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ABSTRACT. This paper proposes a numerical method for the solution of equilibrium problems of solids
which do not support tension. Some boundary-value problems arc solved numerically and the solution

obtained is compared to the exact one.

SOMMARIO. In questo lavoro viene proposto un metodo numerico per la soluzione di problemi di
equilibrio di solidi non resistenti a trazione. Vengono successivamente risolti numericamente alcuni

problemi di equilibrio e la soluzione ottenuta e’ confrontata con quella esatta.

KEY WORDS: Masonry-like materials, Finite element method.

1. Introduction

The masonry-like materials considered in this paper are characterized by the constitutive
hypothesis that the total strain E can be split into the sum of an elastic part E® and an
inelastic part E2: E = Ea + E¢ | with Ea positive semi-definite; and that the stress tensor T
is negative semi-definite, depends linearly on E¢ and is orthogonal to E2 Since E2 only
depends on the current strain, masonry-like materials are non-linear elastic materials
although E infinitesimal. The solution of the constitutive equation defined in this way
exists and is unique [1] and was explicitly calculated for isotropic and transversely
isotropic materials [2], [3]. The determination of the solution of the equilibrium problems
for solids which do not support tension is, in general, very complex. Some very restrictive
conditions have been found, which guarantee the existence of the solution [4], [5]; this
one can only be calculated explicitly only in very simple cases [6], [7], [8], and
consequently, it is necessary to use numerical techniques in the applications.

Numerical techniques using the finite element method have been proposed in some
previous papers: in [9] the equilibrium problem for masonry-like solids was solved by
minimizing the complementary energy under suitable constraints on the stress. In [10] an
iterative procedure leading to the progressive reduction of tractions inside the studied
structure, was analyzed. Finally in [11] the displacement field is determined with the
secant matrix method. :

The numerical method proposed in this paper uses the fact that a masonry-like material is
a non-linear elastic material for which, at least in the isotropic case, it is possible to
calculate explicitly the derivative of the stress with respect to the total strain. The
knowledge of this derivative allows one to calculate the tangent matrix and determine the
displacements, by solving the non-linear system obtained with the discretization into
finite elements with the Newton Raphson method. For the sake of simplicity, the study is
limited to plane problems.

The algorithm, implemented in the finite element code NOSA [12,13], is used to solve
numerically some equilibrium problems; the numerical solution is compared with the
exact one.



2. The constitutive equation of masonry-like materials

In this section, after briefly recalling the main properties of the constitutive equation of
masonry-like materials, we calculate explicitly the derivative of the stress with respect to
the strain. Let us state some notations. Let V' be the three-dimensional linear space and
Lin the linear space of all linear applications of UV into V', equipped with the inner

product
A-B=1tr (ATB), A, BelLin,

with AT the transpose of A. Let us indicate with Sym, Sym* and Sym- the subsets of Lin
constituted respectively, by symmetric, symmetric positive semi-definite and symmetric
negative semi-definite tensors.

Let us assume that the tensor of infinitesimal strain E is the sum of an elastic part E® and

of an inelastic part E%

2.1 E=E¢+ E2, Ea Sym*,

and that the Cauchy stress tensor T depends linearly and isotropically on E®,
2.2) T =2uEe + A tr(E®)T

where (L and A are the Lame' moduli of the material satisfying the inequalities
(2.3) w>0, 2u+3x>0.

Moreover, let us suppose that

(2.4) TeSym-, T-E2=0.

It is known that, given Ee Sym and the elastic moduli 1 and A verifying (2.3), tensors T
and E2 exist and are unique in satisfying (2.1), (2.2) and (2.4). Moreover, T, E and E2 are
coaxial by virtue of (2.1), (2.2) and (2.4), and this property allows one to calculate
explicitly the solution of the constitutive equation.

Let us treat in great detail the case of plane strain, then afterwards we shall briefly
describe the changes which need to be made for the plane stress. Let {g;, g2, g3} be an
orthonormal basis of U constituted by eigenvectors of E, such that Egs- g3 = 0. Let us
put oo = A /u! and indicate with ey, e, and a;, a , a3 the eigenvalues of E and E2
respectively. Relations (2.1), (2.2) and (2.4) can be rewritten by using principal
components of E and E2 :

1 Here we assume that A > 0, consequently o 2 0.



(2(e1-ap) +o(er +ex-ar-a2-a3) ar =0
(2(e2-a2) + o (e1+e2-21-22-2a3)) ax=0
(-2a3+ 0o (e] +ep-ap-ap-az)) as=0
(2.5) laj20, a»20, a3=0
2(e1-a))+o(eg+ep-aj-ap-a3) <0
2(ep-a))+a(eg+ey-ay-ap-a3) <0

-2a3+ 0 (e +ep-a;-az-a3) <0.

It is easy to prove that a3 = 0. In fact if a3 > 0, from (2.5)7 we must have - 2a3 + o (e} +
e - a1 - a2 - a3) = 0, and therefore

(2.6) a3=2f:‘a(e1+ez—a1—a2)>0.

By substituting (2.6) into (2.5)5 and (2.5)s we obtain
4(1+o)(e; - ap) +20(es - ag) <0
4(1+o)(ey - ap) +20(er - a1) <0

and summing these inequalities we have
er+er-a;-a2s50

which is not in agreement with (2.6). Finally we can conclude that a3 = 0.
For plane strain the constitutive relations (2.1), (2.2) and (2.4) become?

(2(r1-ap)+o(e; +ep-aj-az))a; =0

(2(ex-ag)+o(e; +ep-ay-ap) az=0

2.7 ! a120, a;20,
2(e1-a))+o(e;+ep-a;-ap) <0

2(er-a)+o(e; +ep-a;-ap)<0.

2 From the equalities e; = a5 = 0, we obtain g;-Tgs = o (t + t2 ) /2(1 + )< 0.



Let us continue to indicate with E and E2 their restrictions to the linear subspace of U of
dimension two, orthogonal to the vector g3. The calculation of a; and ay satisfying (2.7)
requires the definition of the following subsets of Sym:

Ry ={EeSym; e+ 2+a)e; <0, oaej+2+a)e2<0},
2y ={EeSym; 20, e2>01},
23 ={EeSym; <0, oe;+2+n)e2>0} ,

where we suppose the eigenvalues €1 and e;. ordered in such a way that ey <es.
The principal components of E2 can be calculated, as is known, from the relations

if Ee 8 then ap=0, ap=0,
(2.8) if Ee &, then aj=e; , a=¢e ,
if Ee 83 then ar=0 , a2=62+23'(x€1.

We observe that in 83 , the eigenvalues €1 and e, are distinct and different from zero, in

particular in this region E is invertible.

In order to calculate the derivative of T with respect to E, let us begin by observing that
from the coaxiality of E and E2 and the fact that the eigenvalues of E2 only depend on the
eigenvalues of E, it easily follows that the non-linear function E2 = E4(E) is isotropic. By

virtue of a well known representation theorem, two scalar functions Yo and 7y; exist of

principal invariants of E,
LE)=trE=e;+e;, L(E)=det(E)=eje;,
such that
2.9) Ea=ynwI+p E.
In view of (2.8), we have
if Ee 8; then yg= v, =0,
(2.10)
if Ee 8, then vo=0, y1=1;

in B3 the pair yp, 1 is the unique solution of the linear system

Yot+tvie1=0



+ =gy + & ,
YotYi€2=¢2 2+a€1
therefore
__ & o
o= 62-61(62+2+a61)
(2.11D) if Ee 83 then
_ 1 o
Yl“€2-<31(62+2+0Lel)'

The eigenvalues e and e, are the roots of the characteristic polynomial
22 - L(E) A+ I(E) =0 ;

then we can write

I -VI2-41, L +VIE-41
2—‘——.

(2.12) €1 i m— e 2]

From these relations we easily obtain the expressions of Yy and y; as functions of I; and
I, in the region &3

We-an +a+on)(n-vVE-41) |

_ 1
Yo =-
20+)VIF-41,

1 (1+0C)11)
Y = 1+ .
240 ( VB 41,

(2.13)

In view of (2.1), (2.2) and (2.8) we have
(2.14) T=A1-yDL-2v0Q+W) I+2u(1-ME=

BoI+PBE,

where, as we did for E and E?, we continue to indicate with T the restriction of the stress
tensor to the subspace of U orthogonal to gs.

From (2.10) and (2.13) we obtain the expressions of By and B as functions of principal
invariants of E,

if Ee &, then Bo= ATy, B1 =24,

(2.15) if Ee 8, then Bo=0, B =0
I -VI2- 4]

W12 - 41, ’

if Ee 35 then B():(pl—z,Bl:‘(P



4u(l + o)

QR+

now we are able, with the help of (2.14) and (2.15), to calculate the derivative DgT of T
with respect to E.

where ¢ =

If Ee &4

(2.16) DET =201 + A ® I
if Ee 8,

2.17) DT =0,

where 1 and O are respectively the fourth-order identity tensor and the fourth-order null

tensor.
In the region 83 , deriving (2.14) we have

2.18) DeT [H] = (DgPo - H) I+ (Dgfy - HYE+PB; H , HeSym
and therefore, taking into account the fact that By and B; are functions of principal

invariants of E and using the well known expression of the derivatives of the principal
invariants with respect to E,

(2.19) Del[i(E)[H] =1+ H, Dglo(E)[H]=I,(E)E'! . H, He Sym,
we obtain

dBo dBo ! 3[31 9[31 )
(2.20) DET—aI I®I +1, aIzI®E aIlE®I aIZE®E +B; 1

By virtue of the Hamilton-Cayley theorem

(2.21) El=1l(1-E),
I
therefore
dBo dBo dBo
(2.22) (811”1 812)I®I aI2I®E+

(éﬁl +1 aﬁ‘ CJE®IL- 88?1 E®E+p; 1



where, in view of (2.15)3,

oo I 1,

ol (I% . 412)3/27

Bo_ IF-2L

ol (I% - 41,32 ’
(2.23)

aBl -2 Iz

o~ " e lanpr

aBl _ I]

ol =@ (I%_412)3/2 '

0 0 0
Taking into account the fact that - Bo = Py + 1 By , from (2.23) and (2.22) we
dlp ol ol

finally obtain the derivative of T with respect to E in the region 33:

2_ 2
_ oL(17 - 31y) Lo ..o 21,)
(17 - 41,)32 (12 - 41,)32

(Pll 11-\/1%-412
— .  EQ®E -2 1.
2 3/2 ¢
(I - 4Ip) W12 -4l

We observe that DET is a symmetric fourth-order tensor; this result is in agreement with
the fact that the material is hyperelastic, and the potential

(2.24) DeT I®E+E®I +

%((2+o¢)112-412) , Ee 21,
y(E) = < 0, Ee 2,

%(1%-2124/1%-412) . Ee 3,

calculated with the help of (2.14) and (2.15), is a function of class C2 in the internal part
of every region 8, 8, and 8s.

Now we briefly present the calculation of the derivative of T with respect to E in the case
of plane stress. Let {gy, g2, g3}, be the basis of U with respect to which the stress
components T3, T3 and T33 vanish; let us again indicate with ey, e, €3 and aj, az, a3 the
eigenvalues of E and E2 respectively.

In view of (2.1} and (2.2) we have



(2.25) €3-az = 3 ga (a;+az-e1-€9).

moreover, as , being arbitrary by virtue of (2.4),, is assumed to be equal to zero.
The principal components of E2 are calculated by means of the relations

if Ee £, then a;=0, a,=0,
(2.26) if Ee 2, then aj=e; , ay=ep ,
" 3 : _ o
if Ee 83 then a; =0 , a 62+2(1+oc) e1,

where
3%1 ={ EeSym; oey +2(1 +o)e; <0, ae1+2(1 +w)ea<0},
8, ={EeSym: ¢, 20, ¢,>0},
23={EeSym; e1 <0, oey+2(1 +a)ey>0} ,

with e} <es.

From (2.2) and (2.25) we obtain the expression of the stress
T=2E-E)+=2A ¢ (E-E)I
H( ) S ( I,

its derivative with respect to E is calculated with a similar procedure as the one for the
plane strain state,

_ 2A em %
(2.27) DeT 2uﬂ+————~2+aI®I,1fEe2>1,
(2.28) DT =0, if Ee £,,

_L(f-30) oo (- 21y

(2.29) DeT I®E+E®I +
(13 - 41,312 (12 - 41p)32
12 -
Ml pop . ViAh ¢ g,

(13 - 41> W12 - a1,

Where we put @1 = E—%—}i—a) .
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3. Description of the algorithm

In this section we describe the algorithm which has been used in NOSA, a code using
isoparametric finite elements for the calculation of the numerical solutions presented in

Section 4.
Let us consider the following quantities relating to the i-th iteration:

u® vector of nodal displacements,

D(u®) matrix of the engineering components of DET (see Appendix),

Kt(u®) tangent stiffness matrix,

£ nodal equivalent of given loads i = 0, nodal equivalent of residual loads if
i21,

ecg® vector of the engineering components of the total strain,

agh vector of the engineering components of inelastic strain ,

tg® vector of the engineering components of stress,

where the subscript G indicates the Gauss point in which these quantities are calculated.
At the first iteration u® is null and D) coincides with the matrix of elastic moduli.
Let us suppose we have calculated the displacement u(, the tangent stiffness matrix
Kr(u®) and the nodal equivalent loads f), corresponding to the i - th iteration; we solve
the linear system

(3.1) Kpu®) Aud) = fO

in order to determine the displacement ut + 1) = u® + Aul® relative to the (i + 1) - th
iteration.

Then for every Gauss point of every element we calculate the total strain eg(+ Drelating
to the displacement uti+ 1), we calculate its eigenvalues which are needed to calculate the
inelastic strain ag(i+ D), by using relations (2.8)-(2.11); then we calculate the stress tgli+1
using the constitutive relation (2.2). We observe that the stress is negative semi-definite
because it is calculated by directly solving the constitutive equation (2.1), (2.2), (2.4).
Moreover, using relations (A.1), matrix D(u(i + D) is calculated which if necessary may be
used in the next iteration.

Finally, we calculate the vector of residual loads fi+ 1) and we perform the convergence
control

-
£+ I .

32 <E.;
G2 11O

if the convergence has not been reached, we repeat all operations beginning with the
solution of the system (3.1).
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4. Examples

In this Section we solve numerically some equilibrium problems and we compare the
results obtained with the corresponding exact solutions. In all these examples, for the
discretization we use isoparametric elements with eight nodes and nine Gauss points. In
the following v is the Poisson ratio and E is the Young modulus.

Example 1. Half circular ring subjected to non uniform radial loads.
In the polar reference system {o, p, 8} of Figure 1, let us consider the half circular ring

Q={(p,0); pe(a b),0e(0,m)}.
On aQ; = {(p, 6) ! p=b,0e[0, n]} and 0 = {(p, 8) | p=a, O[O0, n]} the pressures

pe(®) = pe- 2 08 pi(@) = pi-x 308,
are given respectively, wherep, and p; are constants and  is a parameter such that 0 <

< apj; on 9Q3 = {(p, 0) 1 pela, b]l,0 =0} and dQ4 = {(p,8) | pela, b], 6 =n} the
circumferential displacement

(4.1 v(p, 0) =% 1—E¥(V+(1—v)1np) , vip,m)=-% l—El(v+(1-v)1np),

is given and the shear stress Tpg is null [14].

=¥

0. o an

Figure 1. Half circular ring subjected to non-uniform radial loads.
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If the condition & <Pe < a2+b” b is satisfied, then the negative semi-definite stress field,

b Pi 2 b2
in equilibrium with the loads p. and p;, has components

-4 i + Sin e ’ € [a’ ]
0 Pit+X D P Po
Cp(p, 0) = <
apo _a sin ©
“Pi —- +X ; €[po, b]
20t 2000 *Tp Petp
0, p< [a, pol
(42) Ge(p, e) =
2 Po
| S 1 E[ ’ b]
p 207 2p bi PE1Po
Too(p, 0) =0
A/ 2. )2
where pg = b bpe - (b%‘f) (api) is the transition radius from the region in which E2

0 to the one in which Ea = 0.

For a plane strain state, the radial displacement, the circumferential displacement and the
circumferential component of the inelastic strain are univocally determined and have the

expressions

+vapi+(L-v)ysin@lnp-

u(p, )= LAV | aupia-v)m(?pg

l-:z—-zy—x(sine+(e-?2£>cose>} , pe[a, pol ,

4.3)
_ 1+ ap; r -
u(p, 0) = 5 {2(p -(1- 2\/) )+(1 v)x sin01np

L2V sing+(8 -E)cos®)) . pelpo, bl

4.4y v(p,0)=-% 1+V{ cosB (v+(1-v)Inp) +1=2¥ 2 V- sin8 - 6)} , pela bl

2
1 = %Pi In (po/p) , pe [a, po]

45) ep)= 3
0, pe [po, b].
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If we put ¥ = 0, the half circular ring Q is subjected to two uniform radial pressures pe
and p; [8]. In this case, the circumferential displacement is null, the inelastic strain still
has the expression (4.5) and the radial displacement is obtained from (4.3), by putting ¥ =
0,

1% api[v+(1-v)In(po/p)] . pela, pol

(4.6) u(p) =
1+v . Eﬂ (1 - _P_
S E ap;l 5 (1 ZV)pO] , pe [po, b] .

For the numerical calculus of the solutions relating to cases x > 0 and x, = 0, the following

values of constants have been used:

a = 1000 cm

b =2000 cm

pi = 10 Kg/em?

pe = 5.5 Kg/em?

y = 10000 Kg/em (y = 0 Kg/cm)
v=0.1

E = 50000 Kg/cm?

With these values the transition radius pg is approximately 1283 cm.

In the finite element analysis, for symmetry reasons, only a quarter of the circular ring
was studied, and was discretized into one hundred elements; the tolerance & is equal to
10-7, the convergence was reached in twelve iterations and the norm of residual forces is
equal to 0.310°9 If0)],

The following figures show the behaviour of the components of stress, of inelastic strain
and of displacement; the continuous line represents the exact solution, the bold dots the
numerical solution.

Figure 2 shows the behaviour of the radial stress for 6 = 1.016° ; Figures 3 and 4 show the
behaviour of circumferential stress and circumferential inelastic strain, which do not
depend on 6.

In Figure 5 the radial displacement versus radius is plotted for 6 = 88.98".

Figures 6 and 7 show the radial displacement (continuous line) and the circumferential
displacement (dotted line) as functions of the radius, for the values 6 = 0°, 45°, 90°, and
as functions of 6 for p =aand p =b.
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hoo(kg /cm?)
0 -

o

H 1 ¥
18:10% 20-102 @(cm)

"‘10 H T T
10-10° 12-102

T T

14-102 16-10>

Figure 2. Radial stress vs. p, for 6 = 1.016°.

A 0o (kg /cm?)
0.0

~0.51
- 1.0+
— 151

_2‘0_

"2.5 T T 2 T T T T T T 2 T T 2 Laae
10-10? 12-10 14-102 16-10° 1810 20-10° o(cm)

Figure 3. Circumferential stress vs. p, for 6 = 1.016°.
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Figure 4. Circumferential inelastic strain vs. p.
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Figure 5. Radial stress vs. p, for 6 = 88.98°.
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Figure 6. Radial and circum(crential displacements vs. p for 6 = 0°, 45°, 90",

Figure 7. Radial and circumferential displacements vs. 6 forp=aandp =b.
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If the half circular ring is subjected to uniform pressures p. and p; (x = 0), the
circumferential stress and the circumferential inelastic strain are the same as case x > 0,
the radial stress, which now does not depend on 6, has a qualitative behaviour similar to
the one in Figure 2; the radial displacement is plotted in Figure 8.

In this case, for &, = 10-7, the convergence was reached in three iterations and the norm of
residual forces is 0.6 10-81f0)],

A u,(cm)
0.08:
0.04:
—004:
-0.08 “ T T . T T

T T T 1 T >'
10-102 12-102 14-102 16-102 18-10° 20-10% 2 (cm)

Figure 8 Radial displacement vs. p in the case of uniform radial pressures.

The two following examples concern a rectangular block, under the hypothesis of plane
strain [6]. If the block with density vy is subjected to a vertical load p(x), distributed on the
top, the stress tensor has components -

@47) ox(x,y)=0, oyx,y)=-v(h-y)-px), Ty(x,¥)=0, 0(x,y)=VOoyX,y).

It is known [6] that the vertical displacement is unique, whereas the inelastic strain €%
and the horizontal displacement are not unique.

Example 2. Supported block subjected to its own weight and to a distributed load p(x).
A rectangular block with base 2b and height h, simply supported on a rigid plane, is

subjected to its own weight - v j and to the parabolic load p(x) = g—g (b? - x2) , symmetric

with respect to the y axis, with pg > 0 (Fig. 9).
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4 -p(x)]

| 2b |
Figure 9. Supported block subjected to its own weight and to parabolic load p(x).
The vertical displacement corresponding to stress field (4.7) is

2
4.8) V(X y) =+ L;Eﬁ(mx)ywwhy-—yz—)) , xe[-b,b], yel[0,h].

For symmetry reasons we studied only half structure, which was discretized into two
hundred elements; we use the following constants:

b=50cm
h=100cm
v=0.002 Kg/cm?3
po = 1 Kg/cm?
v=0.1

E = 50000 Kg/cm?

If & = 10-2, the convergence is reached in nine iterations and the norm of residual forces
is 0.5 10-21f0),

Figures 10 and 11 show respectively the behaviour of oy as a function of x for y = 0.56
cm and the behaviour of Gy as a function of y for x = 0.56 cm. In Figure 12 we see the
vertical displacement v on the top of the block.



0.0 1

-0.2 1

~04 -

-0.6 1

-0.8 +

-1.0 1

-1.2

0.0
-0.2
~0.4
0.6 1
-0.81

-1.0-

-12

Loy (kg/cm?)

o

0 10 20 30 40 50 x(cm)

Figure 10. oy vs. x fory = 0.56 cm.

) 0y Ckg/cm?)

o

0 20 40 60 80 100 y(cm)

Figure 11. oy vs. y when x = 0.56 cm.
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Av (cm)
0.0 -
- 0.05-10
-0.10-10%
-0.15-10'
-0.20-10%
-0.25-10‘2O 10 ' 20 | 30 a0 | 50 x(cm)

Figure 12. Vertical displacement v vs. x for y = h.

Example 3 . Supported block subjected to the trapezoidal load p(x).
A rectangular block with base (a + b) and height h, simply supported on a rigid plane, is
subjected to the load

Po » X€ [O, a]
4.9) p(x) =
%(wb-x) , xe[a, a+b]

distributed on its top (Fig. 13).

| -a -} -b- -

Figure 13. Supported block subjected to the trapezoidal load p(x).
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In this case the horizontal displacement, besides not being unique, has a discontinuity in x
= a. The vertical displacement is unique and continuous and has the expression

2
- 1"EV poy , x€l0,al

(4.10) viX,y) =
- l_;L/E Po. -a -
£ b (x-a-b)y , xela,a+b].

The block is discretized into one hundred and twenty-eight elements and we use the
following values of constants

a=50cm
b=50cm
h=50cm

po = 1 Kg/cm?
v=0.1

E = 50000 Kg/cm?2.
If & = 103, the convergence is reached in fifteen iterations and the norm of residual

forces is 0.2 10-3 [fO)],
In Figure 14 the stress oy as function of x, for y = 0.70 cm is plotted, and in Figure 15

the vertical displacement v as function of x, when y = h is plotted.

Ao, (kg/cm?)
0.0 1

-0.21
~0.4 1
~0.6 1

-0.81

-10 T T T T T L
0 20 40 60 80 100 x(cm)

Figure 14, 6y vs. x fory = 0.704 cm.



22

Av (cm)

0.0 A

~0210™1

- 04104

~0.6:101

- 0.8-107%

-1.0107 : , : , —
0 20 40 60 80 100 x (cm)

Figure 15. Vertical displacement v vs. x when y = h.

The previous examples show that the numerical solution is in a good agreement with the
exact one in those cases where the displacement is unique (Example 1). When the
displacement is not unique (Examples 2 and 3), a considerably higher number of
iterations are needed in order to obtain a sufficiently accurate solution for the stress.

One difficulty, which is common to all numerical methods of this kind, can be met when,
during iterations, a total strain belonging to region &, is calculated. In fact, in this region
the stress tensor is null, therefore in the tangent stiffness matrix a null diagonal element
appears and this element makes it impossible to solve the system (3.1). In particular, the
method is not applicable in those cases in which the linear elastic solution implies the
existence of regions .where principal stresses are both tractions.

This difficulty did not allow us to numerically solve the problem of a weighted block
supported on an elastic cantilever, the exact solution of which is known [6].

Appendix
The matrix D of the engineering components of DgT, obtained starting from the
expression of the derivative of the stress calculated in (2.16), (2.17), (2.24), (2.27), (2.28)

and (2.29), are

Dii= o1 +20p Ej;+ 03 EI% + 04,
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Di2= oy + 09 (E11 +E22) + 03 Eqg Enp,

Di3= o Epp + a3 Eyq Eyg,
(A1)
Doy = oy + 200 Egp + 03 Ez% + 04,

Dy3 = oa Ejp + 03 Exp Eyg,

2,0
D33 - (X} E12 + 74 ,
where E;; are the components of E with respect to the basis {g;, g2} and the scalar

functions oy, 02, 0L3, G4 are

108] =A
oy =03=0 if Ee 8,
o4 =20
(A.2) ' Gi=0y= oa=04=0 if Ee 8,

_oL(f - 3L)
o = —/—
(13 - 41y
_o(17- 21y

G2 = p -
(I - 41p)372
if Ec 83
I
o3 = ¢4
(13 - 4132
og= ol VI3 -4
W - 41,
for the plane strain and
o =202 + o)
oy =03=0 ifEegl
Oy =21
(A.3) =0p= O3=0y=0 if Ee £,

o = Q107 - 31y
(13 - 4132
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01 (F-2)

Gy =
(@ - 412

if Ee 35
¢1 1
(13 - 41,)%2
= - I -VI2-4]
WIE- 41,

O3 =

for the plane stress.
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