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Abstract
Electronic noses, instruments for automatic recognition of odours, are typically composed of an array of partially 
selective sensors, a sampling system, a data acquisition device and a data processing system. For the purpose of 
evaluating the quality of olive oil, an electronic nose based on an array of conducting polymer sensors capable of 
discriminating olive oil aromas was developed. The selection of suitable pattern recognition techniques for a 
particular application can enhance the performance of electronic noses. Therefore, an advanced neural recognition 
algorithm for improving the measurement capability of the device was designed and implemented. This method 
combines multivariate statistical analysis and a
hierarchical neural-network architecture based on self-organizing maps and error back-propagation. The complete 
system was tested using samples composed of characteristic olive oil aromatic components in refined olive oil. The 
results obtained have shown that this approach is effective in grouping aromas into different categories 
representative of their chemical structure.

Keywords: electronic nose, sensors, odour recognition, hierarchical neural networks, olive oil

1. Introduction

In many industries, including food and beverage, cosmetics
or car component manufacturing, the qualitative evaluation
of products is strictly related to human perception of odours.
Traditional analytical techniques often fail to give an accurate
representation of the quality of products, since in most
cases it is impossible or too expensive to determine the
exact aroma composition and there is no way to recover
the synthetic human judgement from the analytic outputs.
Often large companies are equipped with human panels, but
this solution suffers many drawbacks (cost, low throughput,
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limited accuracy and reproducibility). Hence, the advantages
expected from an automated system capable of detecting and
classifying odours, vapours and gases has stimulated scientific
interest in development of artificial olfactory systems [1], also
called electronic noses. These instruments are expected to
have significant application in fields such as food analysis
(freshness and aroma of some aliments and beverages [2]),
environmental and industrial monitoring [3], safety and
medical diagnosis [4].

In general, an electronic nose is composed of an odour
sampling system, an array of chemical sensors, an electronic
front-end and a data processing unit. The sampling system
conveys the odour sample to the array of sensors, which
convert the chemical information into the variation of a
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Table 1. Polymers, dopants and the molar ratios used for each sensor.

Sensor Polymer Dopant salt Molar ratio

2DI2 3, 3′-Dipentoxy-2,2′bithiophene Iodine 2
5TCR1 3, 3′′-Dipentoxy-2,2′:5′, 2′′-terthiophene Cupric chloride 5
3DPR2 3, 3′-Dipentoxy-2,2′bithiophene Cupric perchlorate 3
3TPR3 3, 3′′-Dipentoxy-2,2′:5′, 2′′-terthiophene Cupric perchlorate 3
3DCF1 3, 3′-Dipentoxy-2,2′bithiophene Iron chloride 3
3TI1 3, 3′′-Dipentoxy-2,2′:5′, 2′′-terthiophene Iodine 3
5DPR3 3, 3′-Dipentoxy-2,2′bithiophene Cupric perchlorate 5
3DPF2 3, 3′-Dipentoxy-2,2′bithiophene Iron perchlorate 3

physical quantity. By means of generation and measurement of
electric signals, the electronic front-end allows the acquisition
of these data, which are then analysed by the processing unit for
the classification of the odours tested. The whole measurement
process is automated to enhance repeatability.

In spite of the many potential applications, electronic
noses are not as widespread as might be expected. There
are two main reasons for this apparent paradox, cost and
the very aggressive market policy companies adopted in
the past for a product while it was still in a research and
development phase. In many cases enthusiastic users were
unable to obtain the results they were promised because of
inappropriate choice and treatment of samples, incorrect use of
the instruments, instability and non-reproducibility of sensors.
Some of these problems can be solved by tailoring devices to a
specific application and developing specific pattern recognition
techniques [5].

In this work, an artificial olfactory system based on the
combination of conducting polymer sensors and an advanced
neural recognition algorithm was set up with the ultimate
aim of developing an instrument capable of monitoring olive
processing and evaluating the quality of olive oils. The
system was tested on samples of refined oil containing some
of the main components of olive oil headspace. Data were
analysed by a hierarchical neural network [6], based on both
self organizing maps (SOM) [7] and error back-propagation
(EBP) [8] modules.

Data analysis was performed by a three-step procedure,
i.e. selective extraction of features from the data, preclassifi-
cation of features by SOMs on a topological basis, final clas-
sification by the EBP module.

Since the headspace of real olive oils is much more
complex than our samples, results are not immediately
applicable to olive oils. Nevertheless, the advantages

Figure 1. Structure of a conducting polymer sensor.

material chosen for its porosity, which permits good adhesion
of the polymeric film, its insulating properties and its low
degree of chemical reactivity. After depositing the conducting
polymers, four pins were glued to the alumina by means of an
epoxy resin in order to be able to insert the sensor in a standard
socket.

The conducting polymers were synthesized as a colloidal
microsuspension obtained via chemical polymerization by
substituted dimers and trimers of thiophenic units with alkoxy
groups as substituents [9, 10]. Doping reactions with salts
that act both as a catalyst and a doping agent were performed
in order to give differentiated resistance characteristics to the
polymers. The salts used were cupric and ferric perchlorates,
cupric and ferric chlorides, hydrated gold chloride and iodine.
The deposition of the different doped microsuspensions on
supports was performed by means of a micropipette. A
schematic representation of a sensor is depicted in figure 1,
while polymers, dopants and their molar ratios are reported in
table 1 for each sensor.

The conducting polymer sensors exhibit a variation of
the electric resistance when exposed to volatiles, which can
be measured by forcing a current between the two external
pins by means of an electronic interface and measuring the
voltage drop across the polymeric film by a high-impedance
multimeter (Keithley 2700). The resistance values are
calculated from the ratio between the output voltage and the
input current; the sensor response consists of a time sequence
of resistance values that depends on the type of odorant.

The array of sensors was housed in a stainless steel
measuring chamber. The accurate design of the chamber
allowed creation of a homogeneous flow with a low speed
gradient, no recirculating zones or stagnant regions and the
same local concentration of volatiles over each sensor [11].

A block diagram describing the experimental set-up is
shown in figure 2. The sampling system, which conveyed

obtainable by the computational model presented here are 
much more general, and could make the difference even in 
other application areas.

The characteristics of the sensors, sampling system and 
data acquisition unit are presented together with a detailed 
description of the recognition algorithm and results obtained 
by the preliminary testing of olive oil aroma components.

2. Materials and methods

2.1. The electronic nose

The electronic nose is based on an array of eight conducting 
polymer sensors. Sensor supports were prepared by vacuum 
evaporating four gold tracks on 4 mm×7 mm  alumina  plates, a



Figure 2. Scheme of the experimental set-up. MFC is the mass flow controller and S1 . . . S16 are the glass vials, connected to the 16-way
valve, containing the samples.

Table 2. Olive oil aroma components analysed.

Aroma number Compound Structural formula

1 trans-2-Hexen-1-al
CH3–CH2–CH2

H

H

H

C C
C

O

2 1-Pentanol CH3–CH2–CH2–CH2–CH2–OH

3 1-Hexanol CH3–CH2–CH2–CH2–CH2–CH2–OH

4 3-Pentanone
CH3–CH2–C–CH2–CH3C

O
5 Ethanol CH3–CH2–OH

the odour from the vials to the sensors, was composed of a
bottle of ultra-pure nitrogen, a mass flow controller (MFC), a
four-way valve (model 0011522, Omnifit Ltd) and a 16-way
valve (model EMT4ST16MWE, Valco Instruments Co. Inc.)
connected to sixteen 125 ml glass vials containing the samples.
Inert PTFE tubing and fittings were used for the connections.
Vials were kept at a constant temperature of 25 ◦C by means
of a thermostatic bath.

Each sampling consisted of an eight-data vector obtained
by sequentially scanning all the sensors of the array in 4.5 s.
The measurement protocol consisted of three phases for each
experiment:

• baseline acquisition: sensors flushed with nitrogen and 15
samplings acquired in 67.5 s;

• exposure: sensors exposed to the sample headspace, 7
samplings acquired in 31.5 s;

• desorption and cleaning: odours flushed away by nitrogen
to restore baseline conditions, 98 samplings acquired in
441 s.

The 16-way valve allowed the selection of the sample to
be analysed, while the four-way valve was used to switch the
system between state 1 (sensors flushed with nitrogen, baseline
acquisition and cleaning, figure 3(a)) and state 2 (exposure
of sensors to odorant, figure 3(b)). The whole system was
controlled by a personal computer with dedicated software to
prevent the skill of the operator from playing a role in the
reproducibility of measurements.

Samples comprised 10 ml of solution (2.5 µl ml−1) of
different olive oil aroma components (table 2) in refined olive
oil.

Figure 3. Positions of the four-way valve during (a) baseline and
desorption and (b) exposure phases.

2.2. The processing unit

The recognition of samples is based on a multistep
approach [12]. Recognition and classification are performed
by a neural network having a hierarchical architecture
comprising two different modules of parallel classifiers. The
first module, comprising several SOM-based units, receives
the input data acquired by the electronic front-end, i.e. the
resistance values versus time. The analysis of these data
permits extraction of characteristic features which are then
preclassified, i.e. a unique position that identifies the winning
neuron in the SOM topology for each input. The outputs of
this preclassification step are sent to the second module of
the network, defined by the EBP, whose task is to combine
the inputs properly and perform the final classification. Each
SOM of the first module acts to separate the input data into
crisp classes. This preclassification is performed without any



Figure 4. Hierarchical classification architecture with five features selected.

information on the odour to be recognized (i.e. unsupervised
learning), but using only the appropriate feature for each of the
SOMs. The outputs of this module are used to form the input
pattern for the second module, which refines the classification
and gives the group to which the odour belongs as a final
response.

In the approach followed in this work, two main
characteristics were pursued:

• to exploit the differences among the extracted features to
improve the classification capability;

• to be able to change the number of features easily, for
better tuning of the network.

To achieve this end, a hierarchical neural network was
designed as shown in figure 4, so that implementation by
means of two independent modules implies rapid and efficient
training.

The first module is composed of a set of various
units (or preclassifiers). Each unit is trained with the
purpose of clustering each input value into specific classes
of characteristics, without using any information related to the
aroma component to which the input belongs. Each specific
feature is the input to only one classifier of the first module; in
this way, each SOM can be individually optimized without
affecting the other modules of the global neural-network
architecture, in order to reduce the computational complexity
locally and, at the same time, to implement a flexible system.

In the SOM units, the weights w j of a generic neuron j at
time t , for the input Fk(I) are modified as follows:

w j(t +1) =
{

w j (t) + α(t)[Fk(I) − wi (t)] if j ∈ Ni (t)

w j (t) if j /∈ Ni (t)

where wi represents the weight at time t of the neuron i most
excited by the input signal; α(t) = (1 − t−1

T ) ∈ ]0 . . . 1[ is

Each SOM acts as an independent classification unit,
giving a classification value for each input sample of the data set
without taking into account the output of the other SOMs. The
input is different for each SOM: every unit is trained and then
used for the classification of a specific feature and, therefore,
its input is only one of the processed features.

The preclassifications performed by the first module are
the input to the EBP, which is able to train itself by propagating
the resulting error δl(I) backward. δl(I) is calculated as
follows:

δl(I)

=




f ′
l (netl(I))

× (CI,T − Ol(I)) if l ∈ output neurons

f ′
l (netl(I))

×
∑

m∈output neurons

(δm(I) · wl,m ) if l /∈ output neurons

where netl(I) is the weighted sum of the inputs to the neuron
l for the input I ; f ′(netl(I)) is the derivative of an activation
function f used to compute the output; CI,T represents the
correct classification value of the input I ; Ol(I) is the output
value of the neuron l for the input I ; and wl,m is the weight of
the connection between neurons l and m.

The architecture of the second module is shown in figure 5.
For each sample to be classified, the input is a one-dimensional
array containing the response given by each SOM unit of the
first module to the specific feature extracted (see also figure 4).

The algorithm implemented has the following parameters:

• The network used is a feed-forward EBP network

• The training function updates weights according to a
resilient back-propagation algorithm [8]

• The input dimension corresponds to the number of
different features taken into account

• The input layer is composed of 25 neurons

• The output layer is composed of a number of neurons that
correspond to the number of odours to be recognized.

the learning coefficient, which depends on t and 
on the f i xed
maximum number of iterations T ; Fk(I) is the value of the 
feature k computed for the signal I (i.e. an aroma component); 
and Ni (t) is the set of neurons in a fixed neighbourhood of given 
radius and centred around i , inf l uenced by the modification 
of wi (t).



Figure 5. Back-propagation architecture with five features selected.
Cv,1 . . . Cv,5: input stimulus corresponding to the output of the
SOMs; wO

l,m , w I
k, j : weights; 25-neuron input layer; 5-neuron output

layer; O j (S): final classification of the input sample S.

3. Results and discussion

Measurements were carried out in four different sessions; six
series of measurements were performed during each of the first
two sessions and three in the last two. Each series consisted
of 15 measurements (three for each type of sample), so the
overall number of measurements was 270 (54 for each type of
sample). The data set was segmented to provide training and
test sets of 90 and 180 measurements respectively.

A typical response of the array of sensors is reported in
figure 6. The sensor responses are processed to extract a set
of features that can be used to characterize the input data. The
function xn(t), which defines the resistance of the sensor at
time t , is normalized over the time interval L = (t1, t2) during
which the polymer is in contact with the gas; the result is a
function x ′

n(t) = (xn(t)/xm − 1), where xm represents the
minimum value of xn(t) in the time interval L .

For each experiment, the behaviour of the normalized
function x ′

n(t) is studied to extract a number of statistical
parameters (features) and to obtain a characteristic fingerprint
for each aroma.

The features selected are the following:

• E = ∑
i∈L x ′

n(t)
2, energy

• tmax, abscissa of the maximum value xn

• Sc, angular coefficient of the line connecting x ′
n(t1) and

x ′
n(tmax)

• Dc, angular coefficient of the line connecting x ′
n(tmax) and

x ′
n(t2)• Nz , number of zeros of the second derivative of x ′

n(t) with
respect to t .

The set of features represents the output of the sensor array
to the stimulus of a particular sample and is used as input to

Table 3. Results of aromatic component recognition at the different
time intervals.

Success percentage Success percentage
Aroma interval = 90 s interval = 202.5 s

1 85.7 80.5
2 60.0 74.1
3 80.7 79.2
4 86.5 40.0
5 100 100

Average 82.2 79.3

the SOM units composing the first module of the hierarchical
neural network in such a way that each SOM is devoted to the
preclassification of just one specific feature.

Training is preceded by an initialization subphase
obtained by inputting each SOM with a subset of values
randomly selected from the features.

Subsequently, the SOMs generate a set of outputs that are
the input to the second module of the network (i.e. the EBP).

Each of the SOMs is composed of 16 neurons, disposed
in a 4 × 4 grid. The EBP-based module has no hidden layer
and a number of outputs equal to the number of odours to be
recognized (in our case five, see table 2). The format of the
input to the EBP is a five-dimensional array containing, for
each odour to be analysed, the five features preclassified by
the SOM module. Each input array is sent to all 25 neurons
comprising the input layer of the EBP module.

Once the training process is completed, the network
is ready for odour recognition. It can then be evaluated
for its accuracy, which is assessed by presenting input
samples (belonging to known classes) to the net and then
comparing the output classification obtained with the expected
result. Because of SOM characteristics, the disposition of
the nodes and the topological order can be checked after the
preclassification.

Sensors were exposed to samples for 31.5 s, then they
were allowed to recover initial conditions for 441 s. Only part
of the sensor response was used for feature extraction, namely
the whole exposure time and the initial 90 (or 202.5) s of the
desorption phase. Results are shown in table 3.

The analysis of the topological maps resulting from the
SOMs shows the existence of overlapping zones causing
aromatic components 1 and 4 and 2 and 3 to be occasionally
mistaken for one another. Grouping these aromas together
gives a remarkable increase in correct recognitions, as shown
in table 4. The chemical structure of the compounds suggests
a possible explanation for this fact. Aromas 2, 3 and 5 belong
to the same chemical class (alcohols) and their structures
differ only in the number of CH2 groups (table 2). In
particular, 1-pentanol and 1-hexanol are very similar, while
ethanol has a shorter chain. Since the hydroxyl group of the
odorant molecule is largely responsible for interaction with
the sensitive layer, and to a lesser extent its chain length,
these results are coherent. Similar considerations apply for
components 1 and 4. Chemical similarity is less evident, but
in both cases the interaction with the sensitive material occurs
at the same carbonyl group C=O and molecules only differ by
one carbon atom.

Even if it there is not an unambiguous correlation between
a single compound and an organoleptic attribute (many



Figure 6. A typical response of the array of sensors.

Table 4. Results of grouped aroma recognition at 90 s time interval.

Success percentage
Grouped aromas interval = 90 s

1 and 4 91.2
2 and 3 95.6
5 100

Average 94.8

Table 5. Comparison of the results obtained using the MLP, LVQ
and HNN networks.

Average performance Average performance
on five different aromas on grouped aromas

Network interval = 90 s interval = 90 s

MLP 48.9 61.2
LVQ 62.0 84.2
HNN 82.2 94.8

4. Conclusions

An olive oil aroma recognition system using hierarchical neural
networks is presented. In particular, a SOM-based module was
used for its ability to utilize typical characteristics of input data
to create a topological order over the input stimulus space in
an automated manner.

This latter feature proved to be effective in investigating
aroma–sensor interaction mechanisms and, in particular,
in grouping different aromas into categories which are in
accordance with the chemical structure of the compounds. For
this task, the recognition system achieved a high performance.
The agreement between the chemistry of the molecules and the
results of the data analysis is also promising for applications
to olive oil sample analysis.

It seems that our algorithm has been satisfactorily trained
with a limited number of measurements. This is important
because the availability of large data sets is usually a key issue
when dealing with neural networks, but problems due to sensor
drift arise in the time required to obtain large data sets. The
use of both recognition algorithms that need limited data sets to
be trained and dynamic measurement databases, periodically
updated by the addition of new calibration measurements and
the removal of the oldest, is in the authors’ opinion the most
promising approach to tackle the drift problem of electronic
noses. Further experiments will enable us to verify to what
extent a higher selectivity can be obtained by increasing
the number of measurements before drift effects become so
important as to cancel the improvements in the recognition
percentages.

compounds are usually involved, the reciprocal concentration 
is important; there is no unanimous agreement in the literature 
on these points), it may be stated that odours 1 and 4 contribute 
to giving fruity and sweet characteristics to olive oils, while 
odours 2 and 3 contribute a pungent flavour. I n t his last 
case, the distinction between organoleptic quality and defect 
is subtler and highly dependent on the concentration. The 
high recognition rate of ethanol is particularly promising, since 
this compound is the main interferer in the headspace. More 
precise considerations will be possible after the system has 
been tested on olive oil samples.

The success rate of the implemented network has been 
assessed by comparing our results with the results obtained by 
means of the most frequently used pattern recognition methods 
adopted by electronic nose researchers [13, 14]. In particular, 
we used both a learning vector quantization (LVQ) and a 
multilayer perceptron (MLP) network on the same training 
and test sets of our experiments. The best performance of the 
LVQ network was obtained using an architecture composed of 
a fi rst layer of 15 competitive neurons (corresponding to the 
number of measurements for each series) and a second layer of 
five linear neurons (corresponding to the number of different 
aromas); while the best MLP network was composed of three 
layers with 30, 15 and five perceptron neurons, respectively. 
As shown in table 5, the HNN approach gives better results 
both in the case of the recognition of a single component and 
the case of grouped aromas with chemical similarity.

The LVQ network required longer training and still gave a 
lower performance than HNN; the requirement that the number 
of competitive neurons be fixed a priori  r equires t he whole 
network to be reconstructed if features need to be changed or 
added.
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