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Abstract
Empirical tight-binding (ETB) methods have become a common choice to simulate electronic and
transport properties for systems composed of thousands of atoms. However, their performance is
profoundly dependent on the way the empirical parameters were fitted, and the found
parametrizations often exhibit poor transferability. In order to mitigate some of the the criticalities
of this method, we introduce a novel∆-learning scheme, called ML∆TB. After being trained on a
custom data set composed of ab-initio band structures, the framework is able to correlate the local
atomistic environment to a correction on the on-site ETB parameters, for each atom in the system.
The converged algorithm is applied to simulate the electronic properties of random GaAsSb alloys,
and displays remarkable agreement both with experimental and ab-initio test data. Some
noteworthy characteristics of ML∆TB include the ability to be trained on few instances, to be
applied on 3D supercells of arbitrary size, to be rotationally invariant, and to predict physical
properties that are not exhibited by the training set.

1. Introduction

Over the past decades, the empirical tight binding (ETB) method has become a valuable alternative whenever
first-principle calculations require too much computational resources to be practically feasible. In fact, since
the original article published by Slater and Koster [1] describing the method for the first time, its application
grew substantially over the years, arriving to be applied to a wide range of materials and nano-structures. In
particular, it has gained interest for the simulation of disordered materials like III-V and III-nitride alloys [2,
3]. In the orthogonal ETB scheme, the Hamiltonian of the system is described using an atomic-like localized
basis, in combination with a one-electron mean-field approximation [4]:

H=
∑
m,i

|ϕm (ri)⟩E(i)m ⟨ϕm (ri)|+
∑
m,n
i̸=j

|ϕm (ri)⟩V(i)
m,n

(
ri − rj

)〈
ϕn

(
rj
)∣∣ . (1)

In 1, the indicesm,n run over the orbitals that define the TB basis {|ϕm⟩}, whereas i, j denote the atomic sites
within the chosen unit cell. The empirical character comes from the choice to not compute directly the

integrals E(i)m ,V
(i)
m,n but rather to fit them to ab-initio or experimental results. Depending on the size of the

chosen basis and on the parametrization scheme, the number of these parameters can be considerably high.

The energies E(i)m and V(i)
m,n are usually called on-site (or ionization potentials) and off-site parameters,

respectively. Many different basis sets were proposed in the past, ranging from sets containing sp3s∗ orbitals
[5–7] to more complete ones that include also d5 states [8, 9]. However, regardless of the complexity, the ETB
method has some shortcomings. For one thing, empirical tight-binding models are typically parametrized

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ad4510
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ad4510&domain=pdf&date_stamp=2024-5-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0006-5673-7548
https://orcid.org/0000-0002-4815-4485
mailto:daniele.soccodato@uniroma2.it
https://doi.org/10.1088/2632-2153/ad4510


Mach. Learn.: Sci. Technol. 5 (2024) 025034 D Soccodato et al

for specific elements or classes of materials, and their application outside of the scope intended during fitting
may not be accurate. Secondly, the parameters are often not transferable, so that a set found for a specific
element could be inapplicable if said element is simulated in an alloy or a compound. Moreover, constructing
accurate tight-binding models can be challenging, as the fitting process is quite time consuming and requires
a considerable amount of experimental or ab-initio data. All these limitations suggest the need to find a way
of improving the tight-binding method in terms of transferability and reliability, without increasing the
number of parameters to fit.

The term ‘machine learning’ (ML) is used to delineate the set of statistics-based procedures aimed at
finding patterns or predicting data without the need of providing a specific rule. In one of the most used
approaches, a ML algorithm is given a task and a training set, and it has to learn how to perform the task by
using the features of the training set data points. This is usually referred to as supervised training. A particular
subset of supervised learning techniques is the so-called∆-learning, in which a model is trained to adjust on
a small degree a method that is considered to be fast but inaccurate.∆-learning approaches have been
recently used especially in the field of quantum chemistry, where they have been employed to compute
electronic and molecular properties of several chemical species [10, 11].

In this context, we developed a new∆-ML framework (henceforth called ML∆TB) that corrects an
established empirical tight-binding parametrization, using local information from the neighbourhood of
each atom in the unit cell. More specifically, we implemented a technique designed to overcome one of the
most critical points of the ETB method, namely the transferability of a set of parameters to a material that
was not included in the original fitting scope. To do this, our framework is trained to correlate the local
environment of each atom to a correction on the on-site parameters. The framework is applied to transfer a
GaAs–GaSb parametrization to the case where the two materials are combined to simulate an alloy,
GaAs1−xSbx. We highlight that the application of the framework is extendable to any arbitrary parameter set
and material.

The paper is structured as follows. In section 2 the procedure to generate the data set is explained, with a
focus on the choice of the target data and on the relevance of the simulated materials. Section 3 introduces
and defines the baseline ETB parametrization that the framework is tasked to improve. In section 4 the
components of the ML framework are described in detail, as well as all the relevant training settings.
Section 5 shows the results and the performance of the trained ML scheme, while section 6 is reserved for the
final considerations.

2. Data set generation

Like any ML supervised model, our framework works by automatically finding a correlation between a (x,y)
couple for each data set point, x and y being respectively the vector of features and the target of the training
procedure. This section has the purpose of explaining the details for the choice of the target, which was
picked to be the band structure (BS) of randomly generated alloy supercells. The particulars regarding the
input features x, and how they are related to the target, are given in section 4.

2.1. Materials
At the present time, III-V materials are among the most studied compound semiconductors in scientific and
industrial research. Among these, both GaAs and GaSb have attracted considerable attention during the
years. GaAs is employed for manufacturing various types of transistors, detectors, and high efficiency—high
cost solar cells. Its lattice parameters and BS characteristics have been very well known for decades. The same
can be said for GaSb, which even if less widespread in its large-scale application has lately seen a surge
regarding its study and use. Indeed, optical and electronic properties of short period InAs/GaSb superlattices
were investigated in [12, 13], while antimony-based high electron mobility transistors, resonant tunneling
diodes, and heterojunction bipolar transistors are all examples of Sb devices researched in the past years [14].
Finally, alloys of GaAs1−xSbx at different Sb concentrations have been the subject of various articles regarding
its potential employment in the fabrication of nanowires, quantum wells and photodetectors [15, 16].

In this regard, it is quite relevant to try and develop an accurate Ga-, As-, Sb- empirical tight-binding
parametrization; which ideally is computationally efficient and at the same time meets the requirements in
terms of transferability from bulks to alloys, clusters and heterostructures. As anticipated, this work focuses
on developing a ML method suited particularly for bulk GaAs, GaSb and random GaAs1−xSbx alloys.

2.2. Target and ab-initio simulation details
The BS is not a novel choice as the target for the task of automatic learning related to ETB. Indeed, the
k-dependent Hamiltonian eigenvalues often determine the loss function on which this kind of algorithms are
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Table 1. Summary of the data set generated using the QuantumATK software. The mean band gap Eg is computed by averaging the values
over the 10 ensemble configurations, for each Sb concentration. Each average value is paired with its computed standard deviation, σEg .

Sb fraction Nr. of structures Average Eg (eV) σEg (eV)

0.0 1 1.422 0.000
0.1 10 1.177 0.019
0.3 10 0.784 0.062
0.4 10 0.663 0.097
0.6 10 0.479 0.062
0.8 10 0.487 0.070
1.0 1 0.762 0.000

trained [17–20]. Even in the classical approach of fitting the tight-binding parameters, a combination of BS
data and other quantities (such as eigenfunctions) is often employed to solve the problem.

To our knowledge, there is no data set publicly available regarding the BS of antimony-based alloys. For
this reason, we generated a custom data set using the QuantumATK software [21]. In particular, the software
was employed in its U-2022.12-SP1 version to create GaAs1−xSbx supercells of N = 54 atoms (3× 3× 3
repetitions of a zincblende primitive unit cell), with x= 0.1, 0.3, 0.4, 0.6, 0.8. At every Sb concentration, 10
random realizations were drawn, in order to generate a total ensemble of 50 configurations. Also, two
additional supercells were added to include the bulk GaAs and GaSb structures (x= 0,1). All supercells were
internally relaxed using a Abell–Tersoff empirical potential [22], with a limited memory BFGS optimizer
(LBFGS) [23] and a tolerance on the atomic forces of 0.05 eV Å−1.

Subsequently, a DFT-LCAO calculation [24] was performed for each configuration, using theMedium
basis as described in [21]. For all computations, the Brillouin zone was sampled on a 3× 3× 3
Monkhorst–Pack grid, and the exchange-correlation term was modeled using a custom HSE functional
(from now on addressed as c-HSE) [25]. The α parameter (mixing between the exact Hartree–Fock and
PBE0 exchange energies) was first tuned on the two GaAs and GaSb bulks in order to match the experimental
band gaps at 300 K reported by Madelung [26], resulting in values of respectively α= 0.33, 0.39.

Starting from these values on the extremes, α was then linearly interpolated according to the Sb
concentration of the alloy:

α(x) = (1− x) ·αGaAs + x ·αGaSb. (2)

The same linear interpolation was performed for the lattice constant (with extreme values taken from [26],
aGaAs = 5.6536 Å, aGaSb = 6.0960 Å at 300 K).

A discussion should be made about the choice of linearly interpolating these two parameters. On one
hand, the lattice constant choice is motivated by experimental results, which show a linear trend as a function
of the concentration [27] (see also the supplementary information for the corresponding plot).

On the other hand, several works show that the mixing parameter can be linearly interpolated if a chosen
common reference energy level does not vary as a function of α [28–30]. We checked this condition on a test
structure of the dataset, and we provided additional details in the supplementary information.

The other HSE characteristic parameter, the screening length µ, was set to 0.2078 Å−1 for all calculations.
Regarding the pseudopotential, the choice fell on the norm-conserving PseudoDojo potentials [31].

Finally, unless otherwise specified, the target BSs were computed along the L−Γ−X path, with a total of
21 uniformly distanced k-points. A summary of the generated data set is reported in table 1

Figure 1 shows the computed band gaps as a function of the antimony concentration. The DFT
calculations are reported together with experimental values of the band gap collected from 5 different data
sets [32–36]. As is evident, there is a discrepancy between the experimental and computed points. Indeed, all
the band gap values seem to be consistently underestimated, and this reflects also on the compositional
bowing parameter, which is reported should lie in the range of 1.0–1.44 [27], in contrast with the value of our
calculations (B= 2.18).

An explanation for this seemingly incorrect result can be found in the limited size of the supercell.
Indeed, because of computational limitations and in order to have a distinguishable target for the model
(i.e. a BS that is not exceedingly folded), the supercell dimensions had to be restricted. This is in turn far
from ideal for simulating random alloys: the periodic images of the cells decrease the randomness, and this
results in underestimated ensemble average values and bigger variances. Equivalently, a decrease on
randomness due to clustering has been shown to have a similar effect in III-Nitride alloys [2].

To provide further evidence that the small cell size is the cause behind the overestimation of the bowing,
figure 1 also shows the band gap values at x= 0.2, 0.5, 0.8 resulting from a 256-atom HSE calculation.
Again, the details for this simulation are the same previously discussed, with the distinction that in this case,
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Figure 1. Compositional bowing of the direct band gap for the GaAs1−xSbx 54-atom supercells, simulated using the custom
c-HSE functional. The squared marks correspond to ensemble averages, while the vertical bars represent the standard deviation
reported in table 1. Results are shown together with experimental measurements from [32–36] (different shapes correspond to
different data sets), and with DFT computations of three 256-atom SQS supercells at x= 0.2, 0.5, 0.8.

the alloys were generated using the Special Quasi-Random Structure (SQS) technique. This method aims to
find the most random configuration possible, by minimizing the distance between the correlation functions
of the candidate structure and those of a perfectly random alloy [37]. With this method, there is no need to
sample an ensemble of realizations in order to get the average band gap value. SQS techniques were
previously applied with success to other random alloy studies [21, 38]. Finally, to give one ulterior proof to
the argument, we repeated the ensemble calculation at x= 0.6 with an increased supercell size (10 supercells
of 128 atoms). The values of the mean band gap and standard deviation resulted in Eg = 0.608 eV,
σEg = 0.063; which are indeed higher than those at the same concentration in table 1

Despite the apparent limitation in the description of the compositional bowing, we argue that this data
set still constitutes a suitable candidate for our ML task, especially considered the local nature of the target
corrections, which is not affected by this global effect. Even more importantly, we will demonstrate how our
ML∆TB method can overcome this problem, effectively predicting a characteristic of the alloy that the very
same data on which it was trained failed to show.

3. Initial parametrization

As stated in section 1, the proposed algorithm is an example of∆-ML. In the context of ETB, this means
designing a method that improves an existing Slater–Koster (S–K) parametrization, such that the new set can
accurately reproduce ab-initio results. In this section we focus on the S–K parameter set that determines the
starting point of our approach.

We begin by considering a nearest-neighbour sp3d5s∗ orthogonal basis for GaAs and GaSb, as proposed
by Jancu et al [8]. This basis, that includes also spin–orbit coupling, has been proved to accurately describe a
wide range of bulk semiconductors and III-V materials, and in our case consists of 29 independent
parameters for each binary compound. Since the interest is in modeling an alloy of GaAs–GaSb, a problem
arises in the choice of the 4 on-site parameters for the Ga atom. Of course, these parameters have different
(although very similar) values depending on whether the Ga atom belongs to GaAs or to GaSb. This
distinction very clearly loses meaning when dealing with structures like random alloys, interfaces or clusters,
for which it makes no sense to distinguish between Ga atoms belonging to an individual type of material.
Efforts to overcome such limitation have been tried in the form of on-site averaging, or with more complex
parametrizations that take into account the local atomistic environment of each atom [39], although this
results in quite an increase of the numbers of parameters that require to be fitted.

While all the previous options are in principle suitable for defining the initial set, we opted to re-fit the
Jancu parameters by enforcing shared Ga on-site integrals. This means that the two bulk GaAs and GaSb
materials were simultaneously fitted on DFT BSs, constraining the Ga on-sites to have the same value for
both compounds. The initial guess for the parameters was taken from [8], the Ga on-sites being arbitrarily
selected from the GaAs column. We included also a simple Harrison scaling [40] for the hopping integrals to
take internal strain into account. The details of the DFT simulation for the two bulk references follow
section 2.2, with the only difference being that only a 2-atom unit cell was created, in contrast of the
54-atoms supercells that make up the data set. As a consequence, the Brillouin zone was in this case sampled
on a 8× 8× 8 Monkhorst–Pack grid.
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Figure 2. The result of re-fitting the parameters from [8] after enforcing a shared Ga- parameter set. The computed ETB band
structure is compared with the DFT reference.

Table 2. The ionization potentials of the Ga atom for the spds∗ basis (in eV). In the first two columns, the parameters as reported in [8].
In the third column, the parameters resulting from the simultaneous re-fitting of the GaAs and GaSb band structures.

Ga on-site parameter GaAs GaSb GaAs–GaSb

Es −0.4028 −0.4003 −2.7219
Ep 6.3853 6.3801 3.8666
Ed 13.1023 11.5944 19.2383
Es∗ 19.4220 16.6388 15.7063

Fitting was performed using a least square optimizer from the scipy package [41]. The results of the
fitting procedure can be seen in figure 2, while table 2 reports the original ionization potentials for Ga
compared to the re-fitted ones. We highlight the fact that the BSs were defined up to an arbitrary reference,
so that there is no real connection between the re-fitted values and typically used reference energies (such as
the work function).

Although the newly found parametrization agrees very well with the DFT references, its application to
the GaAs1−xSbx alloy is severely underperforming. Indeed, figure 3 shows the comparison between the
GaAs1−xSbx DFT and ETB BSs, calculated for some selected x on 4 instances of our generated data set.

It is evident how the shared-Ga parametrization fails to be transferred for any of the alloys. This is most
probably due to the fact that the parameters do not contain any information about the local atomistic
environment, nor they capture the valence band offset (VBO) between the two bulk materials. Moreover, the
simple d−2 Harrison law is too crude of a correction to account for the internal strain consequent to the
relaxation of the supercells. Clearly, the starting parametrization could in principle include these
informations as well. For example, one could consider material and/or alloy-concentration specific
corrections, like adding a VBO parameter, fitting the exponents of Harrison’s law, or using the scheme
defined in [39]. Nevertheless, we chose to refrain from doing so, as one of our aims was to define a ML model
which requires a description of the local atomic environment only, and as few free parameters as possible.

4. ML∆TBmodel

The overall ML∆TB framework is shown in figure 4. The input to the framework is the atomistic structure
generated with the QuantumATK software. For each atom in the configuration, a representation of its local
environment is defined (figure 4(a)). This representation, also called descriptor in the literature [42],
constitutes a fingerprint of the atom, and usually depends on the chemical species of its neighbours (and
itself), as well as on the distances between the neighbour atoms and the central one. Being a common
concept especially in the field of computational chemistry, the descriptor can have many definitions, but it is
required to satisfy some properties: it must be invariant under translation, rotations, reflections and
permutations of two equivalent atoms, and it must be complete (i.e. it must uniquely determine the atomic
environment). We highlight that our scheme is built in such a way that any kind of input descriptors can be
given. For this reason, in section 4.1 we provide a brief overview of some possible definitions of such input,
as well as introduce our choice for the task of GaAs1−xSbx alloy fitting.

After having created all the descriptors in each structure of the training set (i.e. the set of configurations
used for training, details are given in section 4.3), the next step in the pipeline of our model is to pass
(sequentially) these vectors to a feed-forward neural network (NN), which is assigned to output 4 real values
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Figure 3. The ETB-computed band structure of four instances of GaAs1−xSbx , for x= 0.1, 0.4, 0.6, 0.8, compared with the
ab-initio reference.

(figure 4(b)). These quantities constitute the corrections, in eV, to the 4 on-site terms of the initial S–K
parametrization, introduced in section 3. Indeed, they represent the∆- values to be added to each ionization
potential reported in the third column of table 2, as well as to the As, Sb onsite parameters (not shown in the
table). Since the network acts on the atomic level, the following stage consists in rearranging the sequence of
4-dimensional vectors to be able to correct the tight-binding Hamiltonian. This process is depicted in
figure 4(c). The outputs of the network are lined up and each on-site value is repeated as many times as the
degeneracy of the corresponding orbital. Spin–orbit is accounted for by repeating all the values of an
additional factor 2. The result is a sequence of N 20-dimensional vectors (recall that N = 54 for every
structure in the data set), which are placed on the diagonal of a 0-filled matrix, HML. Some technical details
about the neural network and the nature of the correction are given in section 4.2.

Finally, the network-generated diagonal Hamiltonian is added to the ETB one, the resulting matrix is
diagonalized and the produced BS is compared with the target reference (figure 4(d)), through the evaluation
of a loss function. The process of backpropagation, by means of which the weights of the network are updated
for the next training cycle, is performed through automatic differentiation starting from these loss function
values. This last phase differs from the more traditional definition of target quantity in data science, and
deserves an in-depth examination in section 4.3.

4.1. Atomistic descriptors
There exist several methods to create a local representation of the atomistic environment. Yet, all possible
definitions start from the choice of what constitutes a neighbourhood. Given an atom i in a bulk
configuration or molecule C= 1,2, . . ., i, . . .N, we can define its neighbourhood Ki as the subset of C
containing all atoms within a certain range, Rcut:

Ki = { j} ∈ C,
∣∣Ri −Rj

∣∣< Rcut. (3)

The choice of Rcut plays an important role in learning the proper correction for the on-site S–K parameters.
The correction is supposed to be highly dependent from the Sb concentration in the alloy, therefore we need
a descriptor informative enough to correlate with this dependency. This argument motivated us in choosing a
range that goes up to the third neighbour (for our data set, a proper choice for all structures is Rcut = 4.6 Å).
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Figure 4. The presented ML∆TB framework. In (a), for every atom in the considered structure a local descriptor is computed. In
(b), all the descriptors calculated in the previous step are given as an input to a feed-forward NN. For every descriptor, the
network outputs a 4-dimensional vector containing the corrections to the s-, p-, d-, s∗- orbitals. In (c), the 4-valued output is
mapped into a 20 dimensional vector. All N= 54 vectors are lined up and placed on the diagonal of a zero-filled matrix. In (d),
the matrix computed at the previous step is summed to the ETB Hamiltonian, resulting in a correction of the on-site elements.
The resulting matrix is used to compute the band structure. Finally, in case of training, the computed BS is used in combination
with the reference to update the model weights through the process of backpropagation.

Another important property that the descriptor should have is the dependence from relative distances
between the central atom and its neighbours, which become of considerable importance when internal strain
is introduced. Many, modern methods are able to take distances into account. De et al defined the so-called
smooth overlap of atomic positions, a similarity measure between atomic neighbour densities expanded in
an harmonic basis [43]. Another alternative is given in [44], where a local version of the Coulomb matrix is
used to predict atomic potentials. It is even possible to refrain from defining a functional form altogether,
and rely instead on an additional ML model to learn the best representation for the task at hand [19, 45].

We found that a rather effective, out-of-the-box and cheap method to create local atomic embeddings is a
class of functions calledmoment tensors (MTs). First introduced by Shapeev [46], MTs were defined in the
context of a linear regression procedure designed to predict interatomic potentials. This class of functions is
systematically improvable, meaning that their accuracy can be increased by increasing the number of the
defined basis functions. Although originally used for a different (linear) problem, this basis set can be
computed in a more general way and used as an input for the ML∆TB neural network. Indeed, following the
practical implementation from [47], we can define these descriptors by first introducing the concept of
moments:

Mµ,ν (Ki) =
∑
j∈Ki

fµ,ν
(
|rij|,zi,zj

)
rij ⊗ . . .⊗ rij︸ ︷︷ ︸

ν times

. (4)

These functions are comprised of a radial and an angular component, and depend on the two indices µ, ν. In
our case, the radial function fµ,ν(|rij|,zi,zj) is chosen to be the product between a Chebyshev polynomial and
a cutoff function defined on a compact support, multiplied by an arbitrary constant:

fµ,ν
(
|rij|,zi,zj

)
:= κzi,zj,µCµ

(
|rij|

)
f̂µ,ν

(
|rij|

)
(5)

f̂µ,ν (r) :=

{
r−ν−2+µ (Rcut − r)2 r< Rcut

0 r⩾ Rcut.
(6)

7



Mach. Learn.: Sci. Technol. 5 (2024) 025034 D Soccodato et al

In (5), the term Cµ(r) is the µth Chebyschev polynomial, while the coefficient κzi,zj,µ is specified as the
product of the atomic masses of atoms i and j:

κzi,zj,µ = zizj ∀µ. (7)

The radial function above guarantees that the MTs decay to 0 outside of the neighborhood, as is desirable,
and that they do so in a smooth fashion.

Moving to the angular component, equation (4) shows the outer product rij ⊗ . . .⊗ rij︸ ︷︷ ︸
ν times

of the distance

vector between atoms i and j to be dependent from the ν parameter. This function encodes the angular
information between atom i and its neighbours, and determines the rank of the MT through the value of ν.

As is evident, the choice of the maximum values νmax and µmax univocally fixes the complexity of the
moments’ calculations. It is possible to constrain the choice of the two parameters by introducing the level of
the moments: levMµ,ν := 8+ 2µ+ ν, so that by choosing levmax both µ and ν have a fixed limit.

The last step in order to obtain the MT descriptors is to define a contraction of the moments, in the form
of tensorial operations, to reduce all theMµi,νi into scalar values. The level of an operation
OP(Mµ1,ν1 ,Mµ2,ν2 , . . .,Mµk,νk) on the moments is defined as the sum of the moments’ levels:

levOP(Mµ1,ν1 ,Mµ2,ν2 , . . .,Mµk,νk) = levMµ1,ν1 + levMµ2,ν2 + . . .+ levMµk,νk

= 2(µ1 +µ2 + . . .+µk)+ ν1 + ν2 + . . .+ νk + 8k. (8)

OP(·) being any kind of operation that reduces the rank ν of the tensors to 0 (scalar product for two
moments that have ν= 0, dot product ‘·’ for ν= 1, Frobenius product of two matrices ‘:’ for ν= 2 ecc. . .). Of
course, the larger the number k of tensors involved in OP(·), the more the possible sequences of operations to
reduce the total rank to 0.

Finally, we define the basis set Bα as all the possible operations on the kMTs such that levBα ⩽ levmax.
Let, for example, be levmax = 16. Then, the resulting MT descriptor would be:

D(Ki) =
[
M0,0,M1,0,M2,0,M3,0,M

2
0,0,M4,0

]
(9)

and the components of the descriptor would have levels [8,10,12,14,16,16].
In the context of ML∆TB, a maximum level of levmax = 24 and a restriction to the first 20 basis functions

have been found ideal in terms of performances for training. We make one final remark about the set Bα.
Defined as it is, the method does not differentiate for symmetric atomic compositions of a neighbourhood.
Indeed, given the choice of the coefficients in (7), the descriptors of two neighbourhoods such as {Ga, As, As,
As, As} and {As, Ga, Ga, Ga, Ga} would have the same values in a perfect crystal. To account for this, the
definitive form of the descriptor used in ML∆TB includes the atomic number of the central atom in its first
entry:

D(Ki) = [zi,B1 (Ki) ,B2 (Ki) , . . .,B20 (Ki)] (10)

4.2. Network and on-site correction
The feed-forward NN introduced in the start of this section constitutes the regressor of the ML∆TB
framework, responsible for outputting the 4-orbital corrections to the ETB model. Recall that a feed-forward
neural network can be seen as L subsequent applications of a non-linear function f(·) to the dot-product of a
feature vector x and a weight matrixW (plus a bias w). Using the MT descriptors as input, this would
translate to:

x(0) = D(Ki) ;

x(l) = f
(
W(l)x(l−1) +w(l)

)
, l= 1, . . .,L. (11)

Equation (11) implies that x is a column-vector. The index l is usually referred to as the hidden layer number,
while the n×m dimensions ofW(l) determine the number of neurons (or units) of layer l and l− 1
respectively. As in most common applications, the function f is chosen to be the Rectified Linear Unit
(ReLU(x) =max(0,x)) [48]. The network structure is composed of L= 3 hidden layers, and an output layer
with no activation function, to ensure a regression on the whole R set:

[∆s,∆p,∆d,∆s∗] = x(4) =W(4)x(3) +w(4). (12)

The details of the network structure are summarized in table 3. The feed-forward NN is demonstrated to be a
universal approximator [49]. For this reason, and for the relatively few parameters that need to be learned
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Table 3. The structure of the ML∆TB network as also shown in figure 4(b). The NN has a total of 599 trainable weights.

Layer (l) Units Activation function W+w shape

1 15 ReLU (15,21)+ (15,1)
2 10 ReLU (10,15)+ (10,1)
3 7 ReLU (7,10)+ (7,1)
4 4 Identity (4,7)+ (4,1)

with the architecture defined above, it is the ideal choice for the task of predicting the 4-dimensional vector
of corrections.

An important step to perform before training the network is weight initialization. Indeed, the
convergence of the loss function to its minimum is critically dependent on the initial state of
{W(l),w(l), l= 1, . . .,L+ 1} [50]. In this case, following the spirit of any∆-learning algorithm, we assume
that the output of the network needs to be small with respect to the corrected values. This means, that an
appropriate initialization of the weights is one which initially outputs a vector of 4 zeroes. To obtain such an
initial state, we performed a round of pre-training, in which dummy 4-dimensional, zero-valued targets were
used in combination with an ADAM optimizer [51] (learning rate: 0.001) and amean squared error (MSE)
loss to force the network output to be [0,0,0,0], for all input descriptors in the training set. Given the cheap
cost of this strategy (total runtime took≃2 min), the pre-training stage consisted of 3000 epochs. This
procedure can be interpreted as an instance of physics-informed learning [52]. Indeed, we use physical
information from the system (the initial ETB parametrization and the knowledge that the corrections have to
be small) to guide the learning procedure in a way that saves time and computational resources.

A few remarks should also be made regarding the correction scheme. The shell-resolved shift on the
Hamiltonian diagonal is the simplest among all possible models designed to adjust an existing
parametrization. As such, one may think it has a limitation on the performance, especially when compared
to more complex methods that contemplate for example a orbital-resolved diagonal correction or an
addition on the hopping integrals. Nonetheless, it can be argued that such a model can still incorporate the
effects that we are trying to take into account, namely the strain effects due to internal relaxation and the
local effects of alloying. Consider, in fact, that an orthonormal basis such as the one introduced in section 3 is
defined through the Löwdin procedure [53]. In this process, the overlap matrix S of a non-orthogonal basis
{
∣∣ηj〉 ; j = 1, . . .,nbasis} is used to construct a set {

∣∣ϕj〉 ; j = 1, . . .,nbasis} of orthonormal functions:

∣∣ϕj〉= nbasis∑
m=1

[
S−1/2

]
m,j

∣∣ηj〉 ; [S]m,n = ⟨ηm|ηn⟩ . (13)

When strain is introduced in the crystal, the overlap matrix elements are changed as a result of the
displacement of the atoms. This change reflects of course in the hopping integrals, but less intuitively also on
the on-site elements

〈
ϕj|H|ϕj

〉
, having used S to construct the set {

∣∣ϕj〉} [54]. Therefore, it is theoretically
possible to account by some extent for the strain, through the addition of a machine-learned correction on
the ionisation potentials alone. A more sophisticated treatment of strain, although not the main focus of this
work, would require energy splitting between orbitals in the same subshell, or the inclusion of intra-atomic
interactions, as well as defining additional fittable parameters [55, 56].

As for the effects of alloying, it is more straightforward to argue that a correction that directly depends on
the local atomic environment, can incorporate the effects that random fluctuations of Sb have on measurable
quantities such as the BS or the density of states (DOS). Indeed, effects like clustering of Sb atoms or simply
different local Sb concentrations, are not included in the original ETB parametrizations, which treat the
parameters as related to the material rather than to the atom and its neighbourhood. In turn, these local
effects reflect in the global quantities that are computed from the Hamiltonian.

A further advantage of our model is that it still is rotationally invariant. Indeed, since we chose to correct
at the level of the S–K formalism, the shift of the diagonal elements of HTB does not depend on the
orientation of the supercell. This would not be true anymore when dealing with the inter-orbital hopping
matrix elements or with the orbital-resolved diagonal ionization potentials, that by definition contain
information about the angles between all couples of atoms. This apparently simple feature is actually very
important, because it allows the trained network to be used without effort on new structures, without the
need of readjusting the orientation. Moreover, the training set can in this way be extended in a quite simple
fashion by just adding more structures in the data set.

Nonetheless, one might argue that a large part of the environmental effect captured by our method relates
to charge transfer effects and could be described effectively in terms of Self-Consistent field (SCF) techniques.
These techniques are based upon the definition of a loop, in which an extra term to the Hamiltonian is
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added, that depends on the solution of the ETB problem at the previous step [57–59]. The loop then
continues until the new addition becomes smaller than a pre-defined threshold. Many of such techniques
were indeed devised to tackle the investigation of electronic properties of alloys, as done for example in the
work from Goyhenex and Tréglia [60]. Even though such techniques are indeed more accurate, and are much
more physically justified than our approach, they still suffer from a critical problem, that is the need of fully
diagonalizing the Hamiltonian at each step. Of course, the diagonalization process soon becomes unfeasible
for large systems, so that a non-SCF method acquires value, even though it loses physical transparency.

4.3. Training and loss function details
The complete ML∆TB code can be found at: https://github.com/DanSoccodato/mlDeltatb.git. It is written
using a combination of QuantumATK and tensorflow (v.2.12.0) [61], with customized classes and a custom
training loop. The model was trained for 1500 epochs on a total of 12 structures, meaning the 2 bulk
structures at x= 0,1 and 2/10 configurations for all Sb concentrations reported in table 1, randomly
selected. The training set was then shuffled and divided into two batches of 6 configurations each. The
remaining 40 structures were left for the evaluation of the model. This is unorthodox compared to classical
ML algorithms, where the train/test split ratio usually favours the training set. The fact that the model can be
trained on a small set is actually a notable feature of our framework, making it an example of a few-shot
learning procedure [62]. To ensure a better convergence, the training set was normalized using the computed
mean and variance across all descriptors populating it. These two values were then saved in order to
normalize future test instances. The optimization on the model’s weights was again carried out using ADAM,
with a learning rate of 0.001.

In ordinary ML tasks, during the training loop the update on the model’s weights is performed by
directly comparing the output of the network with the target quantity. As has become clear by now, this is
not the case for ML∆TB. In our framework, the individual (atomistic) outputs of the NN do not have a
ground truth, because there are no known labels for what the atoms’ corrections should be. Instead, the only
possible ground truth is an aggregate quantity, the BS, which depends on the N consecutive outputs of the
network. This peculiarity leads to the need of defining a custom training loop within tensorflow, including
the coding of the BS computation using the framework’s built-in functions. This is needed in order to exploit
the backpropagation algorithm and the built-in optimizers, since to compute the gradients tensorflow needs
to keep track of all operations that occur between the evaluation of the loss function and the input of the
network.

As already mentioned, the loss function L is computed on the eigenvalues of the k-dependent
Hamiltonian:

H(ML∆TB)
k |ψn,k⟩(s) = ε

(s)
n,k |ψn,k⟩(s) (14)

where n is the band index and s refers to a generic structure in the training set. For the functional form of L,
we opted for a structure-weighted MSE:

L
[
{εn,k} ,

{
ε
(DFT)
n,k

}]
=

1

F

Ntrain∑
s=1

ωs

nb∑
n=1

21∑
k=1

(
ε
(s)
n,k − ε

(DFT,s)
n,k

)2
(15)

where Ntrain is the number of structures in the training set, nb is the number of considered bands, ωs is the
weight associated to structure s and factor F= Ntrain · nb · 21 is the total number of eigenvalues. The value of
ωs was set to 1 for all alloys of GaAs1−xSbx, and 2 for the bulks. This is to compensate for the presence of two
structures for each Sb concentration, as opposed to the inclusion of just one structure for x= 0,1.

To select nb, more relevance was given to the bands closest to the Fermi level. Therefore, we defined:

Emin = VB− 1.0 eV,

Emax = CB+ 1.0 eV (16)

and all eigenvalues below or above the range [Emin,Emax], were clipped to have values Emin,Emax respectively.
In (16), VB and CB are the valence and conduction band edges.

5. Results and discussion

The classical way of evaluating the performance of a ML model is to define ametric function, which can
arbitrarily coincide with the loss function used to optimize the weights during training. We chose it to be the
same of (15), but with ωs = 1 for all structures in the training and test set:
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Figure 5. The MSE metric as a function of the number of training epochs. The evaluation was performed on respectively 12
training and 40 test configurations.

Table 4. The evaluation of the ML∆TB framework on the training and test set. The metrics used to measure the performances are the
MSE and the R2 goodness-of-fit score.

Sb fraction MSE (eV2) R2 Nset

0.0 1.575× 10−5 0.999 983 1
0.1 1.460× 10−5 0.999 982 2
0.3 2.840× 10−5 0.999 956 2

Training set 0.4 1.405× 10−5 0.999 973 2
0.6 3.541× 10−5 0.999 929 2
0.8 3.180× 10−5 0.999 935 2
1.0 1.438× 10−5 0.999 973 1

Total 2.322× 10−5 0.999 962 12

0.1 2.608× 10−5 0.999 967 8
0.3 8.023× 10−5 0.999 870 8

Test set 0.4 1.233× 10−4 0.999 788 8
0.6 1.207× 10−4 0.999 757 8
0.8 6.230× 10−5 0.999 872 8

Total 8.255× 10−5 0.999 862 40

MSE
[
{εn,k} ,

{
ε
(DFT)
n,k

}]
=

1

F

Nset∑
s=1

nb∑
n=1

21∑
k=1

(
ε
(s)
n,k − ε

(DFT,s)
n,k

)2
(17)

where Nset = Ntrain = 12 for the evaluation on the training set, while Nset = Ntest = 40 for the evaluation on
the test set. Figure 5 shows the MSE (17) as a function of the training epochs. The model clearly converged to
a minimum, as is exemplified by the trend on the training set curve. At the same time, the comparable error
on the test set (also taking into account that Ntest > Ntrain) and the monotonically decreasing trend show that
the model did not overfit the data. Table 4 reports the final value of theMSE, as well as an additional
goodness-of-fit performance indicator (the R2-score [63]), for the individual Sb concentrations and for the
aggregated data sets. The value of R2 very close to 1 quantitatively confirms that the network correctly
managed to generalize the atomistic corrections to unseen structures. It is interesting to notice how the
model seems to work better on the Sb fractions closest to the two bulk GaAs and GaSb extremes. Indeed, the
performance of the framework on the test set has the highest error at x= 0.4, 0.6. This is also visible in
figure 6, where the predicted eigenvalues are plotted against the ab-initio ones; and where indeed the two
central concentrations exhibit the largest spread from the linear trend. Nonetheless, the results on the test BSs
mark a great improvement over the original tight-binding parametrization. As a proof of this, in figure 7 we
reported the BSs of the same configurations plotted in figure 3. The four structures all belong to the test set,
so they were not seen by the network during training. Using the original ETB method and parameters, both
the valence and conduction bands in the range [Emin,Emax] were severely off, with three out of the four alloys
even turning out to be metallic. The enhancement of these BSs using the ML∆TB correction is evident, and
it is clearly visible also for x= 0.4, 0.6, where the metrics show the lowest performance. Given the large
number of test instances, the results on the whole set are reported in the supplementary information.
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Figure 6. The predicted eigenvalues plotted against the ab-initio references, for all GaAs1−xSbx systems in the test set.

Figure 7. The ML∆TB-computed band structure of four instances of GaAs1−xSbx , for x= 0.1, 0.4, 0.6, 0.8, compared with the
ab-initio reference. See figure 3 for the corresponding ETB simulations.

Some other works in the literature applied a ML technique in the context of empirical tight-binding. For
example, Schattauer et al [17] performed an inverse mapping of the BS to the tight-binding Hamiltonian for
structures with defects, starting from Hamiltonians of the same defect-less structures. In [19], a graph
convolutional network was used to learn the best local descriptor for graphene nano-ribbons, and used in
combination with two feed-forward NNs for predicting on-site- and off-site matrix elements. Yet another
work from Nakhaee et al [18] showed the feasibility of performing linear regression of TB parameters after
generating a training set of uniaxially strained systems. All these papers have some characteristics in
common: they are all restricted to a quite small basis set, that goes up to the p-orbital, and the methods are
applied to small (mainly two-dimensional) systems. To our knowledge, the one presented in this manuscript
is the first ML framework that is able to exploit a sp3d5s∗ tight-binding basis for simulating fully 3D bulk
supercells. This comes of course at the price of relying on an already existing parametrization, for which our
model represents a very useful correction.
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Figure 8. The application of the ML∆TB correction for the BS computation of a GaAs0.9Sb0.1 alloy. The grey shaded area
represents the k-E domain on which the network was trained.

It may also come natural to make a connection between the performances of this method with the SCF
techniques cited in section 4.2. Indeed, one could compare the output corrections of the ML∆TB network
with the local electrostatic potential computed after a SCF loop, and look for similar trends that could give
insight on the nature of the corrections, and on their connection with a local charge transfer between atoms.
We performed such an analysis, whose details are reported in the supplementary information. To give a
summary, we found that there is a correlation between the ML∆TB output and the electrostatic potential
computed on the inequivalent sites, especially for low concentrations of antimony. This correlation decreases
for the structures with higher values of x, which could be a symptom of the model learning to give a
unphysical correction to some of the input atomistic environments. We did not proceed to further investigate
the issue, as the comparison with SCF techniques was beyond the scope of our work. However, we highlight
again the value of our method lying in the possibility to investigate the properties of bigger structures, than
what is possible to simulate with SCF approaches.

In the remainder of this section we present some more evidence of the good generalization capabilities of
the ML∆TB framework. So far, the model’s performance has simply been evaluated on the same
configurations and BSs populating the data set, only unseen during training. But there are other ways to
ensure that the environment-dependent corrections are physically meaningful and do not represent a case of
overfitting. Figure 8 shows the BS computation of a GaAs0.9Sb0.1 alloy, with a domain on energy and k-points
that goes beyond the one used for training. More specifically, whereas the model was trained on the L−Γ−X
route and within the [Emin,Emax] energy range, the figure shows the prediction of the BS when such window
in the k–E space is extended. The result shows good agreement with the ab-initio simulation, especially for
the valence bands, where the error appears to be very small. This result is evidence of a good generalization
performance not only at the level of unseen structures, but also in terms of prediction on unseen k–E values.

Another test that can be performed concerns the compositional bowing of the band gap. Recall from
figure 1 that the custom HSE functional, which was used to generate the data set, has an issue in reproducing
the bowing parameter. Indeed the band gaps for all Sb fractions are underestimated, and we postulated that
this is the result of the small size of the supercell, which contains too few atoms to correctly model random
alloys. Truly, in order to approach the statistical limit for which the physical properties of the alloys are
correctly reproduced, it is necessary to either generate many configurations (to the order of 106) or large
supercells (containing thousands of atoms) [64]. Both these conditions are quite difficult to be satisfied using
a first-principle method. Instead, a non-self consistent ETB calculation can reach a cell size of millions of
atoms. For this reason, it comes natural to test the ML∆TB framework on large GaAs1−xSbx supercells and
check the resulting band gaps. Figure 9 shows the band gaps computed on 11 supercells composed of 16000
atoms (20× 20× 20 repetitions of a zincblende primitive unit cell), one every 10% of antimony fraction. The
ML∆TB-computed band gaps definitely show a better agreement than the ones simulated using the smaller
supercells with DFT. The bowing parameter for the curve shown in the figure is B= 1.35. Recall that the
value computed with the ab-initio computations is B= 2.18, and that the parameter is expected to be in the
range 1.0–1.44. This is yet another point for the validation of the method, because this physical property was
in no way present in the training set, but was instead predicted by our model.

This result recovers the SQS values showed in figure 1, but with considerably less computational burden.
Indeed, simulating a 256-atom supercell using a HSE functional took more than 17 h on a HPC node with 40
processes, as opposed to∼45 min using 30 processes for one of the red points in figure 9.

Finally, one last quantity that can be analyzed is the VBO between the bulk GaAs and GaSb materials.
The initial re-fitted ETB parametrization is completely agnostic about the VBO between the two bulks, and
this is one of the reasons for which it performs quite well on the two individual BSs, but does not fit the alloys
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Figure 9. Compositional bowing of the direct band gap for the GaAs1−xSbx 16 000-atom supercells, simulated using the ML∆TB
framework, for x= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. Results are shown together with experimental
measurements from [32–36] (different shapes correspond to different data sets). To be compared with figure 1.

Figure 10. The local density of states of a GaAs/GaAs0.75Sb0.25 interface (128 atoms) along the Z-direction. The yellow lines mark
the conduction and valence band edges.

BS. To account for this, the offset is routinely included as a parameter to fit. Instead of adding one more
parameter, and given the good results on the BS fitting of ML∆TB, one can wonder if the method implicitly
learned the VBO during training. To check this, we performed a computation of the local DOS (LDOS) on
an ideal 128-atom GaAs/GaAs0.75Sb0.25 interface. The system was relaxed using again a Abell-Tersoff
empirical potential, with a constraint on the X and Y directions. The comparison of the DFT, ML∆TB and
ETB methods is reported in figure 10. As is evident, the ETB method fails in reproducing the ab-initio profile
of the LDOS, whereas the c-HSE and ML∆TB contour plots exhibit quite similar values and band edges. For
comparison, the DFT calculation took ~17 h on a HPC node with 20 processes, while the ML-corrected TB
simulation could be run on a laptop with 4 processes in about 24 min.

14



Mach. Learn.: Sci. Technol. 5 (2024) 025034 D Soccodato et al

6. Conclusion

To summarize, a novel∆-ML framework was introduced, for the task of correcting the empirical
tight-binding on-site parameters of a sp3d5s∗ basis, applied to GaAs1−xSbx. After training, the model is able
to generalize the mapping from a local atomistic environment to a orbital-resolved correction and exhibits
good transferability properties. All tests show good agreement either with the ab-initio references, or with
experimental data. Notable features of our model, that also differentiate it from other similar works, include
the possibility of training on few instances (few-shot learning), the application on a larger basis than
previously ever done, the application on bulk 3D structures, and its rotational invariance, which allows for
easy employment of the trained network on new instances, as well as an effortless possible expansion of the
training set to new alloys. We also highlight how the nature of the scheme, which is designed to act at the
atomic level, allows to cheaply apply the trained network to configurations of arbitrary size. Finally, we stress
how the application of the framework to large structures allowed for the computation of band gaps that agree
substantially better with the experimental data, as opposed to the very same ab-initio training set, which was
affected by the limited supercell size.

Data availability statement
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github.com/DanSoccodato/mlDeltatb.git.
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