
PHYSICAL REVIEW RESEARCH 6, 033171 (2024)

Cooper quartets in interacting hybrid superconducting systems
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Cooper quartets represent exotic fermion aggregates describing correlated matter at the basis of charge-4e
superconductivity and offer a platform for studying four-body interactions, of interest for topologically protected
quantum computing, nuclear matter simulations, and more general strongly correlated matter. Focusing on solid-
state systems, we show how to quantum design Cooper quartets in a double-dot system coupled to ordinary
superconducting leads through the introduction of an attractive interdot interaction. A fundamentally novel,
maximally correlated double-dot ground state, in the form of a superposition of vacuum |0〉 and four-electron
state |4e〉, emerges as a narrow resonance in a many-body quartet correlator that is accompanied by negligible
pair correlations and features a rich phenomenology. The system represents an instance of correlated Andreev
matter and the results open the way to the exploration of interaction effects in hybrid superconducting devices,
and the study of novel correlated states of matter with ingredients available in a quantum solid-state laboratory.
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I. INTRODUCTION

The Cooper instability predicts a state of matter in which
electrons pair up and form a condensate showing unique
properties such as zero resistivity and perfect diamagnetism.
Making a conceptual jump we can ask ourselves if more
complex electron aggregates such as Cooper quartets could
form and condense, yielding charge-4e superconductivity.
Such a highly correlated fermion state belongs to a fam-
ily of complex fermion states, that are typically the subject
of intensive quantum simulations through quantum comput-
ing platforms [1–5], and its isolation could prove useful for
topological quantum computation [6], simulation of nuclear
systems [7–9] and quantum gravity [10], and it could of-
fer great insight in the study of four-body and many-body
interactions [11–15]. In spin 1/2 systems, Pauli’s exclu-
sion principle forbids local multiparticle aggregates beyond
pairs. Purely four-fermion instabilities have been predicted
in higher spin systems [16], or in systems showing an ad-
ditional quantum number, such as the α particle in nuclear
physics [7–9]. It has been suggested that a charge-4e super-
conducting state may emerge in the fluctuating state of sys-
tems displaying a two-component condensate [17–21], such
as copper-oxides [22,23], kagome systems [24–29], twisted
bilayer graphene [30–32], iron-based superconductors [33], or
doped topological insulators [34,35]. In those systems, novel
higher-order topological properties are emerging in fermion-
quadrupling states and higher composites [36–40]. Effective
charge-4e superconducting transport properties are obtained
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in networks of ordinary Josephson junctions, where trans-
port of individual Cooper pairs is suppressed by destructive
interference effects and only two-Cooper pair transport can
survive [41–46], or in multiterminal Andreev bound state in
the dissipative regime [47–53], yielding a phenomenology
similar to the one associated to the proper charge-4e state.

In this work, we change the perspective and tailor the
conditions for the onset of a Cooper quartet ground state.
We consider a minimal model of a double quantum dot, that
allows us to accommodate a four-electron superposition state
through an additional orbital binary quantum number beyond
spin. We exploit Cooper pairing through proximity coupling
the double-dot system to a Bardeen-Cooper-Schrieffer (BCS)
superconductor. We then add a crucial ingredient, that consists
in a strong attractive interaction between the quantum dots
and that allows us to stabilize the quartet superconducting
phase. An attractive interdot interaction has be experimentally
realized through a second double quantum dot [54], or through
a transmission line resonator [55], and it has been proposed
to emerge by coupling to a flexural phonon in a suspended
carbon nanotube [56–58]. The system manifests a quartet
ground state

|φ±
Q 〉 = 1√

2
(|0〉 ± |4e〉), (1)

in which the vacuum state |0〉 and the four-electron state |4e〉
appear in superposition of equal weights and that describes the
formation of a coherent, albeit minimal, condensate, whose
properties are dictated by the charge 4e. We show that many-
body interactions yield a finite quartet correlator,

Q = 〈d1↓d1↑d2↓d2↑〉 − 〈d1↓d1↑〉〈d2↓d2↑〉
− 〈d1↓d2↑〉〈d1↑d2↓〉, (2)
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FIG. 1. (a) Schematics of the double-dot system with on-site interaction U , interdot density-density interaction W , tunnel-coupled to a
superconductor S through rates γS and γ ′

S . (b) Scheme of energy levels and their coupling when the resonance condition is met, ε = −U/2 −
W + δε, up to a small detuning δε. (c) Phase diagram of the quartet correlator Q at resonance ε = −U/2 − W for γ ′

S = γS: for −W > U > 0
the ground state has a value Q = −1/2 compatible with a quartet state |φ−

Q 〉, whereas for U < W < 0 the ground state has a value Q = 1/2
associated to the quartet state |φ+

Q 〉. (d) Quartet resonance as a function of δε = ε + U/2 + W along the dashed gray line in (c), where
U − W = 3γS , showing the dependence of the correlator Q on the detuning of the vacuum and four-electron states.

with diσ fermionic dot annihilation operators, showing that
pure quartet superconductivity violates the Wick theorem and
has a genuine interacting origin. It is important to stress
indeed that quartet correlations may be present in a BCS
superconductor, but are subdominant with respect to pair cor-
relations. The correlator Q resonantly peaks to its extreme
values ±1/2 when the states |φ±

Q 〉 are realized, whereas the
pair correlator is zero on these states. We study the Josephson
currents by attaching extra BCS leads and single out the
conditions for a two-Cooper pair current. More generally,
the system realizes a correlated Andreev matter beyond the
family of multiterminal Josephson junctions [59–62], that is
generated by interactions beyond the standard BCS mean field
terms. The quartet ground state delocalized in the two quan-
tum dots shows a strong nonlocal coherent character and we
identify a novel nonlocal phase response in a three-terminal
setup as a signature of the correlated nature of the ground
state.

These findings open the way to the exploration of
interaction-based superconductors and nonlocal phase coher-
ence of multiterminal setups can be used to better investigate
those systems [63–65]. Applications in parity-protected quan-
tum computing schemes, such as those based on two-Cooper
pair transport [66–72], and more generally in the simulation
of novel phases of matter constituted by exotic electron com-
plexes can be envisioned using simple tools and ingredients
available in a solid-state quantum laboratory.

II. THE MODEL

We consider the double quantum dot system schematized
in Fig. 1(a), with the two dots labeled with i = 1, 2, tunnel
coupled to a common superconducting lead S at the left side.
We describe their Hamiltonian H0 through single-electron
gate-tunable levels with energy εi, an intradot (generally
repulsive) Hubbard term with strength U , and an interdot
density-density interaction with strength W . To theoretically
investigate the rich phase diagram of the system we allow
interactions to be attractive, and refer to possible underlaying
mechanisms that have been theoretically and experimentally

investigated [54–58]. The double-dot Hamiltonian reads

H0 =
∑
i,σ

εiniσ + U
∑

i

ni↑ni↓ + W n1n2, (3)

with ni = ni↑ + ni↓, niσ = d†
iσ diσ , and diσ dot fermionic

annihilation operators. We include tunnel coupling to the su-
perconducting lead S as a proximity effect, for which the
quantum dots develop a finite pairing amplitude to form
Cooper pairs, either locally on each dot or in a delocalized
way, between the two dots, so that the pairing Hamiltonian
reads

Hp = γS

∑
i

d†
i↑d†

i↓ + γ ′
S (d†

1↑d†
2↓ − d†

1↓d†
2,↑) + H.c. (4)

This model has been thoroughly studied in the infinite su-
perconducting gap limit (� → ∞), where scattering off the
superconducting lead becomes elastic and integration away
of the leads produces the effective pairing amplitude, γS =
2πνFt2

DS and γ ′
S = 1

2γSe−δr/ξ sin(kF δr)/(kF δr). These coin-
cide with the rates of local and crossed Andreev reflection, in
which a Cooper pair can either tunnel to one of the two dots or
split between the two dots, respectively, where νF is the den-
sity of states at the Fermi energy, tDS is the dot-superconductor
tunneling amplitude, assumed equal for the two dots, δr is
the interdot distance, kF is the Fermi momentum, and ξ the
coherence length of the superconductor. The full Hamiltonian
is

H = H0 + Hp, (5)

and we focus the analysis on the even parity sector, where
the four electron operator d1↓d1↑d2↓d2↑ can have a non-zero
matrix element. We further restrict ourselves to the sub-
space spanned by the following four states: the vacuum |0〉,
the four electron state |4e〉 ≡ |↑↓〉1|↑↓〉2, and the two dou-
bly occupied states |φ+

2e〉 ≡ (|↑↓〉1 + |↑↓〉2)/
√

2 and |φ−
2e〉 ≡

(|↑〉1|↓〉2 − |↓〉1|↑〉2)/
√

2. In this subspace the Hamiltonian
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reads

He =

⎛
⎜⎜⎜⎝

0 0
√

2γS

√
2γ ′

S

0 4ε + 2U + 4W
√

2γS −√
2γ ′

S√
2γS

√
2γS 2ε + U 0√

2γ ′
S −√

2γ ′
S 0 2ε + W

⎞
⎟⎟⎟⎠.

(6)
Quartet correlations emerge specifically around the reso-

nance condition

4ε + 2U + 4W = 0, (7)

for which the vacuum |0〉 and the fourfold occupied state |4e〉
become degenerate. In addition, the Hamiltonian decouples in
two subspaces spanned by {|φ+

Q 〉, |φ+
2e〉} and {|φ−

Q 〉, |φ−
2e〉}. To

select the doublet |0〉 and |4e〉 as a host for a quartet ground
state, we require all other states to have higher energy. By
realistically assuming a repulsive on-site interaction U > 0,
a relevant condition is met when the quantum dots experi-
ence an attractive density-density interaction that is stronger
than the on-site repulsion, −W > U > 0. Close to resonance,
ε = −U/2 − W + δε, with δε a weak detuning from reso-
nance, and for −2W > 0, −U − W > 0, and γS, γ

′
S � |U +

W |,U, |W |, the vacuum and the four-electron states couple
at first order with the higher energy states |φ+

2e〉 and |φ−
2e〉, as

schematized in Fig. 1(b), and result in the low energy states

|0̄〉 = |0〉 +
√

2γS

2W − 2δε
|φ+

2e〉 +
√

2γ ′
S

U + W − 2δε
|φ−

2e〉, (8)

|4̄e〉 = |4e〉 +
√

2γS

2W − 2δε
|φ+

2e〉 −
√

2γ ′
S

U + W − 2δε
|φ−

2e〉. (9)

We then project the Hamiltonian on the low energy states,
where it assumes a simple form

h = −2δε(|0̄〉〈0| − |4̄e〉〈4̄e|) + �(|0̄〉〈4̄e| + H.c.), (10)

with the coupling matrix element

� = − 2(γ ′
S )2

U + W
+ γ 2

S

W
. (11)

The phase diagram of the system is shown in Fig. 1(c),
where we plot the ground state value of correlator Q at reso-
nance ε = −U/2 − W . For completeness, we present results
for positive and negative values of U and W . The correlator
can take generic complex values satisfying |Q| � 1/2 and,
for real γS, γ

′
S , it is real (see the Appendix). In the region

U > W the ground state belongs to the subspace spanned
by {|φ−

Q 〉, |φ−
2e〉} and the correlator evolves from Q = −1/2,

when U + W < 0 and the ground state has a strong |φ−
Q 〉

quartet character, to Q ∼ (γ ′
S )2/(U + W )2 when U + W >

0, where the ground state has mostly a two-electron state
character |φ−

2e〉. In the region U < W of the phase diagram
Fig. 1(c) the ground state belongs to the sector spanned by
{|φ+

Q 〉, |φ+
2e〉}, and for the fully attractive case W,U < 0 a

quartet ground state |φ+
Q 〉 is achieved for which Q = 1/2.

Moving away from resonance, for ε = −U/2 − W + δε, the
value of the correlator gives a Breit-Wigner resonance Q 
−�/(2

√
�2 + 4δε2) with linewidth � for U + W < 0, as

shown in Fig. 1(d), and away from resonance the quartet cor-
relations rapidly decaying. Importantly, when the ground state

belongs to the sector spanned by {|0̄〉, |4̄e〉} the pair correlator
is on order γS/W or γ ′

S/(U + W ).

III. CORRELATED ANDREEV MATTER

It becomes natural at this point to search for a direct con-
sequence of having a quartet ground state and a smoking gun
observable that can witness its presence. The most intuitive
property that a quartet ground state is expected to show is a
quartet dissipationless current. However, since the leads are
BCS superconductors, the fundamental carriers are Cooper
pairs and a Josephson current will in general flow through
higher energy two-electron states, at second order in the rates
γS, γ

′
S , resulting in a standard 2π -periodic current-phase re-

lation, despite the fact that the double-dot system is in a
quartet ground state. In particular, in a specular two-terminal
configuration with an additional superconducting lead on the
right side, coupled with same γS, γ

′
S , the rates all acquire a

factor 2 cos(ϕ/2) and the resulting current is 2π periodic,
reflecting the fact that the system can load and discharge indi-
vidual Cooper pairs via higher energy states through multiple
processes involving local and nonlocal Andreev reflection.

Nevertheless, the system features a strongly correlated
ground state and we expect that under proper conditions it can
mediate a non-trivial two-Cooper pair current, that appears as
a π -periodic Josephson current. For this to occur, a peculiar
interplay between local and nonlocal Andreev processes needs
to be arranged. More generally, the delocalized nature of the
quartet ground state suggests that the system can manifest
a correlated behavior in a multiterminal configuration and a
more general class of correlated multiterminal Andreev matter
can emerge.

To generalize the description we focus on a three-terminal
structure constituted by a common lead at the left, relabeled
lead 0, and two additional leads 1 and 2 each coupled to the
corresponding quantum dot, as schematized in Fig. 2(a), and
study the supercurrents in the system. A proper description
requires enlarging the basis and separately considering four
two-electron states together with the vacuum |0〉 and the four-
electron state |4e〉, so that the full basis reads {|0〉, |↑↓〉1,
|↑↓〉2, |↑〉1|↓〉2, |↓〉1|↑〉2, |4e〉}. Proximity-induced local pair-
ing in quantum dot i = 1, 2 can originate either from lead 0
or from the corresponding i lead at the right which is biased
at phase ϕi respect to the reference lead 0, as schematized in
Fig. 2(a). We assume different local rates at the left γS,l and
at the right γS,r leads, equal for the two dots. This way, local
pairing in dot i becomes controlled by γS,i = γS,l + γS,reiϕi .
In turn, nonlocal pairing γ ′

S can only result from Cooper pair
splitting from lead 0 and it is not sensitive to any phase
differences.

The low energy states are modified by the complex rates
and now read

|0̄〉 = |0〉 +
∑

i

γS,i

2W − 2δε
|↑↓〉i +

√
2γ ′

S

U + W − 2δε
|φ−

2e〉,

|4̄e〉 = |4e〉 + γ ∗
S,2|↑↓〉1 + γ ∗

S,1|↑↓〉2

2W − 2δε
−

√
2γ ′

S

U + W − 2δε
|φ−

2e〉,
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FIG. 2. (a) Schematics of the three-terminal structure composed by two quantum dots, 1 and 2, coupled to a common superconducting lead
S0 at the left and to superconducting leads, S1 and S2, at the right. The latter are biased at phases ϕ1 and ϕ2 with respect to S0, respectively.
(b) Contour plot of the ground state energy of the system in (a) with respect to the phases ϕ1 and ϕ2, showing two minima at approximately
ϕ1 = ϕ2  ±π/2, for γ ′

S = γS,l = γS,r = γS , ε = −U/2 − W , U/γS = 10 and W/γS = −12. (c) Plot of the ground state and the first excited
states as a function of the phases ϕ1 and ϕ2, representing a correlated Andreev matter and realizing a quartet Andreev qubit. (d) Total current
I1 + I2 as a function of ϕ1 = ϕ2 = ϕ along the white line in (c), shown for the case γS,l = γS,r , as in (b) and (c), and for γS,l = 0 for which the
current is exactly π periodic.

and the Hamiltonian projected on the low-energy manifold
reads

h = γS,lγS,r

W
(cos(ϕ1) + cos(ϕ2))1 +

(−2δε �

�∗ 2δε

)
, (12)

with 1 a 2 × 2 identity in the low energy manifold, and �

a generalized complex matrix element between vacuum and
four-electron states, that at δε = 0 reads

�(ϕ1, ϕ2) = − 2(γ ′
S )2

U + W
+ 1

W
(γS,l + γS,reiϕ1 )(γS,l + γS,reiϕ2 ).

(13)
Its argument �(ϕ1, ϕ2) = arg[�] represents the phase of the
superposition between vacuum and four-electron state in the
ground state, |�GS〉 = 1√

2
(|0̄〉 − ei�|4̄e〉), and can be tuned

through the phases ϕ1 and ϕ2.
The ground-state energy as a function of the two phase

differences ϕ1, ϕ2 is shown in Fig. 2(b) and it clearly shows
two minima at ϕ1 = ϕ2  ±π/2 along the ϕ1 = ϕ2 line, and
a saddle point at ϕ1 = ϕ2 = 0, manifesting the strongly cor-
related character of the ground state. In particular, we notice
that if the leads S1 and S2 are left floating, so that the system
adjusts in one minimum of the ground state energy, the latter
breaks time-reversal symmetry.

The Hamiltonian Eq. (12) well captures also the first ex-
cited state, whose exact landscape is shown in Fig. 2(c)
together with the ground state at zero detuning δε. The system
realizes a quartet Andreev qubit that represents an instance of
correlated Andreev matter beyond the family of multiterminal
Josephson junctions [59–62], and possibly featuring topolog-
ical properties that will be discussed in future works.

IV. DISSIPATIONLESS TRANSPORT

We now analyze the dissipationless transport properties of
the system. The ground-state current through dot i features
two contributions: an ordinary Josephson term describing cur-
rent between leads i and 0, and a second term that depends on
both ϕ1 and ϕ2,

Ii = −2e

h̄

γS,lγS,r

W
sin(ϕi) − 2e

h̄

∂

∂ϕi
|�(ϕ1, ϕ2)|. (14)

We first look for a two-Cooper pair current in a two-
terminal configuration by joining contact 1 and 2 in a unique
drain by setting ϕ1 = ϕ2 = ϕ and study the total current I =
I1 + I2. An ideal two-Cooper pair current flows in the case
γS,l = 0. This is easily understood as follows. Starting in the
quartet ground state a Cooper pair coming from the left lead
can only split between the two dots, by virtue of the condition
γS,l = 0. Such a state is current-blocked by the superconduct-
ing gap in the leads 1 and 2, that have no single-particle
states in the spectrum (especially in the � → ∞ limit). A
second Cooper pair coming from the left lead can again only
split and result in a four-electron state in the double-dot. The
latter is now unblocked and gives rise to an ideal two-Cooper
pair current, as shown in Fig. 2(d). This intuitive picture is
confirmed by the form of the ground state energy that, setting
γS,r = γS , reads

EGS = −E0

√
1 + τ sin2(ϕ), (15)

with E0 = | − 2(γ ′
S )2

U+W + γ 2
S

W | and τ = 8(γSγ
′
S )2

E2
0 W (U+W )

, that is mani-
festly π periodic. In addition, for τ > 0 the minima of the
ground state energy Eq. (15) are at ϕ = ±π/2, so that the
current at small finite bias flows in the direction opposite to
the phase bias, in an effective π -junction behavior, as shown
in Fig. 2(d).

For the realistic case of γS,l = γS,r = γS , the different terms
compete and a π -periodic current can only arise approxi-
mately, in that the contribution coming from |�| must cancel
the ordinary 2π -periodic pair contribution of the first term
Eq. (14). This can be achieved by promoting the relative
importance of the nonlocal process with respect to the local
one in the expression of � by requiring |2(γ ′

S )2/(U + W )| �
|γ 2

S /W |. Crucial is the opposite sign between the terms that
originates from the singlet expression of the nonlocal Cooper
pair tunneling and yields a destructive interference effect. By
setting W = −U − δW , δW � U , γ ′

S = γS , and expanding
the current at lowest orders in δW/U we obtain

I = −4eγ 2
S

h̄U
[sin(2ϕ) − O(δW/U )]. (16)
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FIG. 3. (a) Current I1(ϕ1, ϕ2 = 0) and (b) I2(ϕ1, ϕ2 = 0) as a function of the phase ϕ1 and the detuning δε, obtained by keeping ϕ2 = 0.
(c) Cuts of I1(ϕ1, ϕ2 = 0) in (a) at three different values of δε shown in the legend of (d). (d) Cuts of I2(ϕ1, ϕ2 = 0) at the values of δε specified
in the legend. The parameters for the plots are the same as in Fig. 2.

The resulting current is shown in Fig. 2(d) and shows a
dominant − sin(2ϕ) component. Importantly, we obtain such
a condition without recurrence to any flux interferometric
methods [70].

V. NONLOCAL PHASE RESPONSE

The interacting nature of the quartet correlator suggests to
us that another possible clear signature of the quartet ground
state can appear in the nonlocal response of the system. A
nonlocal response appears by noticing that a given phase
difference established between two given terminals, say 0 and
2, affects the current through the third terminal in a nontrivial
way. If we close lead 2 on lead 0 and enclose a flux �x

[as schematized in Fig. 4(b)] we effectively pin the phase
ϕ2 = 2e�x/h̄, so that we can selectively choose an horizontal
cut in the energy landscape Fig. 2(c). The resulting current I1

is shown in Fig. 3(a) as a function of the phase ϕ1 and the
detuning δε and for three specifics values of δε in Fig. 3(c):
the application of a phase bias ϕ1 between terminal 1 and 0
at constant ϕ2 = 0 yields a sinusoidal current I1(ϕ1), away
from the quartet resonance condition, that sharply evolves in
a current of opposite sign at resonance δε = 0, in a sort of

effective π -junction behavior. At the same time, at resonance
a current I2(ϕ1) starts to flow in the ring at zero external flux,
with the same negative sign as I1, as shown in Figs. 3(b)
and 3(d).

This behavior constitutes a clear signature of the quartet
Andreev process for this simple setup, that becomes active
only at resonance, and it is understood as follows: away from
the resonance the ground state has a weak quartet component
and an ordinary dissipationless current flows from terminal
2 to terminal 0, following the phase bias. As resonance is
approached, the system develops a ground state with a strong
quartet component, that necessarily yields currents in both
terminal 1 and 2, that goes in the opposite direction to the
phase bias, as dictated by the interference between the phase
dependent and the phase independent term that constitute �.

It is worth to remind that the emergence of a π -junction
behavior typically requires engineering complex structures,
that involve ferromagnetic systems [73], unconventional order
parameters [74], nonequilibrium effects [75], or weak Kondo
correlations [76]. Furthermore, the I2 current is anomalous in
that it flows in a zero phase bias condition in absence of any
time-reversal breaking mechanism other than the phase ϕ1.

FIG. 4. (a) Schematics of a possible implementation of the system. The double quantum dot is formed on a carbon nanotube in tunnel
contact with superconducting leads S0, S1, and S2. Gates Vg1 and Vg2 allow for alignment of the dots levels. A second carbon nanotube, on the
right side is suspended between contacts S1 and S2 but not in tunnel contact. Its vibrating lowest energy flexural mode couples to the charge
on the quantum dots and provided a mechanism for strong interdot density-density interaction. (b) Modified setup that allows the pinning of
the phase ϕ2 = 2e�x/h and the resulting current I1 shown in Fig. 3. (c) Quartet correlator Q away from resonance, with δε/γS = 0.1 and
(d) δε/γS = 1, with γ ′

S = γS .
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Typically anomalous Josephson effect requires strong spin-
orbit interaction and a Zeeman field [77], conditions that are
not verified in our case.

VI. POSSIBLE EXPERIMENTAL SETUP

Here, we provide a possible experimental implementation
of a system that could host the attractive double quantum dot
system and several other possibility have been explored in
the literature [54–58]. The system is shown in Fig. 4(a) and
it is composed by two carbon nanotubes: the left one can be
placed to be in tunnel contact with the three superconducting
contacts S0, S1, and S2, with S0 at the center, and the right one
suspended between contacts S1 and S2, but not galvanically
coupled, and in close proximity with the left one. This way, the
contacts define two dots and the central one can inject Cooper
pairs locally and nonlocally. The charge on the two dots cou-
ples to the charge on the suspended nanotube via Coulomb
interaction in the vacuum. The latter is not screened and the
coupling is thus given by the long-range Coulomb interaction
∝1/r2. The bending of the suspended nanotube depends on
the total charge on the double quantum dots and the minimal
Hamiltonian consisting of a single nanotube flexural mode
reads

H = ω0a†a + g0(a + a†)(n1 + n2), (17)

with a denoting the bosonic annihilation operator of the
flexural mode. The Hamiltonian is quadratic in the bosonic
modes, so that it can be rewritten as H = ω0A†A −
(g2

0/ω0)(n1 + n2)2, where the new displaced bosonic mode
reads A = a + (g0/ω0)(n1 + n2). The ground state will be
given by the vacuum of A, so that the correction of
the energy results in the effective interaction for the two
dots

Hint = U (n1↑n1↓ + n2↑n2↓) + W n1n2, (18)

with U = U0 − 2g2
0

ω0
and W = W0 − 2g2

0
ω0

, with U0 > 0 and
W0 > 0 the bare on-site repulsion and interdot density-density
interaction strengths. The crucial point is that the bare fre-
quency of the flexural phonon can be very low compared to
the coupling to the electronic density [78], so that a strong
renormalization of the bare interaction is possible. For bare
energy scales U0  1 THz, ω0  1 MHz, and g0  1 GHz,
values of the coupling constant 0.25 < g2

0/(U0ω0) < 0.35 can
be realized [56–58].

VII. CONCLUSIONS

We have demonstrated how appropriate tuning of an
electron-electron interaction in a double quantum dot system
opens the possibility to engineer a quartet superconductor.
The system presented shows a great host of counterintuitive
properties and opens unexplored paths in the simulation of
correlated states of matter and the study of interactions effects
in superconductors. As a further development in the context
of transport in hybrid normal-quantum-dot-superconducting
devices, we foresee the possibility of a quartet Andreev reflec-
tion, something that may make the quartet ground-state nature
evident and that will be addressed in future works.

The possibility to experimentally achieve the isolation of a
quartet ground state relies on the ability to engineer an attrac-
tive density-density interaction. The latter has been mediated
by a second double quantum dot capacitively coupled to the
system [54], or through a transmission line resonator [55]. In
addition, we have presented a simple possible setup based on
a suspended carbon nanotube as a possible effective mediator
of the attractive interdot interaction.

The quartet resonance is fragile to detuning δε, as
shown in Fig. 1(d), but also to temperature, in that the
correlator is washed away for temperature T larger than
|�|, that separates the ground state |φ−

Q 〉 from the excited
state |φ+

Q 〉. Accounting for the latter results in Q  −(1 −
e−|�|/T )/2. Nevertheless, if the hierarchy of scales T, δε <

|�| < γS, γ
′
S � U, |W | < �, is respected, the picture holds.

Assuming γS, γ
′
S  20 GHz [79–81], we expect that temper-

atures of the order of 25 mK should be enough to stabilize
a quartet ground state. Furthermore, relaxing the infinite gap
condition does not change drastically the picture, so long as
the entire double-dot spectrum falls within the superconduct-
ing gap �.

Note added. In the finalization of the work, we became
aware of recent studies concerning quartet superconductivity
in a two-orbital Hubbard model with similar results [82].
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APPENDIX: CORRELATOR

When the Wick theorem applies, the expectation value
of any product of operators on the ground state can be de-
composed in all possible two-operator contractions. In the
case of quartet superconductivity, the Wick theorem does not
apply and the correlator itself has been defined as cleaned by
the two-point contractions, so that when the state is a Slater
determinant the correlator is zero. In the definition we have
omitted the equal-spin two-point contractions, that are zero in
our case.

In general the Hamiltonian Eq. (5) gives rise to a complex
matrix representation. However, for the case of a single su-
perconducting contact or for no phase differences between the
terminals in the case of a multiterminal structure, it is possible
to choose a gauge in which the Hamiltonian is real and so are
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the eigenstates. Assuming a generic state

|ψ〉 = cos(θ1)|0〉 + sin(θ1) cos(θ2)|φ+
2e〉

+ sin(θ1) sin(θ2) cos(θ3)|φ−
2e〉

+ sin(θ1) sin(θ2) sin(θ3)|4e〉, (A1)

the maximum of |Q| is obtained for the values θ1 = π/4 and
θ2 = θ3 = ±π/2, corresponding to the states |φ±

Q 〉 for which

the correlator takes the values Q = ±1/2. Numerical checks
on eight-component even parity states with real coefficients
confirm the bounds −1/2 � Q � 1/2.

The value of the correlator is therefore very significant of
the quartet content of the ground state and for completeness in
Figs. 4(c) and 4(d) we show its value slightly away from exact
resonance, for δε/γS = 0.1, 1 and for γ ′

S = γS .
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