Service Oriented Computing and Applications (2021) 15:75-92
https://doi.org/10.1007/s11761-020-00311-z

ORIGINAL RESEARCH PAPER r')

Check for
updates

ReLock: a resilient two-phase locking RESTful transaction model

1 2

Luca Frosini'® - Pasquale Pagano'® - Leonardo Candela’® - Manuele Simi'-2® - Cinzia Bernardeschi3

Received: 14 May 2020 / Revised: 22 September 2020 / Accepted: 24 November 2020 / Published online: 13 January 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Abstract

Service composition and supporting transactions across composed services are among the major challenges characterizing
service-oriented computing. REpresentational State Transfer (REST) is one of the approaches used for implementing Web
services that is gaining momentum thanks to its features making it suitable for cloud computing and microservices-based
contexts. This paper introduces ReLock, a resilient RESTful transaction model introducing general purpose transactions on
RESTful services by a layered approach and a two-phase locking mechanism not requesting any change to the RESTful

services involved in a transaction.

Keywords RESTful web services - RESTful transaction model - ACID - Two-phase locking - Resiliency

1 Introduction

Service-oriented computing is a paradigm promoting the
development of applications and business processes by com-
bining loosely coupled services (application components)
spanning organizations and computing platforms [5,25]. Ser-
vice composition and supporting transactions across the
composed services are among the challenges characterizing
the paradigm [5,9,17,24]. In fact, transaction processing are
mechanisms aiming at guaranteeing that a set of interdepen-
dent operations are either all completed successfully or all
cancelled successfully thus to keep the overall state of the

< Leonardo Candela
leonardo.candela@isti.cnr.it

Luca Frosini
luca.frosini @isti.cnr.it

Pasquale Pagano
pasquale.pagano @isti.cnr.it

Manuele Simi
manuele.simi @isti.cnr.it; mas2182 @med.cornell.edu

Cinzia Bernardeschi
cinzia.bernardeschi @unipi.it

Istituto di Scienza e Tecnologie dell’ Informazione “A.
Faedo”, Consiglio Nazionale delle Ricerche, Pisa, Italy

2 HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud
Institute for Computational Biomedicine, Weill Cornell
Medical College, New York, NY, USA

Dipartimento di Ingegneria dell’ Informazione Universita di
Pisa, Pisa, Italy

“system” consistent [4]. When the interdependent operations
are performed by services on the Web, implementing transac-
tion processing mechanisms become even more challenging
[16,17].

Web services are implemented by using a variety of
approaches, methodologies, and technologies. Among these
approaches, there is the REpresentational State Transfer
(REST) architectural style [11]. It is not an Internet stan-
dard. Nevertheless, it has gained popularity and emerged as
best practice especially in the context of cloud computing
and microservices mainly because it favors high scalability
while keeping the complexity of Web services design, imple-
mentation, and deployment at very affordable costs [28].

REST is characterized by the following architectural con-
straints: (i) client—server architecture, (ii) statelessness, (iii)
cacheability, (iv) layered system, (v) uniform interface. Each
of these constraints ensures that the service gains desir-
able non-functional properties, such as scalability, simplicity,
portability, performance, and reliability. Web services com-
pliant with all of them are usually referred as RESTful
services. The REST architectural style promotes a specific
idea of organizing a modern client—server application gov-
erning state transition, whose states are potentially extensible
to infinite.

A common misuse of the REST architectural style results
from the misinterpretation of the “representational” adjective
and the idea that it relates to the resource state. This often
leads to build applications (i) erroneously focusing on object
structures to communicate/transfer to the calling clients and

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-020-00311-z&domain=pdf
http://orcid.org/0000-0003-3183-2291
http://orcid.org/0000-0001-6611-3209
http://orcid.org/0000-0002-7279-2727
http://orcid.org/0000-0001-6898-6249
http://orcid.org/0000-0003-1604-4465

76

Service Oriented Computing and Applications (2021) 15:75-92

(if) encapsulating information about resource state into the
object structures to be transferred. Rather, it is the transfer to
be “representational”’, and so it is important to design applica-
tions that make use of the “representational” ability to support
transfers among client—server components. Apart from vio-
lating one or more REST constraints, this misuse hides the
problem of transactional operations. Such violations are com-
monly accepted to simulate what other approaches offers
(e.g., see the WS-Transaction standard [6]). However, this
results in a dangerous binding of the transaction information
to the specific call.

In this manuscript, we introduce ReLock, a resilient two-
phase locking RESTful transaction model. The objective
of the proposed approach is to manage general purpose
transactions that are completely unrelated to the actual
data exchanges of the specific REST call and capable to
work across calls and services. The proposed approach
outperforms state of the art approaches discussed by Mihin-
dukulasooriya et al. [20,21] by (i) being capable to satisfy
all the scenarios discussed in preliminary works; (ii) over-
coming all the challenges identified so far; and (iii) being
RESTful-friendly, i.e., it does not violate any of the REST
constraints.

The remainder of this paper is organized as follows: Sect. 2
gives an overview of the background principles needed to
contextualize the ReLock approach; Sect. 3 presents the
ReLock solution; Sect. 4 discusses the state of the art of
RESTful transactions; Sect. 5 provides an analysis of the
presented solution and some comparisons with other works.
Finally, Sect. 6 concludes the paper and describes future
work.

2 Background

To fully appreciate the ReLock approach, it is needed to
establish a common understanding on three aspects char-
acterizing the settings of transactions management across
RESTful services, namely: the REST architectural style (cf.
Sect. 2.1); the resource oriented architecture (ROA) propos-
ing a concrete architecture for REST (cf. Sect. 2.2); and the
properties characterizing transactions (cf. Sect. 2.3).

2.1 REpresentational state transfer (REST)

By having the design rationale of the web architecture as a
driving principle, six principles have been defined to charac-
terize the REST architectural style [11]:

e Client—server paradigm it refers to the separation of
concern between client and server. Both the server and
the client can evolve independently, provided that the
exposed interface be left unaltered;

@ Springer

e Statelessness it indicates that the server does not store
any information regarding previous interaction with the
client. Instead, the client sends to the server all the infor-
mation required to understand and elaborate the request
correctly. The intent of this principle is to improve ““visi-
bility, reliability and scalability while decreasing network
performances” [11];

e Cacheability it indicates to clients (and intermediates
such as a proxy) that they have to cache the responses
based on server indication (explicit or implicit). Cache-
ability allows clients to reuse data and reduce the needs of
some interactions with servers. Cacheability helps to bal-
ance and/or mitigate the potential inefficiency in network
performance introduced with the stateless principle;

e Uniform interface it allows decoupling the architecture
from the implementation. This principle introduces four
specific constraints:

e Identification of resources it clarifies the key concept
of resource by stating that “A resource is any infor-
mation that can be named. It is any concept that might
be the target of an author’s hypertext reference” [11].
Every resource must be individually identifiable and
the identifier does not change if the resource repre-
sentation changes;

e Manipulation of resources through representations it
implies that the resource representation captures the
state of the resource transferred between components;

e Self-descriptive messages it means that every mes-
sage exchanged between client and server must
contain all information regarding how to elaborate
the message itself “in order to support intermediate
processing of interactions [11]” (e.g., the media type
of the resource representation, cache control infor-
mation);

e Hypermedia as the engine of application state
(HATEOAS) it suggests that the use of hypermedia
drives clients interaction with servers.

e Layered system it envisages the possibility to add an arbi-
trary number of intermediary components between the
client and the server. This property allows to decouple
the service logic from higher level facilities. Layers can
be used for reasons including: to improve the system
scalability; to provide encapsulation facility for legacy
and non-rest systems (by exposing them through the
uniform interface); to achieve transparent cacheability
across different clients; to add higher-level facilities such
as security. As a counterpart, layering adds overhead and
network latency;

e Code on demand this is an optional principle depending
on the application and context. It indicates that the server
can extend its functionality by providing clients code to
execute. It allows distributing the computational load. It

Service Oriented Computing and Applications (2021) 15:75-92

77

is only an optional constraint because in some cases some
intermediary can/must limit the transfer of code (e.g., for
security reason).

Overall, these principles highlight that (i) the interaction
between client and server is based on the representation of a
“resource” they manage to exchange, and (ii) whenever the
client receives the resource representation, it is posed in a
specific state.

2.2 Resource-oriented architecture (ROA)

The ROA is a concrete architecture for REST relying on
technologies such as uniform resource identifier (URI),
HyperText transfer protocol (HTTP) and eXtensible Markup
Language (XML) [30]. It uses standard HTTP methods
applied to URI to realize Create, Read, Update, Delete
(CRUD) operations on resources [19].

ROA gives particular emphasis on “make it a resource”
paradigm and proposes descriptive and predictable URI as
technology to satisfy the resource identification constraint.
Hence, any resource in ROA has a URI. Moreover, to satisfy
the uniform interface constraint, ROA indicates the way to
construct URI for resources and how to use HTTP methods
to them. An example extracted from [30] on how to create a
bookmark service adhering to the ROA architecture is given
in Table 1.

For the implementation of CRUD operations, ROA sug-
gests to use POST, GET, PUT and DELETE. Table 2 shows
how CRUD operations are performed by HTTP methods.
Moreover, it shows the per operation expectation in terms of
safety and idempotency property. In particular—according to
HTTP specification [12,23]:

e the POST method is used to create a new resource without
providing the URI of the resource to create. The repre-
sentation of the resource is sent, as part of the HTTP
body, to the collection that will contain the resource. The

Table 1 ROA compliant URI compared to non REST service

Table 2 Mapping between CRUD operations and HTTP methods
enriched by safety and idempotency property they must satisfy

Operation HTTP method Safe Idempotent
Create POST No No

Read GET Yes Yes

Update PUT No Yes!

Delete DELETE No Yes?

TPUT can be also used to create a resource when used with the URI
where the resource will be available

2 Allamaraju [1] argues that DELETEidempotency should be accom-
plished client-side. The server should inform the client if a delete
succeeded because the resource was really deleted or it was not found
i.e., 404 Not Found error is suggested instead of 204 No Content. The
latter situation should be treated as idempotent by the client

server determines its appropriate location, and provides
the client with the resulting URI.

e the GET method is used to obtain the representation of a
resource.

e the PUT method is used to update an existing resource.
This operation instructs the server to apply a new repre-
sentation as a replacement of the previous one. Moreover,
the PUT method can be used to create a new resource if
the client is willing to provide the URI of the resource to
create.

e the DELETE method is used to remove an existing
resource.

e the GET, PUT and DELETE methods must be idempo-
tent, i.e., the same operation executed multiple times has
the same effect than executing it one time only. More-
over, “repeating the request will have the same intended
effect, even if the original request succeeded, though the
response might differ” [12].

e the GET method must be safe, i.e., it must have no side
effect. “This does not prevent an implementation from
including behavior that is potentially harmful, that is not
entirely read only, or that causes side effects while invok-
ing a safe method” [12].

Operation HTTP method ROA URI! Non-ROA API?

Listing GET /users/{USERNAME} /bookmarks GET/posts/list
Create POST /users/{USERNAME} /bookmarks GET/posts/add
Create PUT /users/{USERNAME} /bookmarks/ {URI-MD5} GET/posts/add
Read GET /users/{USERNAME} /bookmarks/ {URI-MD5} GET/posts/get
Update PUT /users/{USERNAME} /bookmarks/{URI-MD5} GET/posts/update
Delete DELETE /users/{USERNAME} /bookmarks/{URI-MD5} GET/posts/delete

The path variable parameters are shown within {} and using capital letters. This convention will be used in the rest of the paper
2The information regarding which username and URL save as bookmark or which URL retrieve are provided via GETURL parameters not shown

in the table

@ Springer

78

Service Oriented Computing and Applications (2021) 15:75-92

Apart from the above methods, HTTP 1.1 defines also the
HTTP methods HEAD, CONNECT, OPTIONS and TRACE
[12]:

e the HEAD method is identical to GET except that the
server must not send a message body in the response.
This method can be used for obtaining metadata about
the selected representation without transferring the rep-
resentation data and is often used for testing hypertext
links for validity, accessibility, and recent modification;

e the CONNECT method requests that the recipient estab-
lishes a tunnel to the destination origin server identified
by the request-target and, if successful, thereafter restricts
its behavior to blind forwarding of packets, in both direc-
tions, until the tunnel is closed. CONNECT is intended
only for use in requests to a proxy;

e the OPTIONS method requests information about the
communication options available for the target resource,
at either the origin server or an intervening intermediary.
This method allows a client to determine the options or
the requirements associated with a resource, or the capa-
bilities of a server, without implying a resource action. A
OPTIONS request with an asterisk (“*”) as the request-
target applies to the server in general rather than to a
specific resource;

e the TRACE method requests a remote, application-level
loop-back of the request message.

From the ROA perspective [30]: (a) HEAD and OPTIONS
methods are also part of the uniform interface design, their
use is suggested; (b) HTTP methods usage defined for Web-
based Distributed Authoring and Versioning (WebDAV) [8]
is a plus to respect the uniform interface (e.g., see MOVE
and COPY) yet might lead to deviations from “make it as
resource” paradigm. Their suggestion was to create lock col-
lections and manipulate them like all the others collections
(by using POST, GET, PUT, DELETE) in place of using LOCK
and UNLOCK methods to resource URI.

2.3 Transaction properties

A transaction is a group of Web service interactions that
achieve a logic (sub-)goal within a service composition only
if all interactions complete successfully [4]. If error occurs in
a transaction, the actions of the transaction that have already
been performed must be compensated, that is, rolled back
until the status right before the transaction started.

Four properties characterize them and are commonly
referred by the ACID acronym: (i) Atomicity, i.e., it exe-
cutes completely or not at all, no possibility to execute part
of a transaction is allowed; (ii) Consistency, i.e., the trans-
action maintains the consistency of the “system” and it is
a shared responsibility between the transaction developer

@ Springer

and the transaction processing implementation; (iii) Isola-
tion, i.e., the effect of the entire transaction on the “system”
state is equal to the effect of the single interactions executed
one by one; and (iv) Durability, i.e., when a transaction com-
pletes executing all its updates are stored.

3 The ReLock approach

ReLock is an approach for transactions management where
transactions involves RESTful services, i.e., web services
compliant with the set of ROA and REST principles dis-
cussed in Sect. 2. The approach is called to propose an
implementation of the two-phase locking protocol [35].
Moreover, the approach is conceived thus to guarantee the
“independence” of both (/) RESTful services involved in each
transaction, i.e., the development and operation of RESTful
services is not impacted by any change for supporting trans-
actions; (ii) clients that are not conceived to develop their
business logic by relying on transactions.

Figure 1 depicts the ReLock transaction management
architecture highlighting the layering of the approach. In
practice, the ReLock services implementing the transaction
model realize an overlay layer on top of the RESTful ser-
vice(s) the clients will interface with.

Three services are conceived to implement the ReLock
transaction management:

e the Transaction Proxy called to intercept all requests
made by clients to the target RESTful service and
forwards these requests to the RESTful service when suit-
able according to the transaction management protocol.
Hereafter, we will refer to this component as proxy or
Transaction Proxy;

e the Transaction Service implementing transactions as
resource facilities. It also exposes transaction logging
facilities as resources. Logging is used to achieve com-
pensations in case of rollbacks;

o
E, Non-transactional Transactional
[} Client Client

"

(]

- Transaction Transaction
3 .
& Proxy l Service
>4
Q
o
- |
]
o

]
>
0] —-l RESTful Service
(%]

Fig.1 ReLock transaction model architecture

Lock Service

Service Oriented Computing and Applications (2021) 15:75-92

79

e the Lock Service implementing lock capabilities for
resources exposed by the target RESTful service.

Networking policies play a key important role in this archi-
tecture. The following rules are defined:

(i) the RESTful service(s) is only accessible from Transac-
tion Proxy and Transaction Service;

(i) the Lock Service is only accessible from Transaction
Proxy and Transaction Service;

(iii) the Transaction Proxy intercepts every request coming
from clients and directed to the target RESTful service.

Two typologies of clients are envisaged in the ReLock
approach: non-transactional clients and transactional clients.

A Non-transactional Client is either a client which is not
aware of ReLock and its transaction model (e.g., any legacy
client) or a client which is not interested in creating a trans-
action. This typology of client behaves as it would have been
if there were no transactions. It performs REST requests to
the RESTful Service and uses the responses (intercepted and
managed by the Transaction Proxy) to continue its workflow.

A Transactional Client is a client willing to benefit from
transactions. Its interaction with the ReLock services and
the target RESTful service(s) is described hereafter. It dis-
covers the Transaction Service by requesting OPTIONS
to the resource collection URI. The request is intercepted
and managed by the Transaction Proxy which provides
the list of supported Transaction Services. The client cre-
ates a transaction by sending a POST to the Transaction
Service and then it requests all the transaction operations
via the Transaction Proxy. This client always sends the
owned transaction URI in the header of the HTTP request
(using X-Transaction-URT header). The Transactional
Client collects every lock URI it receives (via X-Lock-URI
header in the response) and associates them to the proper
resource (using the resource URI). Anytime the Transac-
tional Client requests an action, it indicates the owned locks
using the HTTP headers. If a Transactional Client does
not include the lock it already owns, it gets the error code
423 Locked [8, Section 11.3]. If a Transactional Client
receives a parent lock URI, it associates the lock to the
resource collection which it sends within any succeeding
resources creation and deletion requests. The Transactional
Client can terminate the transaction by sending either a
commit (by using PUT) or rollback (by using DELETE)
request.

ReLock services support both XML and JavaScript
Object Notation (JSON) as the content format to repre-
sent the resources involved in the transaction. Thus the
proposed solution does not enforce transactional clients
to deal with different formats, the content format adopted
by the RESTful Service is made available by using the

format selected by the client for managing the transac-
tion. The transactional client indicates the required format
resources by indicating it (i.e., application/xml or
application/json)in Accept HTTP header[12, Sec-
tion 5.3.2] orin Content-Type HTTP header [12, Section
3.1.1.5]. Each ReLock service replies indicating the format
in Content-Type header field according to the received
request. In this paper, we present all the examples using the
JSON format.

In the remainder of the section, the details of the ReLock
approach are presented by first showcasing a sequence
diagram of a transaction supported by ReLock and then
describing the behavior of the Transaction Proxy, the Trans-
action Service, and the Lock Service.

3.1 The sequence diagram of a transaction

Figure 2 shows a sequence diagram representing the interac-
tions among the different components involved in a transac-
tion consisting of aread and an update operation on a resource
made by a Transactional Client.

This diagram highlights how the entire process is medi-
ated by the ReLock services that catch and manage every
request originated from the client to interact with the target
RESTful service.

3.2 The ReLock Transaction Proxy

The Transaction Proxy intercepts all requests directed to
every RESTful Service. It forwards the requests to the
RESTful service only after it has performed the actions
required to guarantee the transaction properties (c.f. Sect.
2.3).

Listing 1 describes the algorithm the Transaction Proxy
uses to manage the requests.

As first action, the Transaction Proxy extracts the content
of the request type (Listing 1: line 2) to use it both for (a) any
interaction with ReLock Services and (b) to generate a suit-
able response independently of the response format offered
by the RESTful Service.

Then, the Transaction Proxy checks the HTTP Method.
If the HTTP method is OPTIONS (line 4), it sends the list
of supported Transaction Services to the client (Listing 1:
line 5). It exposes the OPTIONS Application Programming
Interface (API) to the resources collection shown in Table 3.

An example of OPTIONS response is shown in listing 2.
OPTIONS allows any Transactional client to know which
Transaction Service(s) can be used to perform the transac-
tion on the RESTful Service with no prior knowledge (see
Sect. 5).

@ Springer

80 Service Oriented Computing and Applications (2021) 15:75-92

Sequence Diagram

Transactional Transaction Transaction . RESTful
- . Lock Service .
Client Proxy Service Service

OPTIONS /resources N |
P]
200 OK J I
POST /transactions A
201 Created
Location: /transactions/T1
GET /resources/A
X-Transaction-URI: /transactions/T
4
POST /locks
Body: { type: S, resource-uri: /resources/A, transaction-uri: /T1} A
L4
201 Created
Location: /locks/lock-A
GET /resources/A
200 OK
Body: {A}
PUT/ ns/T1 [
14
201 Created | |
200 OK
X-Lock-URI: /locks/lock-A
Body: {A}
PUT /resources/A
X-Transaction-URI: /transactions/T1
X-Lock-URI: /locks/lock-A
Body: {NewA}
GET /lock A
200 OK
Body: { type: S, resource-uri: /resources/Al
-uri: / 1}
PUT /locks/lock-A
Body: { type: X, uri: uri: /trar 11} N
P]
¢ 204 No Content | |
POST /transactions/T1/resources/A/operations
Body: {method: PUT, ..., content-body: {NewA}} N
14
201 Created
Location: /transactions/T1 P 15/1651442400363
PUT /resources/A - Body: {NewA} A
|4
204 No Content
204 No Content
PUT/ /T1 - Body {commit: true}
P
DELETE /locks/lock-A
Vi
202 Accepted
202 Accepted
Transactional Transaction Transaction . RESTful
- . Lock Service .
Client Proxy Service Service

Fig.2 Example of a sequence diagram showing the interactions among the components involved in a transaction. A transactional client creates the
transaction, reads a resource, and then updates such a resource. Finally, the client commits the transaction

Table 3 Transaction Proxy

i HTTP h RL
exposed APIs Operation method U

Supported Transaction Service OPTIONS /resources

@ Springer

Service Oriented Computing and Applications (2021) 15:75-92

81

Listing 1 Pseudo Code for Proxy function receiving HTTP request from clients

1 function onReceive (httpRequest) :

2 global wvar contentType = getContentType (httpRequest)

3

4 if httpMethod == OPTIONS then

5 return sendSupportedTransactionServicesList ()

6 endif

7

8 if httpMethod in [HEAD, GET, PUT, DELETE] then

9 var transactionURI = httpRequest.getHeader ("X-Transaction-URI")
10 if transactionURI != null then

11 // Transactional Client

12 return manageTransactionAction (httpRequest, transactionURI)
13 else

14 // Non-Transactional Client

15 return createMiniTransaction (httpRequest)

16 endif

17 endif

18

19 // POST and other methods are not allowed

20 return sendErrorResponseToClient (405, "Method Not Allowed")

Listing 2 Example of Transaction Proxy response to OPTIONS request

{
"transaction -managers": [{
"uri": "http://transaction.
example.org/transactions"

H]

If the HTTP method is not one of HEAD, GET, PUT
or DELETE (Listing 1: lines 8 and 20, the Transaction
Proxy replies to the client with an error 405 Method Not
Allowed [12, Section 6.5.5].

When the HTTP method is supported, the Transaction
Proxy checks if the request contains the HTTP header
X-Transaction-URI (Listing 1: line 9, 10). Requests
containing this header (Listing 1: line 12) came from a Trans-
actional Client and are managed as described in Sect. 3.2.1.
Instead, requests arriving without X-Transaction-URI
(Listing 1: line 15) came from a Non-Transactional Client
and it are managed like a “mini transaction” as described in
Sect. 3.2.2.

3.2.1 Managing requests from transactional clients

Listing 3 shows how the Transaction Proxy manages requests
in the context of a transaction.

First of all, it checks whether the request contains any
references to previous obtained locks (i.e., lockURI, Listing
3: lines 2 and 3).

If the Transactional Client does not provide any lock ref-
erence then the Transaction Proxy creates the lock for the
target resource URI by the createLock() function (line 4).
The createLock() function sends a POST request to the Lock

Service that creates the lock representation by using the pro-
vided argument as discussed in Sect. 3.4 (Listing 9). The
HTTP Method (i.e., httpMethod) argument is used to spec-
ify the lock type. Table 4 shows the mapping between the
HTTP Method and the required lock type. When the lock
is granted, the Transaction Proxy reads the resource on the
RESTful Service with GET (Listing 3: line 5) and creates
the initial resource on the Transaction Service (cf. Sect. 3.3,
Listing 3; line 7) using the function createlnitialResource().

If the Transactional Client provides the lock URI, then the
Transaction Proxy verifies and eventually upgrades the lock
(from Shared to eXclusive depending on the requested HTTP
Method) by invoking the Lock Service (Sect. 3.4) (Listing 3:
line 9).

Lines 14-28 in Listing 3 deal with the management of
parent locks (i.e., locking at the collection containing the
target resource):

e A Transactional Client owning the parent lock URI (i.e.,
X-Parent-Lock-URI HTTP header) always sends it
in any request. The Transaction Proxy verifies this header
(Listing 3: line 16) as it does for X-Lock-URI HTTP

Table 4 Transaction Proxy mapping with HTTP method and required
Lock

HTTP method Required lock type
POST Not supported
HEAD Shared

GET Shared

PUT eXclusive
DELETE eXclusive

@ Springer

82

Service Oriented Computing and Applications (2021) 15:75-92

Listing 3 Pseudo Code for Proxy function which handles any transaction action

1

~N NN R W

[e e}

10

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

function manageTransactionAction (httpRequest,
httpRequest .getHeader ("X-Lock-URI")

var 1lockURI =
if lockURI ==
lockURI =
var response =

var content =
var initialResourceURI =
resourceURI, lockURI,

null then

else

verifyAndUpgradeLock (httpMethod,

resourceURI)
var initialResourceURI =
resourceURI)
var content =
endif

if httpRequest.getHeader ("X-Parent-Lock-URI") !=
httpRequest.getHeader ("X-Parent -Lock-URI")
verifyParentLock (parentLockURI,

var parentLockURI =

else
if httpMethod ==
var create =
endif
if create OR httpMethod ==

true;

createLock (httpMethod,
getResource (resourceURI)

response.content

createInitialResource (transactionURTI,
content)

PUT AND content ==

DELETE
getParentURI (resourceURI)
createlLock (httpMethod,

transactionURI) :
resourceURI)

transactionURTI,

lockURI, transactionURTI,

getInitialResourceURI (transactionURI,

getContentFromInitialResource (initialResourceURI)

null then

transactionURI)

null then

then

transactionURI,

// 1nitial resource of collection 1is not needed

var parentURI =
var parentLockURI =
parentURI)
endif
else
endif

logRequest (initialResourceURI,

HttpResponse actionResponse =

actionResponse.setHeader ("X-Lock-URI",

if parentLockURI != null then

actionResponse.setHeader ("X-Parent -Lock-URI",

endif
return actionResponse

header (Listing 3: line 14). The Transaction Proxy adds
the parent lock URI to the response header if any (Listing
3: lines 35-37).

If the Transaction Proxy receives a PUT request, it checks
it to discriminate between a create and an update request
(Listing 3: lines 18-20). A create request is identified by
checking the initial content of the resource (Listing 3:
line row 18).

If a client sends a request either to delete or to create
a resource, the Transaction Proxy also locks the parent
URI (which represents the resource collection) with an
eXclusive lock (Listing 3: lines 22 and 23). This lock
is required for a proper implementation of the isolation
property (see Sect. 5).

@ Springer

httpRequest)

forwardAction (httpRequest)

lockURI)

parentLockURI)

The Transaction Proxy logs the action with a POST
to the collection “operations” subordinated to the ini-
tial resource before forwarding the request to the tar-
get RESTful service (line 30). The POST content con-
tains the received HTTP request information (see Listing
3);

Finally, the Transaction Proxy forwards the request to the
target RESTful service and collects the received response
(Listing 3: line 32). The Transaction Proxy adds the lock
URI (Listing 3: line row 34) to the received response using
X-Lock-URI HTTP header and returns it to the requesting
client (Listing 3: row 38).

Service Oriented Computing and Applications (2021) 15:75-92

83

3.2.2 Managing requests from non-transactional clients

When the Transaction Proxy receives a request not con-
taining any transaction reference, the client is considered
Non-transactional and the request is managed according to
Listing 4.

The Transaction Proxy creates a transaction (line 2), then it
manages the requested operation like a request coming from
a Transactional client (line 3) just discussed in Sect. 3.2.1.
The Transaction Proxy commits the transaction (line 4) on
behalf of the client. It also cleans the obtained response from
the additional header before returning the response to the
Non-transactional Client (lines 5-8)

In practice, every request made from a non-transactional
Client is de-facto a mini-transaction involving a single oper-
ation on the target RESTful service.

3.3 The ReLock transaction service

The Transaction Service accepts POST, PUT and DELETE
methods to manage transactions (see Table 5). Worth high-
lighting that this service does not allow the use of PUT to
create a new transaction because it is for other intents.

The Transaction Service receives a request to create a new
transaction by a POST. The URI of the created transaction
resource is returned in Location HTTP header [12, Sec.
7.1.2]. The HTTP 201 Created status code is returned
to indicate the request succeeded [12, Sec. 6.3.2]. Listing
5 contains the content of the response containing (i) the
‘timestamp’ of the transaction i.e., unix timestamp expressed
in milliseconds; (ii) the ‘timeout’ i.e., the amount of time
(expressed in milliseconds) the transaction will be automat-
ically rollbacked if not committed or rollbacked from the
client; (iii) the protocol version i.e., 1.0.

Listing 5 Example of representation of a transaction resource

{
"timestamp": 1651442400000,

2400,

"protocol -version":

"timeout":
n1.0"

In case of failure (i.e., the transaction cannot be created),
either a 4xx or a 5xx error [12, Section 6.5, Section 6.6] is
returned to client depending on which failure occurred.

The Transaction Service receives a request to commit a
transaction by a PUT. The Transaction Service allows only
to add the property “commit” with value true to the repre-
sentation of the transaction resource (Listing 6).

Listing6 Example of representation of transaction resource sent to com-
mit the transaction

{

"timestamp": 1651442400000,

"timeout": 2400,
"protocol -version":
"commit" true

"l.O",

Once the property commit is set to true the transaction is
closed and the Transaction Service denies any further opera-
tion on the transaction resource and subordinates by returning
403 Forbidden [12, Sec. 6.5.3].

The Transaction Service receives a request to rollback a
transaction by a DELETE. If the target transaction resource
exists and it has not been already committed, the Trans-
action Service starts a compensation procedure (see Sect.
3.3.1). The Transaction Service starts the compensation pro-
cedure also if the transaction expires due to the timeout being
exceeded.

3.3.1 The ReLock compensation approach

The compensation procedure is activated whenever a client
sends a request to rollback a transaction or the transaction
timeout expires before the commit. It consists in restoring
the overall system state thus to make it consistent like the
transaction was not initiated at all.

In order to support this procedure, the Transaction Service
introduces initial resources and a logging mechanism.

For each ongoing transaction, the Transaction Service
allows the Transaction Proxy to create subordinated resources
(i.e., “resources that exist in relation to some other “parent”
resources” [30]). The Transaction Proxy creates as subordi-
nates of the transaction the initial resources, i.e., resources
storing the representation of any resource of a target REST-
ful service partaking to the transaction before any attempt
of modification to the resource sent to the target RESTful
service. Listing 7 shows an example of the representation of
the initial resource containing: (i) the resource URI; (ii) the
URI of the lock conceived by the Lock Service to access the
resource available to the resource URI, (iii) the content type
of the resource representation; (iv) the initial representation
of the resource on the effective service.

Listing 7 Example of initial resource

{
"resource-uri": "http://example
.org/resources /A",
"lock-uri": "http://lock.
example.org/locks/lock-a",
"content -type": "application/
json™"
"content": {
// Representation of resource
}
}

@ Springer

84

Service Oriented Computing and Applications (2021) 15:75-92

Listing 4 Pseudo Code for Proxy function which handles non-transactional client requests

1 function createMiniTransaction (httpRequest) :

String transactionURI =

commitTransation (transactionURI)

e BEN Be NIV I NS I)

return actionResponse

Every initial resource is created by a PUT to the URI
calculated by composing the transaction URI with the
relative URI of the resource on the target RESTful ser-
vice (e.g., http://transactions.example.org/transactions/T1 +
/resources/Arresults in http://transactions.example.org/
transactions/T1/resources/A).

For each initial resource, the Transaction Service exposes
a collection, named “operations”, to enable logging of the
operations made by the client to the RESTful service’s
resource (via Transaction Proxy). The Transaction Service
allows log creation by POST to the collection “operations”
e.g., POST http://transactions.example.org/transactions/T1/
resources/A/operations. Listing 8 shows an example of a log
resource which contains the HTTP request made by the client.

Listing 8 Example of log resource

{

"method": "PUT",

"headers": {
"Accept": "application/json",
"Content -Type": "application/

json™"
J
"content -body": { ... }

Table5 Transaction service RESTful APIs

createTransaction ()
var actionResponse = manageTransactionAction (httpRequest,

transactionURI)

actionResponse.removeHeader ("X-Lock-URI")
actionResponse.removeHeader ("X-Parent -Lock-URI")
actionResponse.removeHeader ("X-Transaction-URI")

The URI of the created log resource will be created
by appending the timestamp to the log collection URI
(e.g., http://transactions.example.org/transactions/T 1/res/ A/
operations/1651442400363)

The compensation procedure consists in analyzing all the
subordinated resources of the transaction (initial resources
and logs) putting in place the compensation operations
summarized in Table 6. The resources accessed only with
safe operations (GET or HEAD) do not require any action.
Updated resources require (PUT) compensation to the initial
values. Deleted resources have to be re-created with a PUT
to the original resource URI and using the initial values. The
resources created within the transaction must be deleted (by
using DELETE).

3.4 The ReLock lock service

The Lock Service provides locking capabilities. It exposes
two types of locks: eXclusive (X) and Shared (S). A shared
lock allows multiple clients to read the referenced resource
but does not allow any client to modify such a resource.
Multiple shared locks can exist for the same resource. The

Operation HTTP method URL

Create Transaction POST /transactions
Commit a Transaction PUT

Rollback a Transaction DELETE

Create Initial Resource ~ PUT

Create Log Resource POST

/transactions/{TRANSACTION_ID}

/transactions/{TRANSACTION_ID}
/transactions/{TRANSACTION_ID}/{RESOURCE_RELATIVE_PATH}
/transactions/{TRANSACTION_ID}/{RESOURCE_RELATIVE_PATH} /operations/

Table 6 Compensation

operations CRUD operation HTTP method Compensation HTTP method Compensation body content
Create PUT DELETE No
Exists HEAD Unneeded N/A
Read GET Unneeded N/A
Update PUT PUT Initial representation
Delete DELETE PUT Initial representation

@ Springer

http://transactions.example.org/transactions/T1
http://transactions.example.org/transactions/T1/resources/A
http://transactions.example.org/transactions/T1/resources/A
http://transactions.example.org/transactions/T1/resources/A/operations
http://transactions.example.org/transactions/T1/resources/A/operations
http://transactions.example.org/transactions/T1/res/A/operations/1651442400363
http://transactions.example.org/transactions/T1/res/A/operations/1651442400363

Service Oriented Computing and Applications (2021) 15:75-92

85

Table 7 Lock compatibility table

Shared eXclusive
Shared True False
eXclusive False False

Table 8 Lock service RESTful APIs

Operation HTTP method URL

Create POST /locks/

Read GET /locks/{LOCK_ID}
Update PUT /locks/{LOCK_ID}
Delete DELETE /locks/{LOCK_ID}

exclusive lock allows only one client to modify (and read)
the referenced resource.

The algorithm to grant a lock is pretty straightforward.
The Lock Service checks only the locks for the correspon-
dentresource (considering the URI) and applies the following
rules summarized in Table 7: (/) when a Shared lock is present
on a certain URI other Shared locks can be granted to other
clients but not an eXclusive lock; (if) when an eXclusive lock
is present on a certain URI no other locks can be granted
to other clients. Moreover, a client holding a Shared lock
can obtain an upgrade of the lock from Shared to eXclusive
if and only if there are no other clients holding a Shared
locks related to the same URI. Lock service does not allow
to change an eXclusive lock to a Shared one. This procedure
is pretty straightforward and allows to efficiently implements
the algorithm which is expected to be very fast.

Lock Service accepts GET, POST, PUT and DELETE
methods to manage locks as summarized in Table 8: POST
creates a new lock for a resource; PUT can only modify a
lock type; DELETE removes a lock; GET allows reading the
lock resource representation. This service does not allow the
use of PUT to create a new lock.

When the Lock Service receives a request to create a lock
by a POST request and grants the lock, it creates the resource
representing such a lock. Listing 9 presents an example of
the representation of lock resource.

Listing 9 Example of lock resource

{
"type": "X,
"resource-uri": "http://example
.org/resources /A",
"transaction-uri": "http://
transaction.example.org/
transactions/T1"
}

The URI of the created lock resource is returned in
Location HTTP header. The HTTP 201 Created sta-
tus code is returned to indicate the requested succeeded.

The Lock Service receives a request to modify a lock by
PUT request it allows only to upgrade the lock type from
‘S’ to “X’. It verifies if the lock upgrade can be conceived
and updates the resource. The Lock Service can use either
200 OK [12, Sec. 6.3.1] or 204 No Content [12, Sec.
6.3.5] status code to indicate that the request succeeded. The
use of 202 Accepted [12, Sec. 6.3.3] which is used for
asynchronous operations is not allowed.

When the Lock Service receives a request to delete a lock
with DELETE, it removes the associated lock resource. The
Transaction Service is the only service authorized to invoke
the removal of a lock and it does it either on commit or if the
rollback procedure (c.f. Sect. 3.3.1) is terminated.

3.5 Resiliency

ReLock services are stateless and can be replicated and load
balanced to improve scalability and availability.

The Transaction Service annotates the progress of the roll-
back by annotating each step on the resources representing
the transaction. In particular, the Transaction Service

e adds a property to the transaction resource representation
to indicate it is starting the rollback;
e for each initial resource representation:

e adds a property to indicate it is going to compensate
the corresponding resource;

e modifies the previous property to indicate that the
corresponding resource has been compensated;

e add a property to indicate it is going to release the
associated lock;

e modifies the previous property to indicate it has
released the associated lock;

e modifies the properties on the transaction resource rep-
resentation to indicate that the rollback is terminated
successfully.

This procedure behaves like a journal which enables any
Transaction Service to take in charge the rollback procedure
of another instance of the service by restarting it from the
last completed step.

Clearly, the Lock Service must prevent starvation and
deadlock. It is possible to replicate and distribute the Lock
Service by using one of the distributed deadlock detection
algorithms surveyed in [10].

@ Springer

86

Service Oriented Computing and Applications (2021) 15:75-92

4 Related work

Existing solutions for transaction management on RESTful
services are reported in Table 9 and briefly discussed below.

The overloaded POST pattern is the oldest approach to
RESTful transactions known [20,21]. It is characterized by
putting several HTTP operations in the payload of a single
POST operation. This approach fits well for batched and
short-lived transactions. Unfortunately, the approach does
not respect the HATEOAS constraint (cf. Sect. 2.1) and is
not suitable for distributed transactions.

In 2007, Richardson and Ruby proposed a transaction as
resource approach [30]. In their proposal, the client opens a
transaction by creating a resource to a transaction service.
The client performs every subsequent operation by creat-
ing a resource with PUT as a subordinate of the transaction
resource. This solution supports only the resources creation.

Khare [13] proposed an enhancement of the REST archi-
tectural style for distributed and decentralized systems which
includes five different extensions. One of these extensions,
REST with Delegation (REST+D), dealing with Atomicity,
Isolation, Durability and Consistency (ACID) transactions,
proposes a mutex lock proxy component which provides
mutually exclusive access to the origin server and ensures
total serialization of all updates to a resource. Their proposal,
like REST which tries to extend, is an architectural style and
it “does not provide any details regarding how to execute the
scenario” [21].

da Silva Maciel et al. [31] proposed an optimistic tech-
nique. In their model, the REST service must support
resource versioning. The proposal uses compensation tech-
niques to rollback a transaction, which is done within locks.

Marinos et al. proposed RETRO [18,29] which uses the
concepts of transaction as resource, locks and temporary
resources to achieve isolation. Their solution uses the hyper-
link to meet HATEOAS constraint. The temporary resources
approach introduces link transparency issues [21]. Our solu-
tion shares some ideas with RETRO, i.e., transaction as
resource, locks and use of hyperlinks but instead of using the
concept of temporary resources, it uses an approach based on
initial resource representation and logging as resource to sup-
port rollbacks via the appropriate compensation technique.
RETRO uses non-standard HTTP methods and header. On
the contrary, our solution uses standard HTTP methods only.

da Silva Maciel et al. [32,33] proposed a timestamp-
based two-phase commit RESTful transactions (TS2PC4RS)
designed for reservation-based services. In their last ver-
sion [34], they also introduced the concept of logs “as a
fault-tolerant mechanism capable of recovery connection and
server failures”. ReLock does not require the effective ser-
vice to adhere to a specific pattern. ReLock uses the logs to
support compensation and resiliency, but we expose logs as
resource to fully comply with ROA.

@ Springer

Pardon and Pautasso [26,27] proposed a try-cancel/confirm
(TCC) approach. Their solution shares some ideas with
TS2PC4RS, but TCC is only applicable if the reservation
“fits directly into the business model” [27] (i.e., a ticket reser-
vation). ReLock does not require services to adhere to any
particular business model.

Kochman et al. [15] proposed a solution based on batched
transactions which use mediators and proxies. Their solution
allows transactional and non-transactional clients to coexist.
Our solution uses a proxy to support the same clients, but
we use a two-phase locking protocol instead of the batched
transactions.

Dey et al. proposed REST with Transaction (REST+T)
[7]. REST+T is not stateless and uses non-standard HTTP
methods.

5 Discussion

Table 10 summarizes the results of the analysis of ReL.ock
and the solutions for transaction management listed in Table
9 and discussed in the previous section. In particular, the
analysis is based on a set of 20 properties aiming at assessing
the capability of the various solutions to satisfy transaction
properties, RESTfulness properties, HTTP properties, and
miscellaneous properties. The set of properties was initially
proposed by Mihindukulasooriya et al. [20,21] and extended
in this work.

Regarding the ability of the various approaches to pro-
vide transaction properties (cf. Sect. 2.3), only atomicity
and isolation are considered because consistency and dura-
bility are guaranteed by the implementation of clients and
RESTful services. ReLock guarantees the properties consid-
ered thanks to the protocol implemented by the Transaction
Service (cf. Sect. 3.3). In fact, a client reads the resource
collection by using the HTTP GET method. The only way to
modify the resource collection is by either deleting a resource
or creating a new one. The Lock service grants a lock only
by analyzing if another lock exists for the same resource
(by using its URI). To delete a resource, the client performs a
DELETE to the resource URI. ReLock requires two exclusive
locks, one for the resource and one for the resource collec-
tion giving that it is going to modify two representations (the
resource and the collection). The lock for the resource pre-
vents that any other client can interact with such a resource.
The lock for the collection prevents that any other client can
interact with the resource collection. To create a resource,
the client has to use the HTTP PUT request. With PUT, the
client performs a request to the URI where the resource will
be available. The resource creation with PUT requires two
exclusive locks, one for the resource and one for the resource
collection for the same considerations of the delete operation.

Service Oriented Computing and Applications (2021) 15:75-92 87
Table 9 Approaches for transaction management on RESTful services
Approach Year Refs.

#1 Batched transaction with overloaded POST 2000 [20,21]
#2 Transaction as resource 2007 [30]
#3 Optimistic technique for transaction using REST 2009 [31]
#4 A consistent and recoverable RESTful transaction model (RETRO) 2009 [18,29]
#5 Timestamp-based two phase commit protocol for RESTful services (TS2PC4RS) 2010 [32,33]
#6 Try-Cancel/Confirm pattern (TCC) 2011 [26,27]
#7 Atomic REST batched transactions 2012 [15]
#8 REST+T 2015 [7]
Table 10 Analysis of RESTful transaction approaches
Property Approach

#1 #2 #3 #4 #5 #6 #7 #8 ReLock
Transaction properties
Atomicity Y Y Y Y Y Y Y Y Y
Isolation Y Y! N Y N N Y Y? Y
REST properties
Stateless Y Y3 N Y3 N Y Y N Y
Uniform interface Y N Y Y Y Y Y Y Y
Identification of resources N Y N Y N Y N Y Y
Manipulation of resources through representations Y Y Y Y N N Y Y Y
Self-descriptive messages Y Y Y Y N N Y Y Y
HATEOAS N N N Y N N N* N Y
Layered system Y Y N Y N N Y N Y
HTTP related properties
Semantic not violated Y Y Y Y N Y Y ? Y
Common verb supported Y Y N N Y Y Y N Y>
HTTP Methods adherence Y Y N N Y Y Y N Y
Low overhead Y Y Y N N Y Y Y Y6
ROA URI adherence Y Y Y Y Y Y Y Y Y
Miscellaneous properties
CRUD operations supported ? Y RU CR(U) CD Y Y Y’
Optionality Y ? ? Y ? ? Y N Y
Discoverable ? ? Y ? ? Y N Y
Distributed transactions N N Y ? Y Y ? ? Y
Service paradigm required N N Y ? Y Y N Y N
Heterogeneity of service types N/A N/A Y(?) ? ? N ? ? Y

Possible lost update problem
2Clients are made aware of pending uncommitted actions

3Temporary resources having uniform resource locator (URL) have been criticized

4Could be added

>Three non standard HTTP header field
SClients perform three additional requests. The first uses OPTIONS to discover the Transaction Service. The client may cache the result. Hence,
the client performs the OPTIONS request only before the first transaction. The remaining two requests are used to create and commit (or rollback
the transaction). It is the minimum number of additional operations of every transaction mechanism.
7Create is supported via PUT (not via POST)

@ Springer

88

Service Oriented Computing and Applications (2021) 15:75-92

It is also worth highlighting that ReLock works with
RESTful services which do not provide nested resource col-
lection (e.g., the bookmark ROA example presented in Table
1). To delete a resource having subordinates, no one should
be capable of interact with the subordinates. To support this
scenario, the Lock Service should be enhanced to use a differ-
ent algorithm that supports subordinated resources. Marinos
et al. [18,29] have formally demonstrated that their lock-
ing mechanism (approach #4) is well formed and sound.
However, it supports only read and update operations with
a two-phase locking protocol by releasing acquired locks
only at commit or rollback time. ReLock follows a similar
approach. ReLock also supports the creation (via HTTP PUT
request only) and the deletion of resources. These operations
also generate an update of the resource collection (which is a
resource per se), and therefore our proposal provides a solu-
tion to safely interact with the resource collection besides the
created/deleted resource.

Regarding the RESTfulness of the proposed approach,i.e.,
the adherence of the overall solution with respect to the REST
principles (cf. Sect. 2.1): (a) ReLock services are stateless.
The Transaction Service saves an application state [30, p. 90]
to support compensation and resiliency (cf. Sect. 3.5). Con-
versely from approach #4 [18,29], such an application state
does not create temporary resources thus avoiding the link
transparency issue [20, Sec. 3.3]. (b) the ReLock approach is
layered, it respects the uniform interface constraint, and the
fours additional constraints the uniform interface introduces
(cf. Sect. 2.1).

Regarding the compliance with HTTP: (a) the ReLock
approach respects the semantics of HTTP 1.1 methods.
The usage of PUT method to commit the transaction
could be disputed. ReLock services use three non-standards
HTTP headers: X-Transaction-URI, X-Lock-URI
and X-Parent-Lock-URI.Lock-Token headerdefined
for WebDAV [8, Sec. 10.5] could be a possible standard
alternative to X-Lock-URTI; (b) the resource collection URI
returns the list of the resources (list of URIs) according to
ROA. Every URI can be considered a resource per se.

Regarding the miscellaneous properties considered: (a)
ReLock supports CRUD operations. However, resource cre-
ation with POST is problematic since the URI of the resource
created by POST is not known, and the Transaction Proxy
cannot request a lock for the created resource URIs. The lock
for the resource collection is not enough because a concur-
rent client could create a resource with PUT directly to the
resource URI (which could result in an update which vio-
lates the isolation property). The Transaction Proxy could
transform a POST request into a PUT request only if it is
capable of defining the appropriate URI for the resource. This
is possible only if the Transaction Proxy knows the semantic
of the target RESTful Service. For this reason, our transac-
tion model could support POST only when it is exploited

@ Springer

to implement transactions on “known” RESTful Service(s).
ReLock can support the POST Method but the Proxy must
be tailored for the Effective Service. Anyway, it is be pos-
sible to develop a Generic Transaction Proxy which could
use a mix of configurations and plug-in-based approach to
support such a method; () clients not conceived to rely on
ReLock can coexist with the ones exploiting it, thus ReLock
cater for optionality. Services are always not aware of the
extended behavior introduced by our transaction model, and
they do not need to conform to any particular pattern. They
have only to be RESTful and do not expose subordinated
resources; (c) discoverability is achieved by the OPTIONS
method. This means that “all the metadata needed to execute
the transactions can be discovered in a RESTful manner with-
out out-of-band knowledge (i.e., following links)” [20]. By
exploiting this feature, our model can exploit the out-of-band
knowledge to support a distributed transaction. By querying
all the involved proxies, a client discovers if a common trans-
action service exists. If it exists, then all the lock services
used by the proxies can interact by implementing a proto-
col for deadlock detection; (d) ReLock supports RESTful
distributed transactions [13,14] under the following addi-
tional constraints. First of all, all the services should trust a
common Transaction Service. The Lock services must share
a common distributed deadlock detection algorithm. More-
over, distributing the transactions will imply to build the
initial resource URIs encoding the effective services base
URI. This will allow to distinguish different services and
expose their collections to the same relative URI; (¢) ReLock
is not posing any request for RESTful service(s) to adhere to
specific service paradigms.

5.1 Common transaction scenarios

Nine scenarios have been proposed [21] to evaluate the cov-
erage of any RESTful transaction model.

In Scenario I, two resources belonging to a single applica-
tion are updated. Table 11 shows how our protocol supports
such a scenario. Our model requires seven client calls to exe-
cute the scenario instead of the four ideals calls (3—6). Three
additional calls represent 75% of overhead in the presented
scenario, but this number is constant because the number
does not change with the number of operations made in the
transaction.

Table 12 presents Scenario II using PUT (POST is sup-
ported in certain conditions only).

Scenario III is similar to Scenario I, but the update oper-
ation must be asynchronous because the call is expected to
take a long time to execute. In this case, the Response to the
client PUT operation is 202 Accepted in place of 204
No Content. Our proposal could support this scenario,
but it does not have a good fit for long-running transactions
because it uses pessimistic locks which block resources.

Service Oriented Computing and Applications (2021) 15:75-92

89

Table 11 ReLock and Scenario I: a transaction that updates two resources

HTTP method URL Response

OPTIONS http://example.org/resources 200 OK

PUT http://transaction.example.org/transactions/ 201 Created Location: http://transaction.example.org/transactions/T1
GET http://example.org/resources/A 200 OK

GET http://example.org/resources/B 200 OK

PUT http://example.org/resources/A 204 No content

PUT http://example.org/resources/B 204 No content

PUT http://transaction.example.org/transactions/T1 204 No content

Table 12 ReLock and Scenario II: a transaction involving update, creation, and deletion operations of a resource

HTTP method URL Response

OPTIONS http://example.org/resources 200 OK

PUT http://transaction.example.org/transactions/ 201 Created Location: http://transaction.example.org/transactions/T1
GET http://example.org/resources 200 OK

PUT http://example.org/resources/C 201 Created

GET http://example.org/resources/ A 200 OK

PUT http://example.org/resources/B 204 No Content

PUT http://transaction.example.org/transactions/T1 204 No Content

Scenario IV is also similar to the Scenario I, but the two
resources belong to two different applications, see Table 13.
We support such a scenario for distributed services but not
for decentralized ones. Steps one and two are executed to dis-
cover the supported Transaction Service. Clearly, the client
can proceed only if it finds a common Transaction Ser-
vice.

Scenario V is a rollback scenario where a server rejects
an update (i.e., the second update) by responding with
409 Conflict [12, Sec. 6.5.8] because another client
updated the same resource before. This scenario cannot
occur in our transaction model because the actions of the
first client lock the resource and the second client cannot
obtain an Exclusive lock for the same resource. In such a
case, the second client gets a 403 Forbidden, while it
tries to read the resource. It is a duty of the client either
to retry after a delay (Scenario V.a Table 14) or rollback
by deleting the transaction resource (Scenario V.b Table
15).

Scenario VI (see Table 16) shows a voluntary rollback of
the client.

In Scenario VII, the client fails in the middle of a trans-
action, for instance after the second PUT in Scenario I. In
such a situation, the transaction is not committed. The Trans-
action Service rollbacks the transaction when the timeout
expires.

In Scenario VIII, the server fails in the middle of a transac-
tion, for instance with a ‘500 Internal Server Error’ [12, Sec.
6.6.1]. This situation is similar to Scenario V, the client can

decide either to retry with a delay (Scenario V.a) or rollback
the transaction (Scenario V.b).

Scenario IX is about communication losses and message
losses. Either the request or the response message could get
lost due to unreliable network communication. This scenario
opens different cases to analyze.

The first case occurs when the client does not receive a
reply from the Transaction Proxy while updating a resource.
If the Transaction Proxy fails before the lock is requested,
then the client is still able to get the lock and proceed
by retrying the operation. If instead the Transaction Proxy
fails after the lock is obtained (or the reply message is
lost due to network issues), then the lock has been set
on the resource, but the client does not receive the lock
URL If the client retries the operation, it gets a 403
Forbidden because the Transaction Proxy is not able to
obtain the lock and the client can only rollback the trans-
action. In any case, the Transaction Service rollbacks the
transaction if the timeout expires. Alternatively, the Lock
Servicecouldusea 301 Moved Permanently[12,Sec.
6.4.2] if it recognizes that a Transaction Proxy is trying
to create the same lock for the same resource and transac-
tion.

The second case occurs when the client does not receive
the response. The client can retry the operation because the
PUT operation is idempotent.

@ Springer

http://example.org/resources
http://transaction.example.org/transactions/
http://transaction.example.org/transactions/T1
http://example.org/resources/A
http://example.org/resources/B
http://example.org/resources/A
http://example.org/resources/B
http://transaction.example.org/transactions/T1
http://example.org/resources
http://transaction.example.org/transactions/
http://transaction.example.org/transactions/T1
http://example.org/resources
http://example.org/resources/C
http://example.org/resources/A
http://example.org/resources/B
http://transaction.example.org/transactions/T1

90

Service Oriented Computing and Applications (2021) 15:75-92

Table 13 ReLock and Scenario I'V: a transaction that updates resources from different applications

HTTP method URL Response

OPTIONS http://example.org/resources 200 OK

OPTIONS http://remote.example.org/res 200 OK

PUT http://transaction.example.org/transactions/ 201 Created Location: http://transaction.example.org/transactions/T1
GET http://example.org/resources/A 200 OK

GET http://remote.example.org/res/B 200 OK

PUT http://example.org/resources/A 204 No content

PUT http://remote.example.org/res/B 204 No content

PUT http://transaction.example.org/transactions/T1 204 No content

Table 14 ReLock and Scenario V with delayed retry: a transaction with multiple updates where the server rejects an update because of a conflict
with a parallel transaction

HTTP method URL Response

OPTIONS http://example.org/resources 200 OK

PUT http://transaction.example.org/transactions/ 201 Created Location: http://transaction.example.org/transactions/T1
GET http://example.org/resources/A 200 OK

PUT http://example.org/resources/A 204 No content

GET http://example.org/resources/B 403 Forbidden

GET http://example.org/resources/B 200 OK

PUT http://example.org/resources/B 204 No content

PUT http://transaction.example.org/transactions/T1 204 No content

Table 15 ReLock and Scenario V with rollback: a transaction with multiple updates where the server rejects an update because of a conflict with

a parallel transaction

HTTP method URL Response

OPTIONS http://example.org/resources 200 OK

PUT http://transaction.example.org/transactions/ 201 Created Location: http://transaction.example.org/transactions/T 1
GET http://example.org/resources/ A 200 OK

PUT http://example.org/resources/A 204 No content

GET http://example.org/resources/B 403 forbidden

DELETE http://transaction.example.org/transactions/T1 202 accepted

Table 16 ReLock and Scenario VI: a transaction with multiple updates where the client rollbacks due to some condition in its business logic

HTTP method URL Response

OPTIONS http://example.org/resources 200 OK

PUT http://transaction.example.org/transactions/ 201 Created Location: http://transaction.example.org/transactions/T 1
GET http://example.org/resources/A 200 OK

GET http://example.org/resources/B 200 OK

PUT http://example.org/resources/A 204 No content

DELETE http://transaction.example.org/transactions/T1 202 accepted

@ Springer

http://example.org/resources
http://remote.example.org/res
http://transaction.example.org/transactions/
http://transaction.example.org/transactions/T1
http://example.org/resources/A
http://remote.example.org/res/B
http://example.org/resources/A
http://remote.example.org/res/B
http://transaction.example.org/transactions/T1
http://example.org/resources
http://transaction.example.org/transactions/
http://transaction.example.org/transactions/T1
http://example.org/resources/A
http://example.org/resources/A
http://example.org/resources/B
http://example.org/resources/B
http://example.org/resources/B
http://transaction.example.org/transactions/T1
http://example.org/resources
http://transaction.example.org/transactions/
http://transaction.example.org/transactions/T1
http://example.org/resources/A
http://example.org/resources/A
http://example.org/resources/B
http://transaction.example.org/transactions/T1
http://example.org/resources
http://transaction.example.org/transactions/
http://transaction.example.org/transactions/T1
http://example.org/resources/A
http://example.org/resources/B
http://example.org/resources/A
http://transaction.example.org/transactions/T1

Service Oriented Computing and Applications (2021) 15:75-92

91

6 Conclusion and future works

Service composition and supporting transactions across
the composed services are among the major challenges
characterizing the service-oriented computing. This paper
presented ReLock, an approach for transaction manage-
ment of RESTful services. In particular, this approach
consist of a transaction model and three specific services
implementing it: (i) the Transaction Proxy called to inter-
cept all requests made by clients to the target RESTful
service if allowed by the transaction protocol; (ii) the
Transaction Service implementing transactions as resource
facilities as well as exposing transaction logging facil-
ities as resources to support compensations in case of
rollbacks; (iii) the Lock Service realizing lock capabil-
ities for resources exposed by the target RESTful ser-
vice.

ReLock is a good fit for short-lived ACID transactions.
ReLock uses two-phase locking. It exposes transaction as
resource holding a timeout. When the timeout is raised the
situation is managed as when a client explicitly invokes
a rollback. The procedure is based on compensation. The
compensation procedure uses initial state representation and
logging facilities to properly work. The proposed solution is
resilient to failures.

The proposed solution is not immune from some limita-
tions.

POST could be supported only in a scenario where the
RESTful Service(s) are known to the Transaction Proxy (cf.
Sect. 5) while services exposing subordinated resources are
not supported. Approaches aiming at overcoming these lim-
itations will be integrated in future works.

An extensive assessment of the proposed approach is
ongoing to evaluate its efficiency under different opera-
tional settings and implementation decisions. The ReLock
approach is currently under testing in the context of the
D4Science infrastructure [2,3]. This large scale infrastructure
supports workflows and processes across diverse services,
often not initially conceived to work together.

Thanks to the layered approach, reservation-based ser-
vices could coexist with non-reservation based. The idea for
reservation-based services is to remove lock service and pro-
pose a different proxy behind them, which would still take
advantage of the transaction service. The transaction service
must be extended to use try/cancel pattern in place of com-
pensation for this type of services. This idea will be presented
in a future work.

As a future work, we evaluate the possibility to support
decentralized transactions. Blockchain [22] technologies
could be a way to approach decentralization.

Acknowledgements This work has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under
Blue Cloud project (Grant Agreement No. 862409).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Allamaraju S (2010) RESTful web services cookbook: solutions
for improving scalability and simplicity, 1st edn. O’Reilly, Newton
2. Assante M, Candela L, Castelli D, Cirillo R, Coro G, Frosini L,
Lelii L, Mangiacrapa F, Pagano P, Panichi G, Sinibaldi F (2019)
Enacting open science by D4Sscience. Future Gener Comput Syst
101:555-563. https://doi.org/10.1016/].future.2019.05.063
3. Assante M, Candela L, Castelli D, Cirillo R, Coro G, Frosini L,
Lelii L, Mangiacrapa F, Marioli V, Pagano P, Panichi G, Perciante
C, Sinibaldi F (2019) The gcube system: delivering virtual research
environments as-a-service. Future Gener Comput Syst 95:445—
453. https://doi.org/10.1016/j.future.2018.10.035
4. Bernstein PA, Newcomer E (2009) Principles of transaction pro-
cessing. Morgan Kaufmann, Burlington
5. Bouguettaya A, Singh M, Huhns M, Sheng QZ, Dong H, Yu Q,
Neiat AG, Mistry S, Benatallah B, Medjahed B, Ouzzani M, Casati
F, Liu X, Wang H, Georgakopoulos D, Chen L, Nepal S, Malik Z,
Erradi A, Wang Y, Blake B, Dustdar S, Leymann F, Papazoglou M
(2017) A service computing manifesto: the next 10 years. Commun
ACM 60(4):64-72. https://doi.org/10.1145/2983528
6. Cabrera F, Copeland G, Cox B, Freund T, Klein J, Storey T, Thatte
S (2002) Web services transaction (ws-transaction). Technical
report, BEA Systems, International Business Machines Corpora-
tion, Microsoft Corporation, Inc. http://xml.coverpages.org/WS-
Transaction2002.pdf
7. da Silva Maciel LAH, Hirata CM (2010) A timestamp-based two
phase commit protocol for web services using rest architectural
style.] Web Eng 9(3):266-282
8. da Silva Maciel LAH, Hirata CM (2013) Fault-tolerant timestamp-
based two-phase commit protocol for restful services. Softw Pract
Exp 43(12):1459-1488. https://doi.org/10.1002/spe.2151
9. da Silva Maciel LAH, Hirata CM (2009) An optimistic technique
for transactions control using rest architectural style. In: Proceed-
ings of the 2009 ACM symposium on applied computing, SAC *09,
pp 664-669. ACM, New York, NY, USA. https://doi.org/10.1145/
1529282.1529419
10. da Silva Maciel LAH, Hirata CM (2011) Extending timestamp-
based two phase commit protocol for restful services to meet
business rules. In: Proceedings of the 2011 ACM symposium on
applied computing, SAC ’11, pp 778-785. ACM, New York, NY,
USA. https://doi.org/10.1145/1982185.1982354
11. Dey A, Fekete A, Rohm U (2015) Rest+t: scalable transactions over
http. In: 2015 IEEE international conference on cloud engineering,
pp 36—41. https://doi.org/10.1109/IC2E.2015.11
12. Dusseault LM (2007) HTTP extensions for web distributed author-
ing and versioning (WebDAV). RFC 4918. https://doi.org/10.
17487/RFC4918
13. Dustdar S, Schreiner W (2005) A survey on web services compo-
sition. Int J Web Grid Serv (IIWGS) 1(1):1-30. https://doi.org/10.
1504/1JWGS.2005.007545

@ Springer

https://doi.org/10.1016/j.future.2019.05.063
https://doi.org/10.1016/j.future.2018.10.035
https://doi.org/10.1145/2983528
http://xml.coverpages.org/WS-Transaction2002.pdf
http://xml.coverpages.org/WS-Transaction2002.pdf
https://doi.org/10.1002/spe.2151
https://doi.org/10.1145/1529282.1529419
https://doi.org/10.1145/1529282.1529419
https://doi.org/10.1145/1982185.1982354
https://doi.org/10.1109/IC2E.2015.11
https://doi.org/10.17487/RFC4918
https://doi.org/10.17487/RFC4918
https://doi.org/10.1504/IJWGS.2005.007545
https://doi.org/10.1504/IJWGS.2005.007545

92

Service Oriented Computing and Applications (2021) 15:75-92

15.

17.

19.

20.

21.

22.

23.

24.

25.

Elmagarmid AK (1986) A survey of distributed deadlock detection
algorithms. SIGMOD Rec 15(3):37-45. https://doi.org/10.1145/
15833.15837

Fielding RT, Reschke J (2014) Hypertext transfer protocol
(HTTP/1.1): semantics and content. RFC 7231. https://doi.org/10.
17487/RFC7231

Fielding RT (2000) Architectural styles and the design of network-
based software architectures. Ph.D. thesis, University of California,
Irvine

Khare R (2003) Extending the representational state transfer (rest)
architectural style for decentralized systems. Ph.D. thesis, Univer-
sity of California, Irvine

. Khare R, Taylor RN (2004) Extending the representational state

transfer (rest) architectural style for decentralized systems. In:
Proceedings of the 26th international conference on software
engineering, ICSE ’04, pp 428-437. IEEE Computer Society,
Washington, DC, USA

Kochman S, Wojciechowski PT, Kmieciak M (2012) Batched
transactions for restful web services. In: Proceedings of the 11th
international conference on current trends in web engineering,
ICWE’11, pp 86-98. Springer, Berlin, Heidelberg. https://doi.org/
10.1007/978-3-642-27997-3_8

Lampesberger H (2016) Technologies for web and cloud ser-
vice interaction: a survey. SOCA 10(2):71-110. https://doi.org/10.
1007/s11761-015-0174-1

Lemos AL, Daniel F, Benatallah B (2015) Web service composi-
tion: a survey of techniques and tools. ACM Comput Surv. https://
doi.org/10.1145/2831270

Marinos A, Razavi A, Moschoyiannis S, Krause P (2009) Retro: a
consistent and recoverable restful transaction model. In: Proceed-
ings of the 2009 IEEE international conference on web services,
ICWS 09, pp 181-188. IEEE Computer Society, Washington, DC,
USA. https://doi.org/10.1109/ICWS.2009.99

Martin J (1983) Managing the database environment. Prentice-
Hall, Prentice

Mihindukulasooriya N, Garcia-Castro R, Esteban-Gutiérrez M,
Gomez-Pérez A (2016) A survey of restful transaction models:
One model does not fit all.] Web Eng 15(1-2):130-169
Mihindukulasooriya N, Esteban-Gutiérrez M, Garcia-Castro R
(2014) Seven challenges for restful transaction models. In: Pro-
ceedings of the 23rd international conference on world wide web,
WWW ’14 companion, pp 949-952. ACM, New York, NY. https://
doi.org/10.1145/2567948.2579218

@ Springer

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf

Nielsen HF, Mogul J, Masinter LM, Fielding RT, Gettys J, Leach
PJ, Berners-Lee T (1999) Hypertext Transfer Protocol—HTTP/1.1.
RFC 2616. https://doi.org/10.17487/RFC2616

Papazoglou MP, Kratz B (2007) Web services technology in sup-
port of business transactions. SOCA 1(1):51-63. https://doi.org/
10.1007/s11761-007-0002-3

Papazoglou MP, Traverso P, Dustdar S, Leymann F (2007) Service-
oriented computing: state of the art and research challenges.
Computer 40(11):38-45. https://doi.org/10.1109/MC.2007.400
Pardon G, Pautasso C (2011) Towards distributed atomic transac-
tions over restful services. In: REST: From research to practice, pp
507-524. Springer, New York, NY. https://doi.org/10.1007/978-1-
4419-8303-9_23

Pardon G, Pautasso C (2014) Atomic distributed transactions: a
restful design. In: Proceedings of the 23rd international conference
on world wide web, WWW 14 companion, pp 943-948. ACM,
New York, NY. https://doi.org/10.1145/2567948.2579221
Pautasso C, Zimmermann O, Leymann F (2008) Restful web
services vs. “big” web services: Making the right architectural
decision. In: Proceedings of the 17th international conference on
world wide web, WWW 08, p. 805-814. Association for Comput-
ing Machinery, New York, NY. https://doi.org/10.1145/1367497.
1367606

Razavi A, Marinos A, Moschoyiannis S, Krause P (2009) Restful
transactions supported by the isolation theorems. In: Proceedings
of the 9th international conference on web engineering, ICWE ’9,
pp 394-409. Springer, Berlin. https://doi.org/10.1007/978-3-642-
02818-2_32

Richardson L, Ruby S (2007) Restful Web Services, 1st edn.
O’Reilly, Newton

Weikum G, Vossen G (2002) Chapter Four—Concurrency control
algorithms. In: Weikum G, Vossen G (eds) Transactional informa-
tion systems. The Morgan Kaufmann series in data management
systems, pp 125-183. Morgan Kaufmann, San Francisco. https://
doi.org/10.1016/B978-155860508-4/50005-3

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/15833.15837
https://doi.org/10.1145/15833.15837
https://doi.org/10.17487/RFC7231
https://doi.org/10.17487/RFC7231
https://doi.org/10.1007/978-3-642-27997-3_8
https://doi.org/10.1007/978-3-642-27997-3_8
https://doi.org/10.1007/s11761-015-0174-1
https://doi.org/10.1007/s11761-015-0174-1
https://doi.org/10.1145/2831270
https://doi.org/10.1145/2831270
https://doi.org/10.1109/ICWS.2009.99
https://doi.org/10.1145/2567948.2579218
https://doi.org/10.1145/2567948.2579218
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.17487/RFC2616
https://doi.org/10.1007/s11761-007-0002-3
https://doi.org/10.1007/s11761-007-0002-3
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1007/978-1-4419-8303-9_23
https://doi.org/10.1007/978-1-4419-8303-9_23
https://doi.org/10.1145/2567948.2579221
https://doi.org/10.1145/1367497.1367606
https://doi.org/10.1145/1367497.1367606
https://doi.org/10.1007/978-3-642-02818-2_32
https://doi.org/10.1007/978-3-642-02818-2_32
https://doi.org/10.1016/B978-155860508-4/50005-3
https://doi.org/10.1016/B978-155860508-4/50005-3

	ReLock: a resilient two-phase locking RESTful transaction model
	Abstract
	1 Introduction
	2 Background
	2.1 REpresentational state transfer (REST)
	2.2 Resource-oriented architecture (ROA)
	2.3 Transaction properties

	3 The ReLock approach
	3.1 The sequence diagram of a transaction
	3.2 The ReLock Transaction Proxy
	3.2.1 Managing requests from transactional clients
	3.2.2 Managing requests from non-transactional clients

	3.3 The ReLock transaction service
	3.3.1 The ReLock compensation approach

	3.4 The ReLock lock service
	3.5 Resiliency

	4 Related work
	5 Discussion
	5.1 Common transaction scenarios

	6 Conclusion and future works
	Acknowledgements
	References

