Consiglio Nazionale delle Ricerche

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

Expliciting Dynamic Process Generation

Chapter 9 of
"Catalogue of LOTOS Correctness Preserving Transformations”
ESPRIT Project 2304 LOTOSPHERE

task 1.2 Third Deliverable

A. Fantechi, S. Gnesi

gm :) ET
Nota Interna B4-30 § Eégng %Sé T §§j CFTA

Luglio 1992 | Posiz.) Bl o

S sz ot

Public oTCPHERs Lo/WP1/T1.2/N0045/V03

Chapter 9

Expliciting Dynamic Process
Generation

9.1 Informal Description

Consider the following informal specification: Whenever a request is made on the gate g,
instantiate a new process that handles such request, so that other requests could be served
in parallel. This paradigm can be frequently found in several classes of application. An
example can be found in the Telephone System specification in [19]. Dynamic instantiation
of new processes can be expressed in LOTOS by means of an unguarded recursion (see
the example below). The proposed transformation, starting from a process P, which
contains unguarded recursions, produces a process QQ with only guarded recursions, which
is observationally equivalent to P.

9.2 Motivation

Unguarded recursion is admitted in LOTOS, but still can give problems with some tools
operating on the language; for example, in [29] a LOTOS interpreter is described which
is not able to execute some kinds of unguarded recursions. This is due to the attempt
made by the interpreter (in the case of unguarded recursion used for process generation)
to create new processes endlessly, before performing any of their first actions. On the
other hand, the use of unguarded recursion for modelling dynamic generation of processes
can be done at an abstract level of specification, but gives little information on how to
implement it. The proposed transformation gives an hint in this direction, by expliciting
the action of "creating a new process”.

Chanter 9. Expliciting Dvnamic Process Generation 93

Public OTCSPHERE Lo/WP1/T1.2/N0045/V03

9.3 Example

The following specification describes a Server which accepts requests and which handles
them independently and concurrently, operating on a central repository of information;
each request activates a new instance of the handler process for that request. Unguarded
recursion is used to specify activation of new instances. Two equivalent specifications
with guarded recursion are given in section 9.6, obtained with the two solutions proposed.

specification ClientServer([Req, Reply] : noexit :=
(* Abstract Data Types Definitions*)

behaviour

hide int_gate in

(Handlers [Req, Reply, int_gate]
| [int_gate] |
Central_repository [int_gate])

where

process Handlers [Req, Reply, int_gate] mnoexit :=
Handlers [Req, Reply, int_gate]

Y

Handler [Req, Reply, int_gate]

where

process Handler [Req, Reply, int_gate] noexit :=
Req”req:admitted_req; <handling req> ; stop
endproc (*Handler*)

endproc (*Handlers¥)

process Central_repository [int_gate] noexit :=

endproc (*Central_repository *)

endspec (*ClientServerx)

Chapter 9. Exvliciting Dvnamic Process Generation 94

Public OTCSPHERS Lo/WP1/T1.2/N0045/V03

9.4 Formal Description

9.4.1 Auxiliary Concepts

An occurrence of a process identifier P in a behaviour expression E is guarded in E if it
occurs within some subexpression a;F of E, with a € ActU {:i}. Otherwise it is said to be

unguarded in E [33].

A recursive process definition process P... := BExp endproc is said to be guarded if
the process identifier P occurs guarded in BExp. Conversely, it is said to be unguarded
it P occurs unguarded in BExp.

These definitions extend easily to the case of mutually recursive processes.

Note that the above definition of guarded recursion is weaker than the one given in [34],
which excludes unobservable actions from valid guards. In this context we prefer the
former, since some tools (e.g. the already mentioned interpreter described in [29]) can
indeed cope with i-guarded recursion. Therefore, we will consider as acceptable a solution
which transforms unguarded recursions in i-guarded recursions (Solution a below).

9.4.2 Input

PD: a process definition containing unguarded occurrences of process identifiers in the
context of interleaving operators.

9.4.3 Output

QD: a guarded process definition

9.4.4 Transformation Requirements

The defining behaviour expression in QD should no more contain unguarded occurrences
of process identifiers (while the rest of the process definition is to be left unchanged).

9.4.5 Correctness Preservation Requirements

PD and QD are observationally equivalent.

(Chanter 9. Expliciting Dvnamic Process Generation 95

Public LOTCSPHERe Lo/WP1/T1.2/N0045,/V03

9.5 Solution

Solution a): an internal action is introduced in order to model the dynamic creation of
new processes (this has been done, for example, in the already cited example of [19]). The
internal action can be thought of as modelling the creation of a new process and can be
explicitely used, in later development stages, as a placeholder for a call to an operating
system "create_a_new_process” procedure.

The result is still a specification of the type considered as abstracting the need for an
a-priort unbounded multiplicity of resources in Sect. 7.3.1, where a successive transfor-
mation is shown to bound the number of resources.

The solution therefore consists in substituting the unguarded occurrences of the process
identifier P by 1;P . In the case of mutually recursive processes it is enough to substitute
in this way only some of the occurrences of the involved process identifiers, (only one of
them in the case of strictly cyclical mutually recursive definitions).

process P : noexit := @|||P endproc

¥

process P : noexit := Q|||¢; P endproc

Note that this solution is based on the equivalence X =~ i; X, which is valid for obser-
vational equivalence. Since we perform this substitution inside an interleaving operator
context (which preserves observational equivalence), the Correctness Preserving Relation
of this solution is observational equivalence.

If the process identifier P occurs inside a choice context, the equivalence P =~ i; P is
valid only for weak trace equivalence: this means that this transformation can be applied
also to more general input, with mixed interleaving/choice contexts for P, but loosing
observational equivalence.

Solution b): no internal actions are introduced, but rather the existing actions are rear-
ranged in order to eliminate the unguarded recursion. The solution applies the following
transformation rule:

process P : noexit := [[{a;; Q:}|||P endproc

4
process P : noexit := [J{a;; (Q:|||P)} endproc

Where by [[{a;; @;} we indicate the choice among the processes of the set.

Chapter 9. Expliciting Dvnamic Process Generation 96

Public W Lo/WP1/T1.2/N0045/V03

This transformation rule preserves strong bisimulation equivalence and has the advantage
to introduce no infinite sequences of internal events; on the other hand, this rule is more
complex to be applied than the former solution, since it modifies at least two contexts
enclosing the unguarded occurrence. as opposed to the simple addition af an i as a prefix
for the unguarded occurrence

9.6 Examples of solution

Solution a):
In the specification of the above example, an unobservable action is now introduced to
explicit the process generation:

specification ClientServer[Req, Reply] : noexit :=
(* Abstract Data Types Definitions*)

behaviour

hide int_gate in

(Handlers [Req, Reply, int_gate]
| [int_gate] |
Central_repository [int_gate])

vhere

process Handlers [Req, Reply, int_gate] noexit :=
i; Handlers [Req, Reply, int_gate]

1

Handler [Req, Reply, int_gate]

where

process Handler [Req, Reply, int_gate] noexit :=
Req”req:admitted_req; <handling req> ; stop
endproc (*Handlerx)

endproc (*Handlersx*)

process Central_repository [int_gate] noexit :=

endproc (*Central_repository *)

endspec (*ClientServerx)

Chapter 9. Expliciting Dvnamic Process Generation 97

Public 1oTCPHERe Lo/WP1/T1.2/N0045,/V03

As an alternative, we can extract from the Handler process its first action, namely the
acceptance of a request, before the actual generation of the process (Solution b):

specification ClientServer[Req, Replyl : noexit :=
(* Abstract Data Types Definitionsx)

behaviour

hide int_gate in

(Handlers [Req, Reply, int_gate]

| [int_gate] |

Central_repository [int_gate])
where

process Handlers [Req, Reply, int_gate] noexit :=
Req?req:admitted_req;

(Handlers [Req, Reply, int_gate]

FI

Handler [Req, Reply, int_gate](req))

where

process Handler [Req, Reply, int_gate]
(req:admitted_req) noexit :=

<handling req> ; stop

endproc (*Handlerx)

endproc (*Handlersx)

process Central_repository [int_gate] noexit :=

endproc (*Central_repository *)

endspec (*ClientServer*)

Chapter 9. Expliciting Dvnamic Process Generation 93

