from a thermographic sequence of a single specimen, it is possible to
extract a large number of signals of both defects and sound regions. In
the literature, some works successfully train the neural networks with
lock-in thermal temporal signals to label the defects on CFRP. In [34], a
1-D residual attention network (1-DRAN) has been trained with thermal
temporal signals obtained with lock-in and long-pulsed tests both per-
formed on a CFRP. The lock-in test was carried out at 0.5 Hz with two
excitation cycles, and the IR camera was set to 50 frames/s. The authors
found that long-pulse signals, unlike lock-in, showed an enhanced
sensitivity in detecting deeper defects. The capability of segmenting
defects in a CFRP test piece using a convolutional residual network
trained with temporal thermal data was also studied in the work pre-
sented in [38]. In particular, the surface of the test piece was excited
with a lock-in square wave at a fixed period of 45 s for three excitation

cycles, and in each cycle, 856 frames were acquired. The goal of this
work was to show the capability of the proposed neural network in
segmenting the defects independently of the configuration of the exci-
tation sources.
Considering the just exposed works, deep learning algorithms have

been studied to automatically identify and classify the defects with
specific lock-in test parameters. However, some aspects must be further
analyzed to understand their applicability in actual industrial contexts.
To our knowledge, no one has evaluated the effect of lock-in set-up test
parameters in classifying defects using a neural network.
The aim of this work is to evaluate how the variation of some lock-in

test parameters can affect the performance of a temporal convolutive
neural network (1-D CNN) in identifying and classifying defects inside a
CFRP specimen. In particular, two test parameters usually imposed by
the operator, the number of cycles and the number of frames/cycle, in an
offline process have been varied.
The performance of the investigated 1-D CNN has also been evalu-

ated as a function of dropped frames, i.e., the number of random frames
lost by the infrared camera (IR camera) during the acquisition. In
addition, a parametric study has been performed by varying some
hyperparameters of the net to choose the most suitable net architecture.
So, the main novelty of the work is to investigate the limits and ad-
vantages of using a neural network to characterize defects in CFRP as a
function of the experimental lock-in parameters to reduce testing and
processing time.
The paper is organized as follows: Section 2 presents the Lock-in

thermography theory; Section 3 describes the specimen and the exper-
imental set-up; Section 4 explains the methodology adopted; Section 5
describes the different architectures that have been tested in the
experimental campaign; Section 6 reports the experimental results, and
finally Section 7 discusses the conclusions.

2. Theory: lock-in thermography

Lock-in thermography is based on a periodic deposition of modu-
lated thermal heat on the surface of the specimen [7,9,13], a schematic
representation of a typical lock-in set-up in reflection mode is shown in
Fig. 1. Halogen lamps are usually employed to heat the surface of the
specimen homogeneously, avoiding localized thermal gradients that
could hide or be confused as defects. Simultaneously, on the same side of
the specimen, the thermal material response is remotely recorded by an
IR camera. After that, the acquired thermal sequence is processed by a
suitable lock-in algorithm [13,14] that gives amplitude and phase maps
as an output.
As shown in Fig. 1, the phase map is mainly considered since it is less

affected by non-homogeneous heating. The phase map is related to
thermal diffusion length according to this equation:

Fig. 1. A schematic representation of the lock-in set-up configuration in reflection mode.
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φ(z) =
z
μ (1)

The thermal flow propagates into the body of the specimen and the
reached depth (z) is ruled by the thermal diffusion length μ. This
parameter μ strictly depends on the thermophysical properties of the
material and the modulation period T [6,9,15,16]:
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where k is the thermal conductivity, ρ is the density, cp is the specific
heat at constant pressure, ω is the angular frequency, and α is the
thermal diffusivity. The thermal diffusion length represents the distance
at which the temperature reaches 37% of the surface temperature value.
Below this value, detecting defects becomes very hard.
Therefore, the achieved depth can be obtained [14,18]:

z = C1

̅̅̅̅̅̅
αT
π

√

= C1μ (3)

where C1 is a constant of the material.
To detect the defect, the phase contrast is evaluated as follows:

Δφ = φd − φs (4)

where φd and φs are the phase signals on the defect and sound regions,
respectively. For some frequencies (named blind frequencies) that
depend on the size, shape, and depth of the defects, the phase signals of
the defect and sound regions can be equal. In this way, the defect dis-
appears and seems to merge with the sound region, even if the thermal
diffusion length µ is greater than the depth of the defect. Therefore, the
experimental tests must be performed considering multiple sine wave
lock-in periods to ensure the detection of the defects. This constraint
considerably increases the testing time. Currently, in literature, an
attempt to overcome this problem is to excite the surface of the specimen
with a modulated square wave [9,15].

3. Specimen and experimental set-up

The lock-in tests have been performed on a CFRP specimen

composed of 25 layers arranged in a cross-ply configuration [(0/90◦)]s
to achieve a nominal thickness of 5 mm. The specimen has dimensions of
250 × 500 mm2. The prepreg is MTM228 having a volume fraction of
42%. This epoxy matrix resin was cured in a dry room for 60 min at 120
◦C with a pressure of 2 bar in the autoclave. To simulate the de-
laminations that can occur between two plies of the specimen, each
defect has been manufactured with two patches of the same material (to
enclose air), that have been put inside a flash-baker to fix them. As
shown in Fig. 2, a limited area of dimensions 250 × 208 mm2 has been
inspected. In this area, sixteen defects have been placed. These defects
can be divided into four groups according to their different depths and
materials. Starting from the first row (on the top of the specimen), the
first group consists of four defects h1, h2, h3, and h4. Each of them has
been obtained by inserting two circular patches of halar materials with
varying diameters, placed at the same depth of 0.4 mm. Moving down to
the specimen, the depths of defects increase. In the second row, the
group of defects k1, k2, k3, k4 are manufactured with kevlar and placed

Fig. 2. Investigated CFRP specimen made of artificial defects having different materials (halar, kevlar, metal), placed at different depths and with different diameters
(in black are represented the dimensions of flash-bakers).

Fig. 3. Experimental set-up. The experimental tests have been carried out by
adopting a reflection configuration mode.

T. Matarrese et al.



Optics and Lasers in Engineering 182 (2024) 108455

4

at 0.8 mm. In the third and fourth rows, the groups of defects are in
metal and halar material and are placed at a depth of 1.2 mm and 1.6
mm, respectively. By observing the specimen from left to right, each
defect has an increasing diameter ranging between 5 mm to 17 mm
(considering the flash-bakers represented in black in Fig. 2)
This specimen has been inspected adopting a reflection configuration

mode, as shown in Fig. 3. The data acquisition system is performed by
the Multides systems (DES Diagnostic Engineering Solutions S.r.l.),
which has a proprietary software namely IRTA able to synchronize the
halogen lamps and the IR camera. Two halogen lamps both of 500 W
have been modulated to excite sinusoidally (for three cycles, Table 1)
the surface of the test piece, and simultaneously the thermal material
response has been recorded with a microbolometer IR camera (FLIR
A655sc) working in the longwave range of 7 – 14 μm, with a focal plane
array of 640 × 480 elements and NETD < 30 mK. The obtained
geometrical resolution has been 0.48 mm/pixel.
According to Table 1, the set parameters of the IR camera have been

imposed to acquire 500 frames in each cycle, by collecting a total of
1500 frames. Different excitation frequencies have been investigated,
and three repetitions for each frequency have been performed. In this
work, only the thermal sequences acquired at 50 s of the excitation
period have been taken into account since this period ensures that
almost all the defects are well-detected in the phase map [14]. More-
over, only two of the three repetitions have been considered, as
explained in detail in the following sections.

4. Methods

The adopted methodology is described in the following subsections:
the pre-processing procedure of thermal data, the lock-in test parame-
ters considered for the analysis, and the investigated neural network
architectures.

4.1. Signal pre-processing

It is difficult to obtain homogeneous heating due to the convective
heat exchanges that occur at the edges of the specimen. Then, it is
necessary to pre-process the acquired thermal sequences. In Fig. 4 the
flowchart of the adopted procedure is shown.
On the left, there is a frame extracted (4(a)) from the raw thermal

sequence on which two spatial profiles, both in correspondence with
kapton defects and the adjacent sound region, have been represented
(black and red dashed lines, respectively). Both spatial profiles are
affected by non-homogeneous heating. By focusing on the black profile,
the three peaks correspond to the defects (k2, k3, k4), while defect k1 is
too small to be detected. In addition, the thermal temporal behaviors of
two different points belonging to defect and sound regions appear quite
comparable. Therefore, a pre-processing technique is necessary to
remove the effects of non-homogeneous heating and increase the signal-
to-noise ratio. All the frames of the thermal sequence have been
normalized (4 (b)), and a median spatial filter (4 (c)) with a large kernel
size [121,121] has been applied to each of them. Fig. (4 (d)) reports a
frame extracted by the output sequence obtained as a difference be-
tween the normalized and median filter sequences. The two resulting
spatial profiles are less affected by non-homogeneous heating. In the
same way, the two thermal temporal profiles present a better signal-to-
noise ratio.

Table 1
Set up parameters used during the experimental phase.

Excitation
period [s]

Sampling
rate [Hz]

N◦ of
frames/
cycle

N◦ of
cycles

N◦ tot
frames

N◦ of
repetitions

50 10 500 3 1500 3

Fig. 4. Flowchart of the adopted signal pre-processing procedure to remove non-homogeneous heating and increase the signal-to-noise ratio.

T. Matarrese et al.
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4.2. Lock-in test parameters

After the pre-processing of the thermal sequences, some offline an-
alyses have been performed as reported in Table 2.
Different signal lengths have been achieved for both the number of

cycles and the number of frames per cycle, as represented in bold inside
the parentheses. For example, at one excitation cycle, the signal length is
equal to 500 frames, at two cycles is 1000, and so on. The same thing can
be said for the frames/cycle. It is important to underline that for
convolution neural networks is not possible to use different dataset
lengths for the training and testing phase. Therefore, for each investi-
gated case, for the number of cycles and the number of frames per cycle,
the 1-D CNN has been trained every time.
A different approach has been used for the dropped frames. The

dropped frames were expressed as a percentage value of the total
number of imposed frames, as listed in Table 2. This analysis simulates
an uncontrolled event that could occur during the acquisition of the
thermal sequence, in which some frames are missing. The direct
consequence of this event is that the total number of acquired frames is
less than the expected one, providing different signal lengths. To have
the same data length (1500 frames and 3 cycles), the dropped frames
were substituted with null frames (frames for which all temperature
values are 0). Then, the robustness and sensitivity of the network ar-
chitectures were evaluated as a function of the percentual values of
dropped frames in a range from 0 to 30 %.

4.3. 1- D CNN neural network

The proposed methodology must be able to classify the thermal input
signal as belonging to the sound or defective region. In this case, five

classes have been considered: one is related to the background/sound
region, and the other ones are the four defective groups, corresponding
to defects placed at four different depths, as described in Fig. 1. The
input thermal signals have been pre-processed as described above, and
after a learning phase, the output is a class number corresponding to the
range [0–4]. Starting from the results obtained in [33], a temporal
convolutional neural network (1-D CNN) architecture was selected, as
shown in Fig 5.
The proposed 1-D CNN architecture can be divided into four macro-

blocks: the input layer, the feature extraction layer, the classification
layer, and the decision layer. The number of input thermal data provided
to the 1-D CNN is defined by the batch size parameter (in this work, it is
set to 32).
For instance, on the left, a thermal normalized and filtered input

signal of 1500 frames is graphically depicted as a series of cubes. This
input signal gets into three consecutive convolutional layers, which have
the task of feature extraction. Each convolutive layer is further divided
into three sub-blocks:

• The input thermal signal is convolved with NF different 1D filters
(each has a kernel size 1 × NK). Each filter slides one frame over the
thermal signal, and another convolutional operation is performed.
This operation is repeated till the whole input temporal signal is
analyzed. As a result, NF thermal output signals that are smaller but
have an increasing significance level with respect to the input signal,
are generated. It is important to note that the NF value must be
properly set for each convolutional layer.

• The Rectified Linear Unit (ReLU) adds non-linearity to the neural
network to increase its complexity. This operation is easily per-
formed: all the negative values are brought to null; instead, all pos-
itive values are unchanged.

• The Max Polling performs a downsampling operation. A rectangular
window of dimension 1× 2 moves with a stride equal to 1× 2 on the
thermal data and selects each time the maximum value. This oper-
ation is performed on all NF thermal signals given by the convolu-
tional filter. The results are new NF output signals that are half with
respect to the input one but with a further increasing level of
significance.

Table 2
The investigated offline parameters with their relative input signal lengths re-
ported in parentheses and in bold.

Excitation period [s] 50
N◦ of cycles (dataset length) 1 (500) – 2 (1000) – 3 (1500)
N◦ of frames/cycle (dataset
length)

25 (75) – 50 (150) – 100 (300) – 125 (375) – 250
(750) – 500 (1500)

Dropped frames [%] 0 – 2 – 5 –10 –15 – 20 – 25 – 30

Fig. 5. Schematics representation of the adopted net architecture trained with the thermal signal. Ns is the normalized and filtered thermal signal. Nk is the length of
the kernel size, NFi, with i = 1,2,3, is the number of output 1 D convolution filters of each layer.

T. Matarrese et al.
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The above-cited operations are repeated for each convolutional
layer. Then, the thermal signals output at the end of the feature
extraction layer depends on the NF value imposed for the third con-
volutional layer (NF3). Each of these NF3 signals contains the most
important information about the input thermal signal; in other words,
the network has NF different representations of shorter lengths of the
input thermal signal. This information helps carry out the classification
tasks performed by the fully connected network, following the three
steps:

• The NF3 thermal signals are flattened into a vector that represents the
input layer of the fully connected network.

• The softmax function assigns a probability value to the input thermal
signal to belong to one of the Nc investigated classes.

• The cross-entropy loss compares the output value given by the build
model with the actual value; if these values are comparable, the
cross-entropy provides a low value. Therefore, during the training,
the goal is to minimize the cross entropy-loss value as much as
possible.

In the proposed 1-D CNN architecture, three convolutional layers
have been considered. It is easy to understand that the deeper the neural
network, the more information is caught. Nevertheless, it is not rec-
ommended to significantly increase the network complexity when un-
necessary, since a few layers can create a general model, preventing the
overfitting problem. Moreover, it is necessary to ensure that the thermal
signals do not become null after pooling operations. In this work, since
different analyses with different lengths of the thermal signal will be
provided as input to the 1-D CNN, a net architecture with three con-
volutional layers has been considered. This choice represents a proper
trade-off between the network complexity and the informative content
of the thermal signals at the end of the feature extraction phase.

5. Experimental campaign

The proposedmethodology has been implemented using the Pyhorch
framework, which runs with an Intel Core i7 8700K (clock frequency 3.7
GHz) supported by 16 GB of RAM, and an nVidia GPU, namely a Geforce
RTX350 having memory of 8 GB GDDR6 and 2560 CUDA cores).

5.1. Metrics

To evaluate the performance of the investigated model, some typi-
cally used metrics in the deep learning approach have been considered.
It is essential to highlight that in multiclassification problems, the per-
formance of the net architecture is assessed with a one-versus-all
approach. It consists of reducing the multiclassification problem to a
binarization one in which only two classes exist, namely the c-th class,
against all the remaining ones. In the following list, the three investi-
gated metrics are described.

• The positive prediction value (PPVc), also namely Precision.

PPVc =
TPc

TPc + FPc
(5)

where TPc and FPc are the True Positives and False Positives,
respectively.
This metric represents the number of correct positive predictions for

all the times the model forecasts that the event will occur. As can be
seen, this metric does not consider the FNc (False Negatives).
It could occur that although the model has a high precision value, it

might not detect many defective pixels, so it does not give the operator
the necessary alert.

• The true positive rate (TPRc) or recall defines the sensitivity of the
model.

TPRc =
TPc

TPc + FNc
(6)

This metric represents the number of correct positive predictions
over all the actual positive occurrences. Contrary to the precision metric,
the recall does not give any information about the number of FPc, that
could be significant. It could happen that the model incorrectly assigned
to some pixel of the sound region as belonging to a defective one,
thereby giving unnecessary alerts to the operator.

• The Balanced Accuracy metric is widely used when the dataset is
strongly unbalanced, as it weights the standard accuracy by the
number of occurrences of the c-th label:

BACCc =

TPc
TPc+FNc

+ TNc
TNc+FPc

2
(7)

It is the mean arithmetic between the sensitivity (first term) and the
specificity (second term). The specificity is the negative correct pre-
diction TNc (True Negative) with respect to all the negative events that
occur. Of course, having all the metrics close to unity should be pref-
erable. However, these conditions are not always possible, so a trade-off
must be reached. So, in all the fields where safety is mandatory, it is
better to get in the worst case. In other words, having a significant value
of FPc with respect to having a high value of FNc is preferable. In these
cases, models that have good performance in all the metrics but main-
tain, in particular, high recall values represent the best choice.

5.2. 1- D CNN parameters

Table 3 shows the parameters used to define the architecture of the
proposed neural network. The input/output constraints, such as the
length of the thermal signal Ns and the number of classes Nc determine
some of these parameters. The remaining ones are explained in this
section.
The lengths of the kernels of 1D convolutional filters NK must be

defined, and generally, it depends on the specific application. More
specifically, a low hyperparameter value means that the network will be
able to appreciate the quick variations of the input thermal signal, but at
the same time, it will be more affected by the noise. On the contrary, a
high NK hyperparameter value means that the network is less affected by
noise but can appreciate only the slow variations, thus neglecting the
fast variations. In this work, as the noise contribution has been removed
thanks to the pre-processing phase, the hyperparameter NK value has
been empirically fixed to 8.
The parameter NF represents the number of 1D convolutional filters

for each of the three considered convolutional layers. In this regard, a
parametric study has been carried out in which the NF value varies be-
tween 32 and 64. These values have been chosen since they, being

Table 3
Parameters of the adopted temporal Convolutive Neural Network (1-D CNN)
architecture.

Parameters Description Value

Ns Length of the normalized thermal signal 1500
Nc Number of classes 5
NK Length of kernels of 1D convolutional

filters
1 × 8

NF Number of 1D convolutional filters Experimentally
evaluated

T. Matarrese et al.



Optics and Lasers in Engineering 182 (2024) 108455

7

powers of two, ensure an efficient computational approach, allowing the
neural network to reach convergence in less time. Table 4 shows the
investigated configurations with the relative number of epochs and time
to achieve convergence.
As Table 4 reports, the net architectures Net 2 and Net 4 employed

less time to achieve the convergence (the model is built in 12 min, in
bold). To choose the suitable architecture, all the investigated net ar-
chitecture has been accurately evaluated and compared by studying the
training and test results in qualitative and quantitative ways.

5.3. Training and testing

After pre-processing, each signal has been classified as belonging to
one of the five classes. In this work, to have the map of the defects, the
acquired thermal sequence has been processed with the signal recon-
struction (SR) algorithm [14,19,22], as shown in Fig. 6. The labeling of
defects has been manually performed on the phase map to obtain the
ground truth (GT) map. Then, the partition in training and test has been

performed.
The training dataset is composed of the thermal signals extracted

from the defective areas belonging to the columns of size, 5 mm, 12 mm,
and 17 mm. The second column (defects diameter equal to 9 mm) has
been considered to extract the signals for the test phase.
It is essential to highlight that two different acquisitions of the same

specimen were considered to evaluate the actual robustness of the
considered 1-D CNN. From the first sequence, the three training regions
were extracted; from the second one, the testing region was selected.

5.4. Balanced dataset

One of the potential limits that can affect the convergence of the
neural network during the training phase is the quality of the data
provided as input. Specifically, some signal values of the sound region
can have completely different values with respect to the other ones or
can be similar to data belonging to the defect region; this is due to, i.e.,
edge effects, inhomogeneity deposition of the resin, or something like
that. About defected regions, since the defects have finite dimensions,
the lateral diffusion effect significantly affects the signal at the edge of
defects with a consequent reduction of the thermal signal with respect to
the center. Therefore, as shown in Fig. 7, the examples were limited
inside the circular red areas in correspondence with the defective re-
gions. In contrast, in the sound region, the examples were chosen
randomly inside the two central limited areas in the red rectangular
boxes [34]. As can be seen, although the sound region has been
delimited, the dataset is still imbalanced since the training examples
related to class 0 are still much more with respect to the defective areas.
The under-sampling method, among the different approaches present in
the literature, has been used to balance the dataset [39]. It consists of
randomly removing examples from the majority dataset. The main

Table 4
The eight investigated configuration net architecture with the relative number of
epochs and time employed to achieve convergence.

Net
Architecture

Layer 1
(NF1)

Layer 2
(NF2)

Layer 3
(NF3)

Epochs Time
[min]

Net 1 32 32 32 229 16
Net 2 32 32 64 148 12
Net 3 32 64 32 230 18
Net 4 64 32 32 203 12
Net 5 64 64 64 206 20
Net 6 64 64 32 211 18
Net 7 64 32 64 184 16
Net 8 32 64 64 176 16

Fig. 6. Classification of defects, on the phase map obtained by the SR lock-in algorithm. The dataset has been split into training (blue sound region) and test regions
(green sound region). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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drawback is to significantly reduce the number of training examples and
induce overfitting, which means that the network cannot build a general
model. For our purpose, it has been imposed that each defective class has
the same number of examples, and that class 0 is five times more than
each defective class.
In addition, for robust training, the achieved dataset has been split

into training and validation, 75 % and 25 %, respectively. During
training, the objective cost function was optimized by the stochastic
gradient descent method (SGDM), with momentum and learning rate set
to 0.9 and 0.001, respectively. The training phase stopped when the
accuracy of the validation set did not improve for several consecutive
epochs (patience parameter). In this work, the patience parameter was
set to 8.

6. Results and discussion

In this section, the qualitative and quantitative results obtained by
each investigated net architecture will be shown in order to choose the
best one. Subsequently, the effect of the number of cycles, number of
frames/cycle, and dropped frames on the performance of the adopted 1-
D CNN will be illustrated.

6.1. Parametric study: training phase

In Fig. 8, the training maps obtained by each net architecture are
presented.
As can be seen, the defects h3, and h4 of class 1, are correctly iden-

tified and classified by each architecture. In this case, the lateral diffu-
sion effect that affects the edge of the defects is quite negligible since
these defects are shallower than the others [8]. Focusing on the defects
of classes 2 (k3, k4), the lateral diffusion effect becomes evident: the
defect edges are not correctly classified. The same happens for defects of
class 3 (m3, m4) and class 4 (h7, h8).
More in detail, it is worth highlighting that no architecture can

Fig. 7. Examples over which the 1-D CNN learns the model delimited by two
red rectangular areas and by circular areas for sound and defects regions,
respectively. The number of these examples, chosen randomly at each epoch,
depends on the value imposed on the batch size.

Fig. 8. Classification results of the training phase for each proposed 1- D CNN architecture.
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accurately determine the shape of the defects of class 4. In this case, the
thermal signal value in correspondence of pixels on the edges is too low.
Therefore, these pixels are erroneously labeled as class 0. The outcome is
that these defects seem smaller than the actual dimensions. By observing
the defects in the first column (h1, k1, m1, h5), all the models provide
detections that are not as precise as for the others belonging to the same

class but with larger diameters. These defects are challenging to detect
since they are smaller and deeper than the others. In this regard, as seen
in Fig. 8, the defects h1 and k1 of class 1 and class 2 are always correctly
well-segmented by each configuration, although the defect k1 seems
smaller in size than the actual one.
Instead, with increasing depth, detecting the m1 and h5 defects of

classes 3 and 4 becomes critical. As can be seen, all the architectures
provide a very small cluster of thermal data grouped in correspondence
with these defects. However, the segmentation could be more reliable
and accurate, and it cannot be concluded that these pixels belong to a
defective region. So, no one architecture can correctly segment them.
The quantitative results are shown in Fig. 9, where all the metrics, i.

e., balanced accuracy, recall, and precision, are graphically depicted as a
function of the investigated classes.
Starting from class 0 until class 3, for all the investigated metrics, all

the architectures are comparable since they have more or less the same
value. As expected, for the detection of defects belonging to class 4, the
architectures have lower performance. In Table 5, the overall behaviors
of the eight models are summarized by showing the mean value of all

Fig. 9. Comparison among quantitative results obtained in the training phase by each investigated net architecture for the three studied metrics.

Table 5
The mean value of all investigated classes has been calculated after the training
phase for the balanced accuracy, recall, and precision metrics.

Net Architecture BACC Recall Precision

Net 1 0.9287 0.8823 0.6958
Net 2 0.9085 0.8460 0.6926
Net 3 0.9171 0.8640 0.7433
Net 4 0.9205 0.8686 0.7485
Net 5 0.9124 0.8564 0.7513
Net 6 0.9239 0.8748 0.7377
Net 7 0.9258 0.8763 0.7314
Net 8 0.9147 0.8595 0.7382

Fig. 10. Classification results of the test phase for each proposed 1-D CNN architecture.
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investigated classes for the balanced accuracy, recall, and precision
metrics.
Considering the results of Table 5, Net1, and Net2 although have

good values of balanced accuracy and recall, both have a low value of
precision (in bold), therefore they are not considered in the following
evaluations. The other architectures are quite comparable. The only
parameter that greatly varies among these remaining models is the
processing time (see Table 4). For this reason, the Net 4 is the one that
after the training phase presents good values of the metrics, and also
reaches the convergence in less time.

6.2. Parametric study: testing phase

A test dataset extracted from the test region depicted in Fig. 6, has
been provided as input to all the architectures. In Fig. 10, the obtained
qualitative results are shown.
As can be seen, each architecture recognizes the defect h2 belonging

to class 1, and the lateral diffusion effect is quite negligible. Instead,
starting from class 2 up to class 4, the depth of defects increases, and the
thermal contrast decreases, so detecting the defects is more difficult.
In particular, the defect of class 4 is detected with less accuracy. In

Fig. 11, the quantitative results of the test phase for each proposed ar-
chitecture are compared to critically analyze the performance of the
considered net architectures.
Considering both BACC and recall metrics, all the investigated ar-

chitectures perform similarly in segmenting the defects from class 0 to
class 3. At the same time, they show a different behavior only in

correspondence with class 4. Table 6 summarizes the results for the test
phase by showing the mean value of all investigated classes for the
balanced accuracy, recall, and precision metrics.
From this analysis, Net 4 and Net 7 have balanced accuracy and

recall metrics higher with respect to the other net architectures (in bold).
Net 4 has a precision value higher than the Net 7. Therefore, in light of
these considerations (both taking into account the training and testing
results) and the less convergence time, Net 4 was chosen for our further
analyses.

6.3. Effect of the number of cycles

As mentioned earlier in Section 2, detecting the defects with the lock-
in thermography requires correctly choosing the excitation period since
it is strictly related to the penetration depth of the thermal flaw into the
body of the specimen. Moreover, it is necessary to consider several
excitation cycles to collect the suited amount of data for the processing
phase. Therefore, it is interesting to assess the minimum number of
cycles that ensure a significant thermal contrast to recognize the defects
and, at the same time, speed up the experimental testing time. Moreover,
reducing the number of cycles can resolve the problem related to the
amount of data that needs to be stored for each acquisition. In this work,
the experimental tests were carried out by heating the surface of the
specimen for three excitation cycles, as depicted in Table 1. The ac-
quired thermal sequence was offline post-processed to achieve one and
two excitation cycles, respectively. By doing that, three thermal se-
quences of different lengths have been obtained, and each of them has
been provided as input to the neural network to train the related models.
The qualitative results obtained after the training phase are shown in

Fig. 12. As can be seen, the capability of the models to label the defects
of class 1 is not significantly affected by the number of cycles. The same
consideration applies to classes 2 and 3, which are only less reliable in
detecting the smallest defects (k1 and m1). The models perform differ-
ently in labeling the deeper defects of class 4: the models of the first two
cycles do not detect the defects h5 and h7. In contrast, the model trained
with three cycles partially detects some areas of the defects belonging to
four classes.
The quantitative results regarding BACC, recall, and precision met-

rics are depicted in Fig. 13.
The BACC, recall, and precision metrics for the classes 0–3 seem

Fig. 11. Comparison among quantitative results obtained in the test phase by each investigated net architecture for the three studied metrics.

Table 6
The mean value of all investigated classes has been calculated for the balanced
accuracy, recall, and precision metrics.

Net architecture BACC Recall Precision

Net 1 0.8265 0.7073 0.6611
Net 2 0.8119 0.6820 0.6989
Net 3 0.8134 0.689 0.7068
Net 4 0.8275 0.7127 0.6925
Net 5 0.8098 0.6830 0.7268
Net 6 0.8270 0.7122 0.6859
Net 7 0.8348 0.7237 0.6684
Net 8 0.8100 0.6830 0.7052
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Fig. 12. Classification results of the training phase as a function of the excitation cycles.

Fig. 13. Quantitative results of the investigated metrics as a function of the excitation cycles obtained in the training phase.

Fig. 14. Classification results of the test phase as a function of the excitation cycles.
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almost independent of the number of cycles, showing only a slight
improvement with increasing cycles. The effect of the number of cycles
on the degradation of the metrics becomes significant as the depth of
defects increases. As can be seen, for class 4 the values of the metrics are
lower for one cycle while they considerably increase at three cycles.
Fig. 14 shows the qualitative results of the test phase. The same

considerations of the learning phase can be extended in the test phase.

The main difference can be appreciated by looking at one cycle results.
In particular, the model identifies the defect h2, while the defects k2 and
m2 are detected but belong to the wrong class. This behavior is un-
doubtedly due to the low signal-to-noise ratio. The defect h6 with only
one excitation cycle is not detected at all. This defect h6 does not even
detect with two excitation cycles, while with three cycles, only some
points are detected.
The quantitative results in Fig. 15 confirm the above qualitative

considerations. One excitation cycle is enough to correctly identify the
defects belonging to the first three classes. Performing three cycles, the
defect h6 (class 4) is partially detected, with lower values of the metrics
with respect to the other classes.
The quantitative results are summarized in Table 7. As can be seen,

all the matrics increase as a function of the number of cycles. In order to
emphasize this consideration, in Table 7, also the average values are
reported. As expected, the average values increase as a function of the
investigated parameter.

6.4. Effect of the number of frames per cycle

The number of frames per cycle is another lock-in user-controllable
parameter that can be set by the operator and can influence the quality
of the results. As reported in Table 1, 500 frames have been acquired in
each cycle. However, since the composite thermal material response has
a low thermal diffusivity, acquiring a huge number of frames per cycle
could not be necessary. Indeed, in the works of [14], it has been proven
that 100 frames/cycle is a good trade-off value in terms of
signal-to-noise ratio and reduction of storage requirements of the ther-
mal data.
To simulate different acquisition frequencies, the original thermal

sequences have been subsampled to integer numbers, as shown in
Table 2. Also, in this case, each analysis consists of a sequence with a
proper length of the thermal data. Therefore, the 1-D CNN has been
retrained for each case.
Table 8 shows the training time values for each number of frames per

cycle. It is worth noting that the neural network needs more time to
build the model with 25 and 50 frames/cycle. This is due that the neural
network must learn the model on a dataset made of few examples. For
this reason, the cost function optimization needs more time to achieve
convergence.
All the metrics are graphically depicted in Fig. 16 as a function of the

Fig. 15. Quantitative results of the investigated metrics as a function of the excitation cycles obtained in the test phase.

Table 7
Balance accuracy, true positive, and positive predictive values obtained by
testing the adopted 1-D CNN as a function of the number of cycles.

Class Number of cycles

1 cycle 2 cycles 3 cycles

BACCc Class 0 vs All 0.833 0.830 0.856
Class 1 vs All 0.732 0.823 0.856
Class 2 vs All 0.941 0.980 0.962
Class 3 vs All 0.706 0.684 0.856
Class 4 vs All 0.500 0.509 0.606
Average 0.742 0.765 0.827

TPRC Class 0 vs All 0.989 0.994 0.993
Class 1 vs All 0.467 0.656 0.714
Class 2 vs All 0.891 0.966 0.929
Class 3 vs All 0.414 0.368 0.714
Class 4 vs All n.a. n.a. 0.214
Average 0.552 0.597 0.713

PPVc Class 0 vs All 0.993 0.993 0.994
Class 1 vs All 0.439 0.887 0.821
Class 2 vs All 0.350 0.442 0.576
Class 3 vs All 0.411 0.831 0.712
Class 4 vs All n.a. 0.073 0.359
Average 0.439 0.645 0.693

Table 8
Number of epochs and time employed by the net architecture as a function of the
number of frames per cycle.

Frames/cycle Epochs Time [min]

25 401 19
50 341 16
100 183 8
125 226 11
250 202 9
500 203 12
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number of frames per cycle. The BACC values of all investigated classes
abruptly decrease for values lower than 100 frames/cycle, and the same
considerations can be extended to both recall and precision metrics.
Specifically, in the range between 100 and 500 frames, a slight incre-
ment in the performance of all investigated metrics can be seen for the
defects of class 4. However, from a practical point of view, this analysis
shows that 100 frames/cycle is a reasonable threshold value above
which the sensitivity of the 1-D CNN in labeling all the defects does not
significantly change.
Fig. 17 shows the qualitative results obtained by the test phase.

Focusing on the detections obtained between 100 and 500 frames, the
defects are similarly labeled. Instead at 25 and 50 frames/cycle, the
classification of defects is less accurate and reliable.

These results are confirmed by the quantitative results of the test
phase reported in Fig. 18. So, it can be concluded that training the neural
network with more than 100 frames/cycles does not significantly in-
crease the value of the three investigated metrics.
The quantitative results obtained in the tests phase are summarized

in Table 9. As can be seen, all the metrics increase as a function of the
number of frames/cycle.

6.5. Effect of dropped frames

Differently from the two previously discussed lock-in parameters, the
dropped frame parameter is not user-controllable since it is related to an
online event that can occur when the IR camera during the acquisition

Fig. 16. Quantitative results of the investigated metrics as a function of the number of frames obtained in the training phase.

Fig. 17. Classification results of the test phase as a function of the number of frames/cycle.
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phase randomly loses some frames. In the following experiments, the
model previously trained at 1500 frames for three excitation cycles has
been considered. The effort is to evaluate the robustness and sensitivity
of this model in labeling the defects when a thermal sequence that has
lost some information is provided as an input.
To simulate the online lost events, some frames of the sequences are

dropped and substituted with null frames. Several percentages of
dropped frames are considered starting from a low value of 2 % up to 30
%. Fig. 19 presents the results obtained in the test phase.
As expected, the classification provides worse results as the dropped

frames increase. Comparing the results, the size of all defects seems
gradually smaller as the number of dropped frames increases. This
behavior is significant above all for the defect of class 4, where the 1-D
CNN is able to classify the defect up to 10% of the total frames.
The quantitative results are shown in Fig. 20. The values of the three

considered metrics for all the investigated classes when the percentage
of dropped frames varies in the range of 0–5 % are slightly affected by
the lost frames.
The quantitative results obtained in the tests phase for the dropped

frames are summarized in Table 10.

7. Conclusions

This work evaluates the performance of a convolutive neural
network as a function of some lock-in test parameters for defect classi-
fication in a CFRP specimen. This analysis is fundamental to under-
standing the applicability of 1-D CNN techniques in a real industrial
context. In particular, the number of cycles and frames per cycle has
been investigated. Moreover, the performance of the 1-D CNN when
frames are dropped (which is a not user-controllable lock-in parameter)
has been studied. A neural network with three convolutive layers has
been considered. In addition, a parametric study by varying some
hyperparameters of this adopted convolutive network has also been
done to select its best configuration.
The main results can be summarized as follows:

Fig. 18. Quantitative results of the investigated metrics as a function of the number of frames obtained in the test phase.

Table 9
Balance accuracy, true positive, and positive predictive values obtained by
testing the adopted 1-D CNN as a function of the number of frames/cycle.

Class Number of frames/cycle

25 50 100 125 250 500

BACCC Class 0 vs
All

0.767 0.846 0.850 0.8363 0.837 0.856

Class 1 vs
All

0.614 0.875 0.866 0.8547 0.857 0.857

Class 2 vs
All

0.733 0.796 0.814 0.8316 0.828 0.962

Class 3 vs
All

0.655 0.925 0.930 0.9218 0.934 0.857

Class 4 vs
All

0.501 0.579 0.608 0.5793 0.568 0.606

Average 0.654 0.804 0.814 0.8047 0.805 0.828
TPRC Class 0 vs

All
0.997 0.992 0.995 0.996 0.995 0.993

Class 1 vs
All

0.232 0.750 0.732 0.710 0.714 0.714

Class 2 vs
All

0.311 0.853 0.864 0.846 0.870 0.928

Class 3 vs
All

0.468 0.593 0.629 0.664 0.657 0.714

Class 4 vs
All

n.a. 0.163 0.217 0.159 0.138 0.214

Average 0.402 0.670 0.687 0.675 0.675 0.713
PPVC Class 0 vs

All
0.990 0.994 0.994 0.993 0.993 0.994

Class 1 vs
All

0.236 0.828 0.808 0.821 0.814 0.821

Class 2 vs
All

0.548 0.555 0.608 0.605 0.585 0.576

Class 3 vs
All

0.478 0.646 0.713 0.739 0.733 0.712

Class 4 vs
All

0.233 0.204 0.405 0.416 0.376 0.359

Average 0.497 0.645 0.706 0.715 0.700 0.693

T. Matarrese et al.



Optics and Lasers in Engineering 182 (2024) 108455

15

• Considering just one excitation cycle (that can reduce the duration of
experiments), the adopted 1-D CNN can identify the first three
classes of defects both in training and in the test phase. The deepest
defects can be detected only with three cycles, even if with a reduced
precision than the actual one.

• The investigated metrics do not increase significantly as the number
of frames per cycle rises above 100. Acquiring more than 100
frames/cycle to detect and classify defects is unnecessary. This
analysis is helpful to reduce the amount of data storage.

• The defect detection performances of the proposed 1-D CNN archi-
tecture remain acceptable for up to 5% of dropped frames.

As previously said, the training phase requires some time to build the
model that depends on the performance of the personal computer.
However, during the test phase, only a few seconds are required to

get quantitative information about the defects. The possibility of getting
results very quickly is one of the main advantages of the proposed
approach thereby allowing to speed up and automatize the defect
detection process. The main limitation of the proposed approach is due
to the pre-processing phase which needs the application of both the
normalization and median filter. In particular, a median filter with a
large kernel size [121,121], useful to remove the non-homogeneous
heating, has been chosen. It is worth mentioning that this filter takes

Fig. 19. Classification results of the test phase as a function of the number of dropped frames.

Fig. 20. Quantitative results of the investigated metrics as a function of the dropped frames obtained in the test phase.
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about 3 h to give the results using a MATLAB (version 2023b) software
code. Another limitation is that the proposed 1-D CNN could only
partially classify small and deeper defects. The thermographic signals
for these small and deep defective regions contain non-significant in-
formation to separate them from sound areas. To overcome this prob-
lem, further studies will be carried out considering a multifrequency
approach in which more excitation periods will be provided as input to
the 1-D CNN.
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