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While understanding of periodic recurrent waves of Covid-19 epidemics would aid to combat the pandemics,
quantitative analysis of data over a two years period from the outbreak, is lacking. The complexity of Covid-19
recurrent waves is related with the concurrent role of i) the containment measures enforced to mitigate the ep-
idemics spreading ii) the rate of viral gene mutations, and iii) the variable immune response of the host imple-
mented by vaccination. This work focuses on the effect of massive vaccination and gene variants on the
recurrent waves in a representative case of countries enforcing mitigation and vaccination strategy. The spread-
ing rate is measured by the ratio between the reproductive number Rt(t) and the doubling time Td(t) called RIC-
index and the daily fatalities number. The dynamics of the Covid-19 epidemics have been studied by wavelet
analysis and represented by a non-linear helicoid vortex in a 3D spacewhere both RIC-index and fatalities change
with time. The onset of periodic recurrent waves has been identified by the transition from convergent to diver-
gent trajectories on the helicoid vortex.We report a main period of recurrent waves of 120 days and the elonga-
tion of this period after the vaccination campaign.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Periodic recurrent waves occur in out of equilibrium dynamics for
propagation into unstable states in viral epidemics [1–4], in population
dynamics, ecology, cyclic predator-prey systems, spreading fires, ferro-
electrics and membranes [5–20]. The viral pandemic Influenza A ap-
pearing in 1918 (called Spanish flu) has shown three main waves in
its first two years [1] followed by seasonal waves of influenza variants
for many years [2]. The study of periodic waves in the case of measles
epidemics has pointed out the role of spatial hierarchy of host popula-
tion structure and the role of vaccination [3]. The complexity of recur-
rent waves in epidemics is driven by either i) the spatiotemporal
heterogeneities and mobility of population constraining the virus diffu-
sion described by network theory in the macroscopic physical world
and ii) the gene pointmutations, i.e., atomic substitutions and deletions
affecting only one or few nucleotides in the viral gene sequence and in
the immunity system of the host cells, which are made up of active
atomswhich seem tomake up unpredictable choices in themicroscopic
quantum world.
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The Covid-19 pandemic has infected 327 million people with 5.5
million fatalities [21–38] in two years from the outbreak, and it has
been contrasted in different countries by two policies: i) the “zero
Covid” [29–35] and the “mitigation” strategy [36]. In 2021 the vaccina-
tion campaign started and new variants appeared [39]. Mathematical
models of Covid-19 spreading have been developed based on standard
epidemiological theories [25–28] and on network theory [29–35], but
quantitative analysis of recurrent waves and the effect of vaccination
campaign on these recurrent waves is lacking.

The SARS CoV-2 contagiousness is measured here by the ratio of the
time dependent reproductive number, Rt and the doubling time, Td,
called RIC-index [21]. In previous works [22–24] we have identified
the critical doubling time Td* which separates the explosive
supercritical regime (Td < Td*) from the arrested subcritical regime (Td
> Td*) of the epidemics spreading. The severity of the impact of the
epidemics on the population has been quantified by the number of
daily deaths per million population, Df.

The experimental periods of the recurrent waves have been ex-
tracted by the Wavelet Transform (WT) [40,41] of either the RIC-index
and the Df time series to extract the frequency (or period) of non-
stationary time series data [40–42].

The periodic waves of SARS-CoV-2 are represented in this work by a
Covid-19 acentric helicoid vortex in a 3D space by combining the time
evolution of daily deaths per million population, Df, and RIC-index.
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Fig. 1. Epidemic spreading in Italy from 24/02/2020 to 15/12/2021. (a) Plots of the time
dependent doubling time, Td, (green dots) and reproductive rate Rt (black dots) in Italy
from 24/02/2020 to 15/12/2021. The gray rectangle represents the critical region separat-
ing the supercritical (Td < 50, Rt > 1) from the subcritical (Td > 100, Rt < 1). The
supercritical phases correspond to the red areas. Before vaccination, the non-
pharmaceutical control of epidemics has seen the application of strict lockdown (SL)
followed by mild lockdown (ML) with loos rules. The intervals associated with the
diffusion of the different coronavirus variants in Italy, European 20E, alpha, delta and om-
icron [38,39] are indicated. (b) RIC-index (black dots) as a function of time. The supercrit-
ical phases occur for positive values of the RIC-index. (c) Daily new deaths per million of
population and percentage of fully vaccinated peoples (blue line) as a function time. We
can distinguish the different waves, due to different coronavirus variants: the 1° and 2°
waves are due to the alpha variant, the 3°is due to the delta variant. We note as the daily
deaths number is suppressed by the vaccination campaign diffusion during the delta var-
iant spreading, avoiding the exponential growth in the supercritical phase. Finally, we get
signatures of the beginning of the wave due to the last omicron variant.
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To quantify the divergence/convergence of non-stationary orbits of
the Covid-19 helicoid vortex we have used the Rosenstein algorithm
[43] to calculate the Largest Lyapunov Exponents (LLE) of the Covid-
19 to identify the onset of periodic recurrent waves. This approach al-
lows to monitor discontinuities and fluctuations at small timescale in
complex systems [43–48] described by short time series and intrinsic
transient character where the conventional chaotic deterministic non-
linear dynamical approach characterized by the classical Lyapunov
exponents fails.

2. Results and discussion

The Covid-19 spreading rate shows a heterogeneous character due
to the different containment measures adopted in the different geo-
graphical areas. Here we focus on Italy as representative of the West
European Area. Data on epidemic spreading and severity from 24/02/
2020 to 15/12/2021 have been taken from the recognized public data-
base OurWorldInData [49] to extract the time-dependent doubling
time Td as described in [24] and the time-dependent reproductive num-
ber Rt from [49]. The time evolution of both Td and Rt is shown in Fig. 1a,
where the gray horizontal strip indicates the critical phase defined by
50 < Td⁎ < 100 days [22,24] and 1 < Rt⁎ < 1.1 [28]. This critical strip
separates the supercritical regime by the subcritical regime. In the
supercritical regime Td grows up exponentially assuming values less
than 100 days, while Rt values result larger than 1. In the subcritical
regime Td becomes large enough (Td > 100), Rt becomes less than
1 and the exponential growth is arrested [21]. The explosive
supercritical regime with exponential growth occurred at the
threshold of the first two 2020 Covid waves, indicated by red areas in
the panel (a), corresponding to a peak in Rt joint with a dip of Td, due
to their anti-correlation. The green shadowed vertical rectangle indi-
cates the time of the first lockdown with strict rules (SL) enforced by
the “mitigation” policy in the first wave (from 24/02/2020 to 30/04/
2020) due to the first variant from Wuhan provided by reference [37].
The red shadowed rectangle indicates the time of the mild lockdown
with loose rules (ML) to face the European E20 variant diffusion in the
secondwave (from 25/10/2020 to 31/12/2020) getting out of the super-
critical phase. A third small pocket with critical conditions, occurs
around day 430, due to the alpha variant diffusion contrasted by the
start of the vaccination campaign at tv = 400 day. The massive
vaccination campaign in Italy has been able to freeze the outbreak of
the delta variant. In fact, while Rt shows a sharp peak, reaching values
larger than 1 but the doubling time Td shows a minimum that remains
much longer than 100 days, therefore the epidemic spreading has
been frozen in the subcritical regime during the time of the delta variant.

In order to take into account both Rt and Td to describe the
contagiousness of the pandemic complex dynamics, we have used the
parameter introduced in [21]

RIC−index ¼ log10 Rt=Tdð Þ−2 ð1Þ

The RIC-index value is near to zero in the critical phase, assumes neg-
ative or positive values in the subcritical or supercritical phases, respec-
tively, as shown in Fig. 1b. In the supercritical explosive supercritical
regimes, the RIC-index shows a clear peak indicated by the red area.
Alongside the variation of the contagiousness of the pandemic, the
other important factor to keep in consideration is the danger and the se-
verity of the disease.

At this aim we consider the number of daily fatalities per million
population, Df, shown in Fig. 1c where the peaks of the recurrent
waves correspond with the peaks of the RIC-index. The figure shows
also the percentage of fully vaccinated people versus time. It is clear
how fatalities number is suppressed at larger percentage of vaccinated
people, although further recurrent waveswith different duration and in-
tensity in the subcritical phase have occurred during the vaccination
campaign. In particular, we note first the suppression of a third wave
2

(around day 430, after tv = 400 day in Fig. 1c) due to the diffusion of
the alpha variant. In this period and afterwards, during the delta
variant diffusion, the vaccination campaign lowers the number of
deaths and prevents the spreading rate from falling into the
supercritical phase, being the RIC-index below threshold.

In order to get quantitative information on the variation of recurrent
waves with the onset of vaccination campaign, we have applied the
wavelet transform (WT) on both the RIC-index and the daily fatalities
per million population time series, Df, and we have calculated the Larg-
est Lyapunov Exponents map of the RIC-index versus Df in the time
dependent orbit.
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2.1. Wavelet and Fourier transform of periodic recurrent waves

We have applied the WT to the RIC-index and Df of Covid-19 pan-
demics evolution to visualize the different periodic fluctuations of
Covid-19 spreading in magnitude scalogram color plots. WT are also
useful for analysingweak and localized discontinuities, such asmetasta-
ble phases [21,22]. The WT algorithm has been used to analyze the fre-
quency structure of both the RIC-index and Df time series using the
Morse wavelet (see Methods). The RIC-index scalogram, given by the
local wavelet power spectrum, LWPS, in Fig. 2a shows three main pe-
riods longer than 50 days indicated by the white dashed lines. Shorter
periods are assigned to metastable phases.

The three main periods increase with the progress of the massive
vaccination campaign after tv = 400 day which is also shown by the
global wavelet power spectrum, GWPS plotted in Fig. 2b. The GWPS is
obtained by averaging the LWPS across time (see Methods) before
and after tv, giving analogous information of the traditional Fourier
spectrum, but in different time windows. The key result presented in
this work is evidence of the shift of the periods before and after the
vaccination campaign, as indicated by the arrows. The periods pass
from 58, 75 and 118 days before the vaccination campaign to 68, 105
and 138 days, during the vaccination campaign.

Similar behavior can be seen in the LWPS and in the GWPS of the Df
time series in Fig. 2c and d, respectively, where twomain periods result
elongated with the vaccination campaign. In particular, the first period
passes from 65 to 85 days crossing tv, while the second period of 135
days before vaccinations splits in two periods of 125 and 155 days
during the vaccination campaign. The time evolution of the observed
Covid-19 recurrent waves is in qualitative agreement with the results
of the wavelet analysis applied to periodic travelling waves of measles
in London [3].

2.2. Largest Lyapunov MAP of RIC-index versus daily deaths helicoid time
trajectories

The periodic recurrentwaves can be visualized in a three dimensional
space, probing the contagiousness of pandemic spreading correlated
with fatality numbers as a function of time. By plotting the time
Fig. 2. Wavelet and Fourier Transform of Covid-19 periodic travelling waves in Italy from 24/0
The Covid-19 spreading is visualized as a function of time by wavelet transform of (a) RIC-inde
poses the spreading waves at different scales hidden in time series data. The main periods, bef
horizontal dashed lines. We note a shift towards longer periods with the activation of the vacc
transient events during the pandemic spreading, corresponding to lower intensity spots at s
spectrum (GWPS) of periods of (b) RIC-index and (d) daily new deaths time series calculated
vaccination campaign. The horizontal arrows represent the periods elongation obtained with t
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evolution of the RIC-index and Dfwe obtain a non-linear helicoid vortex
shown in Fig. 3a composed by different acentric rings suggesting a cha-
otic dynamical evolution where the instabilities zones can be given by
the Lyapunov exponents of dynamical evolving trajectories along the
3D orbit in Fig. 3a.

The analysis of the helicoidal evolution of the time series of the RIC-
index and the Df as function of time are available only over a short lim-
ited time interval and it is driven not only by the classical diffusion and
random infection by contact events between humans in the macro-
scopic physical world, but also by the probability rate of the unpredict-
able virus gene point mutations because of unpredictable atoms
replacements or deletions in the microscopic many body quantum
world.

Since it is not possible to interpret our time series in term of classical
Lyapunov exponents we have used the data-driven method by
Rosenstein [43] to estimate the Largest Lyapunov Exponent (LLE) for
short time series, used and tested in a wide variety of complex systems
[44–48] like biological time series characterized by transient states of
living matter which diverge from the basic assumptions for a classical
chaotic system.

In our approachwe have chosen several initial ranges in the 3D orbit
for LLE calculations. In order to follow the dynamics of the system day
per day, we have considered all orbits on the intervals Δti0=[ti0 ti0+dti]
days, where ti

0=73 days is the initial day and dti is an initial range
spanning from dt1 = 32 days up to dt24 56 days, which is the lowest
pandemic period, obtained by WT analysis. We have calculated the
Largest Lyapunov Exponent for all orbits obtained by increasing the in-
terval Δti0 by one day until the LLE becomes positive, at the ti

1 day. This
point, called discontinuity point, becomes the new initial instant, and
the LLE is calculated on the new Δti1 [ti1 ti

1+ dti] interval. Than this
interval is increased by one day at each LLE calculation up to a new dis-
continuity point ti2. The procedure is iterated up the last point of the
orbit (see Methods). Changing the initial range dti with 1 < i < 24, we
obtain a Lyapunov MAP, shown in Fig. 3b and c. The LLE exponent in
eachpoint has been calculated using the Rosenstein approachwhich en-
sures accuracy and fast computation for short and noisy data sets [43].
Weunderline that a positive value of LLE indicates divergent trajectories
and unstable system while a negative value indicates convergent orbits
2/2020 to 15/12/2021.
x and (c) daily deaths per million population, Df, time series. The wavelet analysis decom-
ore and after the vaccination campaign started at tv = 400 day, are indicated by the white
ination campaign in both RIC-index and Df time series. We can also visualize shorter lived
maller periods. Power is color coded from −2.5 (blue) to 1 (red). Global wavelet power
for t < tv (blue line) before the vaccination campaign and for t > tv (red line), after the
he vaccination campaign.



Fig. 3. Non-linear pandemic dynamics: LLE MAP of RIC-index versus daily deaths time trajectories.
(a) 3D orbit of the daily new deaths per millions of population and the RIC-index as a function of time (days) in Italy. The gray barrier represents the critical crossover between the super-
critical and subcritical regimes. The different colors represent the three pandemicwaves defined in the LyapunovMap shown in panels (b) and (c). The different waves can be individuated
by the instability zones, where the LLE becomes positive and the 3Dorbit diverges, indicated by the different colored regions. Thefirst discontinuity point at day 280, corresponds to a quite
strong instability explosion due to the second wave with the European 20Emutation diffusion. The next discontinuity point occurs around day 470 in correspondence with the alfamu-
tation occurrence. Afterwards, during the delta variant diffusion, the LLE is kept on negative values thanks to the vaccination campaign that avoids newdiscontinuities towards positive LLE
values. Finally, we find the third point of discontinuity with the beginning of the last wave associated with the new COVID 19 variant called omicron, around the day 700, where the LLE
return positive.
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attracting towards a stable fixed point or periodic orbit. A positive LLE
represents the instability zones where pandemic spreading results un-
stable and unpredictable. Than the LLE return to negative values in con-
vergent trajectorieswith stable fluctuations to explode again in the next
discontinuity point. We assume these discontinuity points as the limits
of successive pandemic waves in the RIC-index - Df space, represented
by different colored rings in the 3D trajectory of Fig. 3a.

After the 1stwave due to theWuhan variant (blue ring in Fig. 3a and
blue light rectangle in Fig. 3b), we identify the explosion of the 2nd
wave by the positive decreasing of the LLE from positive towards nega-
tive values, during the diffusion of the European 20E variant (green ring
in Fig. 3a and light green rectangle in Fig. 3b). A 3rd wave due to the
alpha variant diffusion can be identified by the fluctuations the LLE in
the light green rectangle, soon after the beginning of the vaccinations
campaign at tv. In this case the fluctuation remains stable, since
negative LLE does not exceed the zero values. After this, we observe a
new discontinuity with increasing LLE towards positive values in corre-
spondence with the delta variant spreading around day 470. This is
followed by a stabilization of the orbit with negative LLE ascribed to
the vaccination campaign which avoids the exponential growth (red
ring in Fig. 3a and light red rectangle in Fig. 3b), as found in Fig. 1. Fi-
nally, we get evidence of the start of the new omicron variant spreading
by the new instability zone around day 700.
3. Methods

3.1. Wavelet analysis

Traditional Fourier analysis partitions the total power (variance) of
the time series between sinusoidal components at different frequencies.
This approach lacks information on the time sequence of frequencies. By
contrast, the wavelet approach allows studying recurrent waves phe-
nomena in time as well as frequency. Rather than a sinusoid, the
method is based on the Morse wavelet function [40–42], which capture
local (in time) cyclical fluctuations in the time series. As with all wave-
lets, the frequency-time range over which it does this is set by a scale
parameter, s. In general, wavelet scale is related to the conventional
4

Fourier period of oscillations. Local wavelet power spectra, LWPS, of
the RIC-index and daily deaths per millions of populations time series
are presented in Fig. 2a and c. Power is color-coded as shown. Global
wavelet power spectrum, GWPS, of both RIC-index and daily deaths
per millions of populations time series have been calculated by averag-
ing the LWPS across time, giving standard Fourier transform. Waves in
the epidemic generates a peak in power spectra. The superimposed pa-
rabola represents the cone of influence, which measures the extent of
edge effects. The WT has been performed, after smoothing accom-
plished using Gaussian windows on 14 days, for avoiding higher fre-
quencies due to data collection artefacts during e.g. in the public
holidays and weekends.
3.2. Largest Lyapunov Exponents map

Classical Lyapunov exponents provide a measure of the exponential
growth due to infinitesimal perturbations on a time series. A classical
dynamical system becomes chaotic when very close starting states will
diverge exponentially for some short time. The rate of exponential di-
vergence is measured with classical Lyapunov exponents. If two initial
states are separated by a small distance s0, then for a short time
interval the separation will evolve according to the equation s(t) ≈
s0e

λt. The value λ is defined as the Largest Lyapunov Exponent, LLE, of
the system. Chaotic systems show positive Lyapunov exponents and
their sensitivity to initial conditions increases with λ. Nearby points of
an orbit will diverge to any arbitrary separation; therefore, a larger the
exponent shows a more unstable system. On the contrary, a negative
Lyapunov exponent indicates that the orbit converges to a stable fixed
point, as generally occurs in a dissipative systemwith asymptotic stabil-
ity; themore negative the exponent, the greater the stability. Finally, the
points in the orbit where λ=0, are fixed points where the system is in a
steady-state mode or near the transition to chaos. The extraction of the
classical Lyapunov exponent assumes that the system follows determin-
istic trajectories over an unlimited time period over a very long time
with no transient states, typical of biological systems and the data anal-
ysis requires very long time series which are typically not available for
epidemics spreading.
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Therefore for the Covid-19 short time series we have calculated the
Largest Lyapunov Exponents following the Rosenstein algorithm [43].
In this approach it is first necessary to reconstruct the state space from
the experimental data record. The original time series data and its
time-delayed copies determine the topological structure of a dynamical
system [50]:

Y ¼ X tð Þ,X t þ Tð Þ, . . . ,X t þ dE � 1ð ÞTð Þ½ � ð3Þ

where Y is the reconstructed d-dimensional state vector, X(t) is the ob-
served variable, T is a time lag, and dE is the embedding dimension. This
method looks for the nearest neighbor of each point in phase-space and
tracks their separation over a certain time evolution. This separation is
also a function of the location of the initial value. To obtain LLE on differ-
ent initial times, we have built a Lyapunov map. Each point in this map
corresponds to a Lyapunov exponent, L{Yij(t)}, calculated for the time
series, {Yij(t)}, starting from an initial instant, tij, up to an initial ranges,
dti, and increasing by one the successive series up to the discontinuity
point, tij+1, where the Lyapunov exponent goes from a negative value
to a positive value. These points, tij, where the convergent trajectory
becomes divergent, are called discontinuity points and indicate the
transition between stable and unstable regimes. As soon as the
Lyapunov exponents become positive, we identify the discontinuity
points as initial instants tij+1 of the new series {Yij+1(t)}. The procedure
is iterated for the {Yi

nj(t)} time series corresponding to the ti
nj point of

discontinuity. The index, i, represents a given initial range chosen
from a minimum (32 days) to a maximum value of 56 days not
exceeding the minimum non-local period in the wavelet transform cal-
culation.

Thus a Lyapunov exponent of a map with pixels (i,j) can be written
as

L Yj
i tð Þ

n o
¼ L Y Ric Δtji

� �
,Df Δtji

� �h in o
ð4Þ

where

Δtji ¼ tji, . . . , t
i
i þ dti, t

j
i þ dti þ 1, . . . , tji

� �
ð5Þ

Ric and Df are the RIC-index and the daily deaths per million of popula-
tion. In our case a Lyapunov map is made of 24 horizontal profiles, (1 <
i < 24); each profile is calculated using the initial range, dti = 31 + i.
Each horizontal profile is characterized by 1 < j < ni discontinuity
points where L{Yij(t)} change sign becoming positive. This procedure
allows us to visualize and identify the discontinuity points that are
independent from the assumed initial ranges, dti, in calculations.
Quantitative determination of the discontinuity points on the helicoid
3D trajectory is made by finding the discontinuity points in the
averaged profile of LLE, in themap. As for theWT analysis, the Lyapunov
Map is calculated on time series smoothed on Gaussian windows of 14
days, for avoiding higher frequencies due to the mentioned data collec-
tion possible artefacts.

4. Conclusions

We have studied the periodic recurrent waves of the pandemic
COVID-19 by analysing its contagiousness (RIC-index) and the impact
on country population (the daily deaths per million of population Df)
as a function of time in a 3D space parameter. The wavelet transform
approach shows that the pandemic periods are elongated during the
vaccination campaign. As a result, we present a chaotic helicoid-like
vortex behavior and a Largest Lyapunov Exponents map to represent
the evolution of contagiousness and impact of the COVID-19 pandemics.
Our unconvential chaotic map is obtained by calculating the time de-
pendent Largest Lyapunov Exponents of a reconstructed space made
of 3D orbits evolving day per day of fatalities number versus RIC-index.
The detection of any possible crossover from negative to positive LLE
5

gives the instability zones corresponding to the onset of new pandemic
waves. This provides a quantitative tool needed for prompt response to
appearing new waves due to a new mutant of the coronavirus.

In conclusion,we have found that vaccination increases the period of
the oscillations, which is crucial for the control action. However, further
work is in progress to monitor discontinuities points occurring in the
Largest Lyapunov Exponents map after the vaccination, related with
the appearing of the new variants and the duration of effectiveness of
covid vaccine. The use of the proposed approach in the containment
policieswill provide early warning to critical situations and quantitative
measure of the slowingdown the rate of diffusion of the virus during the
vaccination campaign.
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