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The finite element code NOSA (NOn-Linear Structural Analysis) has been developed by the
Mechanics of Materials and Structures workgroup with the aim of testing new constitutive models
for materials. It has moreover been applied to checking the algorithms used for integrating the
equations of motion, as well as other numerical techniques for solving structural engineering
problems.

The development of NOSA began in 1980 and has continued over the ensuing years along the
research lines of the workgroup. In 1996, the CNUCE Institute became a member of the Multi-
center Network for Computational Solid Mechanics (COMES). Since then, a large part of the
group’s development activities have been conducted within this framework, giving rise to the
COMES-NOSA code.

The first version of the code included plane, three-dimensional and axisymmetric isoparametric
clements [1] and allowed for elastic-plastic analyses in the presence of infinitesimal strains with

the work-hardening models described in [2]. The code has subsequently been extended to include



cases of finite strains and contact problems, based on studies performed on both the constitutive
equations [3, 4, 5, 6] and the methods for numerical integration of the equations of motion, in the
presence of follower forces [7, 8, 9]. At the same time, an eight-node thin-shell element was added
to the element library [10].

More recently, the constitutive equation for masonry-like materials has been added to the code
with the purpose of studying the static of masonry solids and modelling restoration and
reinforcement operations on constructions of particular architectural interest [11, 12, 13, 14, 15].
The code was then enhanced to be able to perform nen-linear heat-conduction analysis on solids
even in the non-stationary case, with boundary conditions concerning temperature and thermal
fluxes. Today, the code allows for thermo-mechanical analysis of no-tension solids whose
mechanical characteristics depend on temperature, in the presence of thermal loads [16, 17].

At the present, the development of the subroutines necessary for the dynamic analysis of masonry
structures is in its final stage of completion.

Development of the code has been made possible through the funding of C.N.R. (progetto
o iinalizzato Materiali Speciali per Tecnologie Avanzate, progetio
d funding of the region of Tuscany (structural funds and Regional
High Tech Network).

Over the past twenty years many engineering students at the University of Pisa have collaborated

on the development of the code as part of their degree or doctorate thesis preparation.

The following table presents the flow-chart for COMES-NOSA relative to non-linear static
analysis. The subsequent tables list, respectively, COMES-NOSA’s clements library and the

currently available constitutive laws.
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Element library

Type

Interpolation

Degrees of freedom

Plane stress

8 nodes, quadratic

2 displacements

Plane strain

4 nodes, linear

8 nodes, quadratic

2 displacements

Axisymmetric

4 nodes, linear

8 nodes, quadratic

2 displacements

Three-dimensional

8 nodes, linear

3 displacements

20 nodes, quadratic
Thin shell 8 nodes, linear for 3 displacements at corner
displacements, nodes +1 rotation
quadratic for rotations in the mid-side nodes
Thick shell 4 nodes, linear 3 displacements
+
3 rotations
Constitutive equations library
Linear elasticity Al types of elements

Elastoplasticity with small strain

All types of elements, but the shells

Elastoplasticity with finite strain

All elements with linear

interpolation, but the shells

Material with zero tensile strength and

infinite compressive strength

All type of elements

Material with zero tensile strength and

bounded compressive strength

All type of elements
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Static analysis of elastic-plastic solids with COMES-NOSA

The COMES-NOSA code enables performing static analyses of elastic-plastic solids even in the

presence of finite strains. The code permits the simulation of metal-forming processes, such as

extrusion, deep drawing, etc. In particular, it is possible to solve the problem of the contact

between a deformable body (the workpiece) and moving rigid surfaces (the dies). The algorithm

implemented into COMES-NOSA for solving such a problem differs from the most commonly

used methods in commercial codes in that:

1.

The incremental equilibrium equation is calculated for the current configuration of the
deformable body and thus given directly in terms of the Cauchy stress tensor.

The elastic-plastic constitutive response of the material is thoroughly described by an ordinary
differential equation system where the yield condition is stated in the deformation space; so no
prediction of the increase in stress is needed. Moreover, the system is numerically integrated,
taking, as initial conditions, those at the beginning of the load increment: in this way the
artificial unloading that may be produced by stress redistribution in a high stress-gradient zone
or by the motion of the node in establishing the right contact conditions is avoided.

The contact algorithm is based on direct application of boundary conditions, i. e., an automatic
procedure has been set up that translates, at each iteration, the contact conditions between the

workpiece and rigid dies into the appropriate conditions applied to the boundary nodes.

As an example, two applications of the contact algorithm implemented into COMES-NOSA, are

described. The first example concerns a bulge test carried out at CSM (Centro Sviluppo

Materiali). Subsequently, we shall analyse a case of deep drawing performed at the Fiat Research

Centre. For both cases experimental data is available.



Bulge test

The test concerns a thin steel disk, clamped along its boundary by a draw-bead between the
blankholder and die and subjected to pressure on one face. During its motion the disk rests on a
bearing which has a quarter-circle cross-section.

The geometrical and mechanical data are the following

Radius of the disk at the draw-bead level 132 mm,
Radius of the pressurised part 36 mm,
Radtus of the bearing section 11 mm,
Thickness of the disk 0.8 mm,
Maximum pressure 7.4 MPa,
Young’s modulus 2.110° MPa,
Poisson’s ratio 0.3.
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Figure 1. Bulge test apparatus.

Figure 1 shows a sketch of the experimental apparatus. The disk is made of high-strength steel.
Due to the lamination process, the material exhibits a certain amount of in-plane anisotropy which
has been neglected (nothing is known about the direction along the thickness). Several simulations
have been performed by considering both isotropic and kinematic hardening and using the

hardening curves shown in figure 2.



The disk has been discretised with 138 axisymmeltric four-node elements (two elements within the
thickness), and each run has required 196 load increments to reach the maximum pressure, and 83
increments to unload to zero pressure. The results obtained in purely isotropic hardening are
summarised in figures 3, 4, 5, 6 and 7. Figure 3 shows the final configuration of a disk section as
compared to its initial one. In figure 4 the axial displacements of the points of the symmetry axis
are plotted as a function of the pressure (the horizontal parts represent the unloading path). Figure
5 presents the final thickness of the sheet as a function of the undeformed radial distance. Lastly,
the final meridional strain is plotted in figure 6 vs. the initial radial distance, while figure 7 shows
the final circumferential strain vs. the radial distance.

The uncertainty in the experimental data in figures 6 and 7 is twice the measured standard
deviation, and the strains have been averaged over the thickness.

The discrepancy between the numerical results and experimental data can be explained by the fact
that, with the constitutive law we have adopted, the material response is too stiff at low strain
levels (below 0.1). In fact, from figure 4, we can see that at low pressure the calculated
displacement of the central point is much lower than the measured one, whereas in
correspondence of higher values of pressures the calculated and measured displacements coincide.
Moreover, behaviour that is too stiff at low strain implies underestimation of the final strains in
the disk’s external part and overestimation in its central part, as can be seen from figures 5-7. In
order to attain good agreement between numerical and experimental data, without changing the
constitutive law, we have used another hardening curve, that indicated in figure 2 as ‘meodified
curve’: it is similar to the curve of a mild, rather than high-strength steel. In fact, as can be seen in

the figures, very satisfactory results are obtained by adopting this modified curve.
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Figure 3. Disk final configuration.



Bulge test case
axial displacemsent of the pols vs, pressure

35+
-
E
25+
20~
15+ + superimantal dote
g ey g,
10+ — high ield ourve
5 — mdified curve
° ] [ ¥ | ¥ ] L] L
i} ki 2 ¥ 4 5 & 7
Preesura (Pg
Figure 4, Axial displacement vs. pressure.
Bulge fest cuwe
thickness ve. infilal radius
0. 70~
e *
asoe__* >
E‘a.sow
St
0.4~
0.30- + sxperimenta dota
— high yleld curve
0.20 — low yleld curve
0,104 "}~ modified curve
0.00 '
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A deep-drawing case

In order to check the performance of the contact and friction algorithm, we chose an axisymmetric
deep-drawing trial carried out at the Fiat Research Center, for which the experimental data is

available. The test case deals with a disk of FePO, steel pushed by a cylindrical punch with a

double curvature head: the total displacement of the punch is 65 mm. The experimental set-up is
shown in figure 8 and the material’s work-hardening curve is plotted in figure 9: the curve
represents an interpolation of the experimental values obtained from uniaxial tests on standard
specimens cut at different angles to the lamination direction. The disk was discretised with 158
axisymmetric four-node elements (two elements within the thickness); the mesh is finer near the
die in order to obtain better modelling of the contact conditions. Because the use of a fixed-force
blankholder is not yet provided for by COMES-NOSA, a fixed blankholder was used and, to
avoid ironing of the sheet, an initial gap of 0.5 mm was allowed between blankholder and sheet.
Moreover, a similar gap in addition to the sheet thickness, was left between the die and punch.
From figure 10, where the final configuration of the disk is compared with the initial
configuration, it can be seen that the sheet losses contact with the blankholder and comes to rest
on the die alone. In figure 11 the axial reaction force on the punch, calculated for different values
of the Coulombian friction coefficient, is plotied as a function of punch displacement and
compared with the experimental results. We can see that the best results are obtained for the
friction coefficient 0.2. Moreover, as expected, the maximum value of the force on the punch
moves towards higher displacements when a higher value is used for the friction coefficient.

Bearing in mind the arguments set forth in the previous example, it seems that the constitutive law
adopted can more realistically model the response of a material such as the mild steel used in this

case than that of the high-strength steel used in the bulge test.
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Static analysis of masonry structures with COMES-NOSA

Although masonry has been used in building for centuries, it is only in recent years that
constitutive models and calculation techniques have been available that enable realistic
description of the static behaviour of structures made of this anisotropic, heterogeneous material
whose response to tension is fundamentally different from that to compression.

Until a century ago all consolidation work on historical buildings was based exclusively on
considerations of an empirical nature. The advent of the industrial revolution and the ever-
increasing dominance of constructions in iron have rendered the mathematical theory of the
elasticity a formidable tool for the design and checking of metal structures. The success attained in
applying linear-elastic calculations to such structures elicited so much enthusiasm that the models
sometimes came to be employed in a rather arbitrary fashion to the study of masonry
constructions as well. On the one hand, this has hampered research efforts to further the work
begun in 18" Century on developing proper calculation techniques for masonry structures, while
on the other, it has contributed to breeding scepticism regarding the very possibility of modelling
the static behaviour of masonry buildings. For many years the fundamental studies on materials
not withstanding tension, begun in the 1920s, remained without practical application, and some
technicians operating in the field of restoration still hold linear-elastic analysis to be the main tool
at their disposal. Such an aititude has been further aggravated by the great complexity of all
constitutive equations studied for modelling the behaviour of masonry, which thus makes it
extremely arduous to determine explicit solutions for the equilibrium problems encountered in
reality. In fact, the first applications were developed only in the sixties and were restricted to limit
analysis of relatively simple masonry structures.

Recently, the availability of ever more powerful computers and sophisticated numerical
techniques for solving non-linear problems has reopened the debate on the possibility and
opportuneness of modelling restorative work on historical building with the aim of evaluating its
effects on the structures’ static before its implementation. Recent studies have led to a better
understanding of the constitutive equation of no-tension materials and the development of suitable
numerical techniques that have allowed its application to calculations of masonry structures.

The constitutive equation studied by the CNUCE workgroup on Mechanics of Materials and
Structures is based on the hypothesis that masonry is a non-linear isotropic material, having low

tensile strength and bounded compressive strength. More precisely, we assume that the
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infinitesimal strain E is the sum of three parts: an elastic part E® on which the Cauchy stress
tensor T depends linearly and isotropically, a positive semi-definite fracture strain E' and a

negative semi-definite crushing strain E°,

E=E°*+E'+E°, (1)
E'eSym*, E°e Sym™, E'‘E°=0. 2)
T = C[E°], (3)

where C is the positive definite symmetric forth-order tensor C = 2ul + AI®I, with j and A the
material’s Lamé moduli. I is the fourth-order identity tensor and I® I[A]=(trA)I, for every
tensor A, with I identity tensor. In (2) Sym"* and Sym~ denote the sets of all positive semi-
definite and negative semi-definite symmetric tensors, respectively.

Moreover, we assume that the eigenvalues of the stress belong to the interval [-6',6°] in which

the quantities o° and o' depend on the material and indicated the maximum resistance
q p

respectively, to compression and traction, respectively

T-o'Te Sym~, T+c°Ie Sym". 4)

Finally, we suppose that certain orthogonality conditions beiween fracture and crushing strains

and the stress tensor hold,

(T-o6'T)-E' =0, (T+0c°I)-E°=0. (5)

For ¢' =0 and ¢° =, we arrive at the classical masonry-like material, non-resistant to tension
and infinitely resistant to compression, for which no crushing strain occurs and the fracture strain

is orthogonal to the stress.
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The main properties of the constitutive equation have been investigated and proved, and solutions
for the two and three-dimensional problems have been explicitly calculated.

Despite the relative simplicity of this constitutive equation, determining the explicit solution to
equilibrium problems of any practical interest is nonetheless very difficult. Therefore, in order to
study real problems it is necessary to resort to numerical methods, particularly, the finite element
method. To this end, opportune numerical techniques have been developed. They are based on the
Newton-Raphson method for solving the non-linear system obtained through discretising the
structure into finite elements. Their application requires that the derivative of the stress with
respect to the strain be explicitly known, as this is needed in order to calculate the tangent stiffness
matrix.

The numerical method studied at CNUCE has therefore been implemented into the finite element
code COMES-NOSA which allows determination of the stress state and the presence of any
cracking, and moreover enables modelling to be performed of any potential consolidation and
restoration work, such as, for example, the fitting of chains.

The examples reported in the following, some of which were commissioned to the Mechanics of
Materials and Structures workgroup by public agencies, serve to highlight the potentials of

COMES-NOSA in real applications.
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The Baptistery of Volterra cathedral

The Romanesque Baptistery in Volterra, dating from the 10™ century, has an octagonal floor plan
(figures 12 and 13). The current dome crowning the Baptistery is not the original roof; it was
constructed in about 1427. It is brick masonry of thickness varying from 0.6 m at the keystone to
0.9 m at the springing. Over the years, the Baptistery has suffered cracking on the dome vault as
well as on the walls of the octagon. These latter have consequently risen by 2.75 m. In 1930

restoration and reinforcement was carried out, which included, amongst other measures, the

application to the cupola of two chains, respectively, of cross-section 4x7 cm? and 3x6 cm?, at
distances of 1.2 m (chain 1) and 3.4 m (chain 2) from the springing (figure 14). Another chain was
placed on the octagon walls just above the upper row of windows (chain 3). The positioning of the
chains was decided upon by considering the material to be linear elastic and applying the
calculation procedure proposed by Camillo Guidi in 1913. More precisely, a 22.5° wedge of arch
was considered and subdivided into 13 blocks, each 1.2 m in length. It was assumed that the
normal force to the lateral face of the blocks was exerted upon the barycenters of the block faces
themselves. Furthermore, the line of thrust was constrained to pass through the barycenters of all
blocks. Using this procedure, it was deduced that the circumferential compressive force increased
from the crown down to a certain height, after which it decreases to zero at parallel at 24° from
the springing plane. It was therefore decided to chain the cupola at the same parallel and place
another near the springing.

In 1995 the Baptistery underwent restoration work which included refacing of the vault’s roofing,
as it has been damaged by rainwater seepage. At the request of the Monuments and Tunnels
Authority of Pisa, Livorno, Lucca and Massa Carrara, the Baptistery has been studied by means of
the COMES-NOSA code, under the assumption that the material does not support tension. A
quarter of the monument has been discretised by using 3387 shell elements (figure 15); the
analysis has been conducted in two stages. In the first stage, the cupola is subjected to its own
weight. Figure 16 shows the deformed configuration as compared to the initial one: it is evident
that the thrust of the cupola on the springing wall causes meridian cracking, as has been found in
reality. In the second stage, the three metallic chains are activated, tensed by means of cooling by
75°C (carried out in 8 increments) and constrained to follow the masonry structure’s

displacements in the direction normal to it. Figure 17 shows the deformed configuration
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corresponding to chain cooling equal to 60° C. The compacting of the structure due to the action

of the reinforcement ringing is evident.
Figures 18, 19, 20 and 21 show the line of thrust along a vault rib without chains and with them at

different tension values. Figures 19, 20 and 21 refer to chain cooling of 25°C (case I), 50° (case

) and 75°C (case III}, respectively. The tension values in the chain are
Case |

N = 13500 N (chain 1)

N = 14500 N (chain 2}

N = 25000 N (chain 3);

Case II
N = 43000 N (chain 1)
N =46000 N (chain 2)
N = 59000 N (chain 3);

Case III
N =99000 N (chain 1)
N =106000 N (chain 2)
N =113000 N (chain 3).
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Figure 12. View of the Baptistery.
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Figure 18. Line of thrust in a vault rib in the absence of chains.

Figure 19, Line of thrust in a vault rib in presence of chains (case I).
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Figure 20. Line of thrust in a vault rib in the presence of chains (case II).

Figure 21. Line of thrust in a vault rib in the presence of chains (case III}.
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The Mosca bridge in Turin

The Mosca bridge over the Doria Riparia river in Turin was constructed in 1827. It consists of 93
voussoirs made of Malanaggio granite, has a span of 45 m, an intrados rise of 5.5 m and thickness
varying from 2 m at the springings to 1.5 m at the crown (figure 22). Mortar has been interposed
only in the first 11 joints at the springings and the 22 joints nearest the crown. The bridge was
studied by Castigliano (1879) with the goal of verifying the beneficial effects of mortar joints on
the behaviour of the line of thrust. In fact, Castigliano proved that when the mortar is accounted
for, the line of thrust is contained entirely within the middle third, while considering the arch ring
as a monolith leads to an eccentricity -value e at the springing of 0.557 m, as opposed to a middle
third value of 0.33 m, corresponding to an opening of 0.682 m at the extrados. In order to obtain
this last result, Castigliano considered a linear elastic material and used an iterative procedure.

Our goal is to determine the line of thrust by using the COMES-NOSA code, under assumptions
of infinite compressive strength and nil tensile strength. The arch ring is considered to be a
monolith subjected to a plane strain; it is discretised into 800 elements with four nodes and four
Gauss points, arranged in eight longitudinal lines, each consisting of 100 elements. The amount of
loads is equal to that considered by Castigliano in his study, but rather than concentrating the total
load in 12 points, we have assigned the weight of the arch ring as a body force and the rest of the
load (the permanent load and the overload) has been distributed on the extrados. Figure 23 shows
the behaviour of the line of thrust. Once the stress state has been determined through the COMES-
NOSA code, we calculate the normal force N and the bending moment M in each normal section
of the arch by means of an integration composite trapezoidal open rule using 50 intervals. In order
to draw the line of thrust, the eccentricity e i. e. the signed distance of the line of thrust from the
mean line of the arch is obtained from the well-known formula ¢ = M/N.

The line of thrust is contained entirely within the middle-third except in the region delimited by
the springing and the normal section 2.87 m from the springing, that is, the approximate region of
the first six voussoirs. In particular, the eccentricity value at the springing is 0.616 m, with a

corresponding opening of 0.848 m at the extrados. The horizontal component of thrust at the

abutments is 3.963 10° N/m; this is 17% higher than Castigliano’s result (3.2728 10® N/m). The
greatest compression stress is obtained at the extrados in the springing and has the value of 7.6
MPa. The region characterised by the opening is illustrated in figure 24, where the isostatic lines

are also drawn.
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Figure 22, Mosca bridge.

Figure 23. The line of thrust for Mosca bridge.
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Figure 24. The isostatic lines near the springing,
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The proscenium arch of the Goldoni Theatre in Livorno

The aim of this research was to determine the static conditions of the proscenium arch of the
“Goldoni” theatre with the purpose of assessing its safety. To this end, the structure’s geometry,
loads and state of cracking were analysed, and studies of its masonry and surrounding terrain
performed. Then, numerous static analyses of the proscenium arch and its relative piers were
carried out. The results, viewed in relation to its current state of cracking, have allowed us to make
some hypotheses about the causes of the structure’s instability and evaluate the effective safety
margin remaining,.

Construction of the Goldoni theatre was entrusted to the architect Giuseppe Cappellini (1813-
1876} and took four years to complete (1843 to 1847). The building (figure 25) is about 80 meters
in length, 40 in width and reaches a maximum height of 25 m, It has a horseshoe-shaped main
auditorium. The stage area is separated from the auditorium by a masonry arch, connecting the
ends of the “horseshoe” at the gallery level and supported by two box structures, holding the first

two rows of loges nearest the stage.
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Figure 25. Schematic floor-plan of the theatre at the third tier.

The study performed was prompted by the evident signs of instability in the structure of the

proscenium arch. In fact, considerable cracking can be noticed at the level of the arch springings,
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especially on the right side (as viewed from the theatre entrance), as well as on the upper part of
the supporting pillars, the stage perimeter walls and the inner and outer surfaces of the plastered
walls above the arch. The most significant are those that originate at the springings and course
vertically upwards to arrive as far as the roof and those present on the walls supported by the arch.
Some of these have evidently developed in correspondence to architectural discontinuities, such as
niches and discharging arches, but the worst parts seem to involve the arch itself.

'The proscenium arch is made up of a cylindrical barrel vault, 3.94 m wide with a net span of 18.7
m, made of brick masonry. It is a raised arch set at the height of 14,7 m from the ground on two

box structures housing the vertical rows of theatre boxes flanking the stage.
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Figure 26. Sections of the structure of the proscenium arch.

The piers, as can be seen in figure 26, are trapezoidal in shape: for geometric reasons, each
narrows towards the audience side in order to widen the proscenium opening; the wall on the stage

side therefore results to be longer than that on the auditorium side.
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Two parallel stone and brick masonry walls (one 60 cm, the other 73 cm) are set lengthwise on the

vault to sustain the roof and, therefore represent the virtual continuation of the piers’ lateral walls.

Figure 27, Vault lateral profile.

The intrados shape can be best described as a tricentric curve with radiuses of 4.30 m, 12.70 m
and 9.65 m from the springings to the keystone, though it can be approximated quite well by the
arc of a circle of radius of about 10 m, whose centre is set 3.45 m below the level of the springings
(figure 27). The exirados, as observed from the stage side, runs parallel to this curve but is offset;
in fact, the thickness progressively decreases, from a maximum of 121 cm at the springings to a

minimum of 58+60 cm at the keystone.
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Figure Z8. General layout of the arch.

Moreover, the arch does not rest on the springings for its full width, but ends in a small transverse
arch, whose span is 2.5 m, that directs the stress flow onto the two longitudinal walls of the piers;
an ogival counterarch completes the springings, as shown in figure 28.

For the purposes of its static functioning, the complex structure described in the foregoing can be
considered to be symmetrical along the longitudinal plane, and the large vault can be thought of as
made up of two parallel load-bearing arches that connect the extremities of the pier walls. The
simplified calculation model adopted in this study is based precisely on this consideration.

The structure of the proscenium arch has been studied using different plane and three-dimensional
models under different loading conditions. From the geometrical point of view, all are
symmetrical. Thé three-dimensional model has been useful above all because it has provided
indications of a qualitative nature that underpin the use of the two plane models. We have limited
the study to a plane structure composed of one of these two arches. Specifically, we have chosen

the one on the stage side with its corresponding pier walls, because it is the more highly loaded of

the two (marked off by the dashed line in figure 29).

Figure 29. Plan of the proscenium arch (dashed box indicates the modelled part of structure).



38

The first plane model regards the 0.73 m-thick stage-side arch set on its relative pier wall, which
i8 0.75 m in thickness. In profile, the arch is can be schematised as the vault shown in figure 30:
the pier wall has a height of 14.75 m and width of 10.22 m. The structure is clamped at the base
and constrained by symmetry conditions with double pendulums with horizontal-axis at the

keystone.
‘The mesh is made up of 4403 plane 8-node elements, for a total of 27396 degrees of freedom; the

analysis has been conducted assuming the structure to be subjected to a state of plane stress.
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Figure 30. Model 1.

In the second plane model, we also discretise the walls superincumbent on the arch and pier. The
thickness of the arch and overlying wall is 0.73 m, while the thickness of the pier and its wall is
0.75 m.

From analysis of the state of cracking of the walls incumbent on the arch (figures 31 and 32), it
turns out that the wall portion near the keystone is completely separate from the rest of the
structure and acts only as a weight on the vault itself. For this reason, this part of structure has

been eliminated from the model and considered as a distributed load on the arch (figure 33). As in
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model 1, the structure is fixed at the base and constrained by symmetry conditions at the keystone

with double pendulums with horizontal axis.
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Figure 31. Cracking state, audience side.
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Figure 32. Cracking state, stage side.

The mesh is made up of 6061 plane 8-node elements, for a total of 37096 degrees of freedom; the

analysis has been conducted assuming the structure to be subjected to a state of plane stress.



Models 1 and 2 have been used to examine a number of situations by assigning different values of
Young’s modulus to the various constituent masonries. This was done with the aim of evaluating

the strength contribution of the walls overlying the arch, as well as the influence of the pier’s

arco

paretl

Figure 33, Model 2.

deformability. Specifically, the followings four cases have been considered:

Model | Epier (daN/em”) | Earen (daN/ecm®) | Eyan (daN/cm?)
Case [ 1 30000 50000 —
Case I |1 15000 50000 —
Case Il |2 30000 50000 10000
Case IV |2 30000 50000 1000
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where Epjer, Euen and Eyan indicate the values of Young’s modulus used for the masonry
constituting the pier, arch and walls overlying both, respectively. In all cases, it is assumed that v
=0.1.

With the aim of assessing the effects on the structure of eventual subsiding of the terrain, in all
cases considered, after conducting the analysis in the sole presence of the loads described above, a
vertical displacement & was applied on the external corner of each pier (figure 34). The

displacement is equivalent to an infinitesimal rigid rotation

U.-:f )

where L = 10.22 m is the pier’s thickness, The vertical displacement & is applied incrementally in
steps of 0.5 cm up to a maximum value that, in light of the ground characteristics, was assumed to
be equal to 8 cm.

Although it is realistic to assume that any subsiding of the right and left piers would be unequal, a
numerical study (not presented her for brevity’s sake) has revealed that such differences do not
have any substantial influence on the results of the analysis. We have therefore limited the
following description of the results obtained to the case of symmetrical settling of the two piers
(figure 34).

Figure 34. Displacement applied to the piers.

In the following we shall report the results relative to case I alone.
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Case 1
In this case the strength contribution of the walls superincumbent on the arch and pier is

considered nil; the assumed elastic moduli are:

Earen = 50000 daN/cm?® arch masonry Young’s modulus,
Ejier = 30000 daN/cm? pier masonry Young’s modulus,
v=0.1 Poisson’s coefficient,

and the load conditions and constraints are the same as in the first model.
The stresses obtained through the finite-element analysis are used to calculate (for the arch alone)
the normal strength N, the bending moment M, the shear stress T, the ratio T/N and, through

analysis of the combined compressive and bending stresses, the maximum stress 0,,and height a

of the non-reacting portion of the section.
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Figure 35, Anomalies at the offsets.

The following figures show the line of thrust in the arch, the isostatic lines and the principal

compressive stress pattern in the pier and the arch for 6 =0.



Figure 36, Line of thrust for O =0cm. CaselL.

Figure 37. Isostatic lines for & =0 cm. Case L
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Figure 38. Distribution of the principal compressive stresses (daN/m’) in the pier for & = 0. Case L.
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Figure 39. Distribution of the principal compressive stresses (daN/m®) in the arch for 5 =0cm. CaseL

It can be observed that neither the normai force N nor the shear force T present appreciable
variations, with changing & . Instead, an increase in the bending moment M is found, especially in
correspondence to the first offset, together with the maximum compressive stress G, which, for 0
= 32.59, varies from 71 daN/cm? for & = 0, to 129 daNfem? for 8 = 8 cm. An increase in the
value of o, with increased subsidence is also found at the keystone. It is important to observe
that, even in the absence of rotation, when the contribution of the walls overlying the arch and
piers is neglected, very high maximum compressive stress results; naturally with increasing & the
situation worsens rapidly.

It should also be noted that T/N, which remains nearly constant with varying &, equals about 0.5
in the proximity of springing. Such a high value is due to the simplified scheme used in model 1,
which neglects the contribution made by the wall overlying the pier to containing the thrust of the
arch at the springing. This contribution ranges from 99100 daN for 8 =0 to 94200 daN for & =8

.
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Finally, in the proximity of the second offset, the height of the resistant section of the arch
diminishes from 54 ¢cm for 6 = 0, to 29 cm for 8§ = 8 cm. In effect, as can be gathered by
observing the state of cracking a large part of the arch’s section turns out to be non-operational in

correspondence to the haunches.
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The Medici arsenal in Pisa

At request of the University of Pisa, a study was conducted of the Medici arsenal using the
COMES-NOSA code. The aim of the study was to model some restorative operations to improve
the structure’s seismic resistance, evaluate their effectiveness and allow making the best choices
in order to guarantee the safety and functionality of the building, which is destined to house
university classrooms in the future.

In the 16" Century the de’Medici assigned the role of second city of the new “State” to Pisa by
virtue of its age-old and illustrious history as a maritime republic and its strategic position on the
Tyrrhenian sea. The city had a centuries-old tradition of ship-building. The north-west bank of the
Amo river and a vast area surrounding it had been given over to this enterprise when it was
decided to fortify the zone by constructing a true citadel to defend against access from along the
river on the city’s western end. Within the citadel’s interior was housed “the republican arsenal”, a
structure originally used as a factory, nearly entirely buried now, constructed in the forms and
malterials typical of medieval Pisan architecture. This building and its relative dock were deemed
unsuitable to satisfying the plans to create a great new fleet, so it was decided to establish the new
arsenal here. The choice of the location fell on the area overlooking the Amo running
approximately from the entrance to the bridge of the Citadel to the churches of Sant’ Agnese and
San Vito, which was taken up partly by the monastery of the former church and given over to
Gardens (il Giardino dei Semplici).

The building, which was arranged in eight aisles (figure 40), had a simple enough structure:
pillared arches, saddle roof with wooden counterlath set on purlins and rafters and roof covering
in keeping with traditional Tuscan architecture. The arches were devoid of chains so as not to
obstruct construction of the galleys above; the thrust of the transverse arches was supporied on
one side by the aisle abutting on the church of San Vito and on the other, by a small additional
aisle set scarp buttres fashion. As has also been corroborated by essays from the time, the inside
arcades were completely free, without that fire-stop walls that Alberti suggested were present, just
as the overlooking arcades were also open to the river. The contribution of Bernardo Buontalenti
to this shipyard has been attested to: Baldinucci reports that the renowned architect provided
“planning and assistance”, and perhaps also the design of the beautiful Medici coat of arms with
the the still visible cardinal’s insignia of Ferdinando set on a sail in the center of the fagade

bearing the date 1588.
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Figure 40. View of the Medici arsenal overlooking the Arno.

After the complex had outlived its usefulness as an armory, it suffered many losses and underwent
many modifications. In the late 18" Century external buffering of the arches was performed and
the floor level was raised with a stone pavement in order to create horse stalls. On this occasion
seven bays adjacent to San Vito were demolished to create a new courtyard, and the roofs of the
last three aisles to the west raised to bring them to the same height as the others, thereby
increasing the walls above extrados of the arches. Still more serious damage was inflicted during

the last war, with loss of the western aisle, including the section flanking it.

Figure 41. Series of arches making up the current structure of the arsenal.
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The structure, whose architectural merits appear evident even today, is made up of a set of pillars
surmounted by full ogival arches (figure 41). The series of parallel arches on the building’s main
fagcade (W-E direction) have an average height at the keystone of about 8.7 m, while those laid
parallel to the aisles’ axes have a height of about 4.7 m; from the third aisle onward, these are for
the most part closed in by masonry walls. The one exception to this is along the direction of the

“roadway” that crosses the entire arsenal from west {o east. In this direction, the series of arches in

the first four aisles (beginning from the west) form an angle of 15° with those in the N-S
direction. The arches of the fifth and the sixth aisles, on the other hand, are orthogonal to each

other; this is owing to the fact that each series of arches arranged in the W-E is rotated

counterclockwise by 15° in correspondence to the fifth pillar,

Currently the structure is devoid of any sort of buttress able to sustain the thrust of the arches. On
the building’s western side, an attempt was made to compensate, at least partially, for this
situation by chaining the arches of the last aisle. Recently, restoration work has been initiated by
the Soprintendenza per i Beni Ambientali Architettonici Artistici e Storici of Pisa and, as part of
the re-roofing operations, the filling material has been substituted with reinforced concrete beams
above each series of arches along both the W-E and N-S directions. Such reinforced concrete
beams remain to be inserted on all the arches of the western aisle and on nine arches of the eastern
aisle.

The effects of seismic actions directed parallel to the building’s main fagade have been
determined (earlier studies had in fact revealed that therc are no static problems with regard to
actions parallel to the aisles’ axes.) To this end, the structure has been analyzed, in its current
state, as well as with retaining structures applied to the E and W sides of the building and with the
application of both retaining structures and chains. The action of an earthquake is simulated by a
horizontal body force, constant throughout the structure’s height. Since, given its dimensions, it is
impossible to arrive at a finite-element model of the whole structure, it was decided to analyze
that part, made up of three series of arches, situated immediately to the north of the roadway. This
part of the building was measured and subjected to experimental materials tests.

The finite-element code COMES-NOSA has been applied to analyzing the structural behavior of
the building subjected to its own weight, the weight of the roofing and a horizontal load parallel to
the building’s main fagade. In order to discretize the structure, a non-conforming shell element
with eight nodes was used, based on the Kirchhoff-Love hypothesis.

The reinforced concrete beams, as well as the steel beams making up the retaining structures and

chains have been assumed to be linear elastic. The masonry, on the other hand, has been
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considered an elastic material not withstanding tension, for which the following parameter values,
deduced through laboratory tests performed at the University of Florence Constructions

Department on materials sampled on the arsenal, have been used:

Young’s modulus of the masonry E m = 4.5 104 daN/cm?2,
Poisson’s ratio of the masonry Vi, =012,
Ultimate compressive stress of the masonry o, =100 daN/cm?2.

The structure has been studied under three different conditions:

(a)  in the presence of retaining structures applied to the eastern and western sides of the
building,

(b)  in the presence of retaining structures as in point (a), together with chains fitted in the W-E
direction and connected to the retaining structures and pillars,

(c) in the structure’s actual state, neglecting the existing chains on the western aisle.
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Figure 42.

COMES-NOSA code.
The part of structure considered first is made up of three series of arches parallel to the building’s

main fagade, indicated in figure 42 by the rows of pillars la-7a and lc-7c. Metal retaining

structures were fitted to each series of arches. As this was a preliminary study, accurate planning
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of these structures was not performed; each has been schematized as made up of two beams and a
plate adhering perfectly to the pillar and overlying filling material.

Overall, 25185 elements were used, for an approximate total of 150000 degrees of freedom. The
dimensions of the mesh needed to discretize the three series of arches render the calculations
extremely onerous. Therefore, in order to study cases (b) and (c), a simpler structure has been
considered, that is, one made up of a single series of arches to which some elastic side suppoyts
were added, one for each pillar, to simulate the action of the masonry walls. The analysis in point
(a) was repeated by applying the model to three series of arches, and the good agreement between
the results obtained using the two different models bears out the validity of employing the
simplified model in cases (b) and (c).

In all the cases considered the bases of the pillars are clamped. In case (b) the chains, set at a
height of 4.16 m from ground level, have an extensional stiffness of 1.89 10" daN and are
connected to both the retaining structures as well as the individual pillars, to which they are
connected by steel plates. The chains have been assumed to have a pretension level of about 2000
daN.

The structure’s own weight is applied as a vertical body force calculated on the basis of each
material’s corresponding specific weight (1800 daN/m’ for the masonry, 2500 daN/m’ for the
reinforced concrete and 7800 daN/m’ for the steel). The overall weight of the roofing is assumed
to be 180 daN/m” and is applied to the structure by opportunely increasing the specific weight of
the reinforced concrete beams set in the W-E direction.

The horizontal load, which simulates the action of an earthquake, is assigned as a body force and,
given the structure’s modest dimensions, is assumed constant throughout its height In each case,
the loads have been assigned incrementally. The vertical loads are applied at the first increment,
while the horizontal loads are assigned over the subsequent increments by progressively
increasing the ratio C between horizontal and vertical loads up to 0.28, with a step of 0.035 for
each increment.

The numerical results obtained using the COMES-NOSA program have been analyzed according
to the following scheme. Firstly, we consider case (a), studied using the three-arch-series model,
and subsequently, take up cases (b) and (c) performed through the simplified model. For each case
and every load increment we determine:

I. the reacting section at the base of each pillar, the maximum compressive stress attained

and the mean shear stress;
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2, the significant internal forces on the reinforced concrete beams set in the W-E direction, in
order to determine the stresses in the chains and concrete.
Moreover, for case (a) we have studied the behavior of the arches in the W-E direction, as well as
that of the masonry walls, the reinforced concrete beams in the N-S direction and the retaining
structures. Subsequently, we determine the excess probabilities of some quantities deemed
particularly important to assessing the building’s safety.
Case {(a}
From the stresses obtained for each pillar with the finite-element analysis we have calculated the
normal force N, the bending moment M, acting on the mean plane of the pillar, the bending
moment M, perpendicular to M, and the shear force T, parallel to the mean plane. At the base of
the pillars considered the maximum compressive stress sgm has been calculated, with an analysis
of the combined compressive and bending stress, and the mean shear stress tgm on the reacting
section. The greatest values of sgm are found at the base of pillars 5 and 6. This is owing to the
fact that the stress center at the base of these pillars is also eccentric in the direction orthogonal to
the mean plane because of the 15° rotation of the last two arches with respect to the preceding
ones.

The highest shera stress values are found at the base of pillar 5. With regard to the
reinforced concrete beams, no significant differences have been found between the results from
beams belonging to different rows of arches. The most highly stressed chains are the upper ones

on beam 1 and the maximum tensile stress sgtl reaches the admissible stress value o, = 2200

daN/em® at C = 0.13 and the yield value 0, = 4400 daN/cm’ at C = 0.22,

Case (b)
Also in this case (structure fitted with both retaining structures and chains, analyzed with the
simplified model) the most elevated vaiues of sgm are found at the base of pillars 5 and 6.

As in the preceding case, the most stressed chains are those on the first beam. For C =
0.21, the results do not differ significantly from those obtained in case (a), while for C = 0.28, the
maximum value of sgtl was found to be lower by about 18%. The maximum tensile force in the

chains for C = .28 results to be about 3500 daN.

Case(c)



54

In this case (structure in its actual state, though devoid of the chains on the western aisle, analyzed
with the simplified model composed of a series of arches with no retaining structures), the
horizontal load has been applied only for C = 0.21. The absence of the retaining structures also
allows analyzing the data relative to pillars 1 and 7. The highest values of the maximum
compressive stress sgm are at the base of pillars 5, 6 and 7; at the base of pillar 7, this reaches the
value of 93 daN/cm’ at C = 0.21. In this case the most highly stressed reinforced concrete beam is

the fifth one.
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Figure 43. Comparison of the sgm pattern as a function of C, in cases (a), (b) and (c).

Figure 43 presents a comparison of the values of sgm obtained in cases (a) (continuous line), (b)
(dotted line) and (c) (dashed line). The data is relative to pillar 5 in cases (a) and (b) and pillar 7 in
the case of {c).

The data relating to the seismic risk in Pisa have been drawn from the catalogue compiled by the
National Group for Earthquake Defense of the C.N.R and developed within the framework of the
collaboration agreement between the Research Institute on Earthquake Hazard of the C.N.R and
the Tuscan regional Department of the Environment.

The graph in figure 44 allows determining the probability that an earthquake with ground

acceleration equal to or greater than y g occur in the intervals of time AT = 50 years (continuous
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line), 100 years (dotted line) and 500 years (dashed line) for each value of y (ratio between

ground acceleration and that of gravity, g = 10 m/sec’).

P 15400 1
1,501 1.
1,E-02
1,E03

1,604 |

1,605

1LE06 Lo

0 0,05 0,1 0,15 0,2 0,25 03 0,35 ¥

Figure 44. Probability that an earthquake occur with ground acceleration equal to or exceeding Y g, for AT =
50 years (continuous line), 100 years (dotted curve) and 500 years (dashed curve). Ordinates are in logarithmic

scale.

Given the modest height of the building, it appears reasonable to assume that the horizontal

acceleration at each elevation does not exceed twice that at the ground. We may therefore set C =
2y. For each value C, of C and for each time interval AT, let us indicate by P,r(C=Co) the
corresponding probability of exceeding such value. In other words, P, (C2Cp) is the probability
that in a period of AT years, the ratio between the horizontal and vertical loads acting on the
building is equal to or greater than C,. Knowing the value of P, (C=Cp) with varying C, and
from the results of the numerical analyses, it is easy to deduce the excess probabilities sgm, tgm,
sgtl, etc, for an interval of AT years. Figure 45 plots the curve of Py (sgm=sgmQ) (the excess

probability of sgm, (daN/cm®) for a 100-year period) with varying sgm,, for cases (a) (continuous

line), (b) (dotted line) and (c) (dashed line).
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Figure 45. Comparison of the behavior of Pygp(sgm =sgimp) as a function of sgm, in cases {a), (b) and (c). The

erdinates are in logarithmic scale.

Regarding the reinforced concrete beams, the probability of exceeding the admissible, yield and
ultimate stresses in the chains over a 500-year period are respectively 15%, 5 %e and 4.2 %o for
case (a), 20%, 5 %o and 3.25 %o for case (b), and finally 42%, 9.6% and 4.9% for case (c).

The analyses performed have underscored the need to carry out consolidation and seismic
modifications on the building. It is in fact sufficient to observe that, in its current state, there is a
3.3% probability that within 100 years an earthquake will occur whose intensity is high enough to
determine a compressive stress level twice that of the ultimate stress at the base of some of its
pillars. Moreover, by simulating two different types of reinforcement measures we have been able
to evaluate the improvement that each would bring about in the building’s response to seismic
loads. In fact, from the results it appeared necessary, at the least, to proceed with the fitting of
retaining structures on both the western and eastern sides of the building, bearing in mind, the fact

that it is currently lacking any buttress whatever able to sustain the thrust of the arches. This
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consolidation work has reduced the maximum stress at the base of pillar 5 by 53 daN/cm’ for C =
0.21 and cuts down the probability of exceeding half the ultimate stress in 100 years to 8 x 10™.

A further significant finding is that, although chaining the arches can provide significant further
improvements in terms of increased stability, the effect, as can be concluded from figures 44 and

45, is decidedly inferior to that obtained by the retaining structures alone.
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No-tension materials in the presence of thermal expansion

In many applications it is necessary to model the behaviour of solids not withstanding tension in
the presence of thermal dilatation. For example, molten metal production processes, in particular
integrated steel manufacturing, require refractory linings able to withstand the thermo-mechanical
actions produced by high-temperature fluids.

However, there are many other enginecring problems involving no-tension solids in which
thermal dilatation must be accounted for: consider, for example geological problems connected
with the presence of a volcanic caldera, such a that of Pozzuoli, or the influence of thermal
variations on stress fields in masonry bridges. In many such cases the thermal variation is so high
that the dependence of the material parameters on temperature cannot be ignored.

Firstly, we have studied a constitutive equation for isotropic no-tension materials in the presence
of thermal expansion that accounts for the temperature-dependence of the material’s parameters.
This constitutive equation can model the behaviour of a number of refractory materials. In
particular, we assume that the thermal expansion is a spherical tensor depending on temperature,

B(6)T, that the total strain minus the thermal expansion is the sum of an elastic part on which the

stress, negative semi-definite, depends linearly and isotropically, and a positive semi-definite
inelastic part orthogonal to the stress. We thereby obtain a non-linear elastic material conforming
to a masonry-like material in the absence of any temperature change.

Subsequently, we have studied numerical techniques for the solution of the equilibrium problem
of no-tension solids in the presence of thermal expansion, and these have been implemented in the
COMES-NOSA. The code has then been applied to the study of a spherical container subjected to
two uniform radial pressure acting on the inner and outer boundary and a steady temperature
distribution — a problem for which the solution has been explicitly calculated. Lastly, a masonry
arch subjected to temperature change and a converter used in the steel and iron industry have been

examined.,
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Spherical container subjected to two uniform radial pressures and a steady

temperature distribution

A spherical container of inner radius @ and outer radius b is subjected to two uniform radial

pressures p, and p, acting respectively on the inner and outer boundary, and to a steady

temperature distribution O that varies with the radius ,

b—a r b-a

r)=

where 6, is the reference temperature, 9, e 8,, with 8, > &, are defined by %; =6, -0, and
8, =0, -0,, with 8, =8(a) and 8, = 6(b), respectively. We assume that the thermal expansion

coefficient B is
B(O) =a(8-8,), (M

with o constant; Poisson’s ratio is zero and finally, Young’s modulus is a decreasing function of
temperature
ab(6, —9,)

b—a
E®) =0 , (22)
- b, —ab, 8,

b-a

where w=—L isa positive constant. By virtue of (6) we have
a

E(ry=E@@Fr)=or, 8

in particular E(a) =E, , E(b) = P—E, > E,.
a

It is possible to arrive at the solution to the equilibrium problem, specifically, the stress state,

displacement and inelastic strain.
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With the aim of comparing the explicit solution with that calculated using the COMES-NOSA
program, half the container has been examined by discretizing it with 800 axisymmetric elements
with 8 nodes and 9 Gauss points. In Figure 46, 47, 48 and 49 the explicitly calculated stress
components, radial displacement and tengential inelastic strain are represented by the continuous
line, while the corresponding quantities determined numerically at the Gauss points are indicated

by the asteriks. The graphs have been obtained by using the following parameter values

a=1m,
b=2m,
v=0,

E, =2.510° Pa,

o=1.107° CC)y?’,

p, =1, 10° Pa,
p, = 0.4 10° Pa,
8,=30.°C,

9, =400.°C,

9,=-10.°C.
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Figure 46. Comparison of radial stress values calculated explicitly and through COMES-NOSA.
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Figure 47. Comparison of tangential stress values calculated explicitly and through COMES-NOSA.
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Figure 48. Comparison of radial displacement values calculated explicitly and through COMES-NOSA.
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Figure 49. Comparison of tangential inealstc strain values calculated explicitly and through COMES-NOSA.
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Masonry arch subjected to its own weight and a uniform temperature variation

A circular masonry arch having mean radius of 110 cm and thickness of 20 cm has been
discretized with 4800 plane stress elements. The arch, whose springings are fixed, is subjected to
its own weight. The reference temperature is 8,=30° C, and the arch is subsequently brought to a
temperature of - 10° C. The elastic constants are independent of temperature and are E = 5000

MPa, v=10.1, while the coefficient of thermal expansion is B(8) = a(0-0,), with o = 1. 107% (°
C)™'. In the first load increment only its own weight was assigned; the temperature variation was

introduced over the following four load increments.

Figure 50 and 51 show the lines of thrust, respectively, for the arch subjected to its weight alone
and the arch subjected to its own weight plus a temperature variation of - 40 ° C.

The lowering of the crown relative to the first and the fifth increment is 4.07 107 cme 1.02 10
cm, respectively, while the thrust at the springing is 57.6 N in the first case and 54.02 N in the

second.

Figure 50. Line of thrust of the arch subjected to its own weight.
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Figure 51. Line of thrust of the arch subjected to its own weight and temperature variation of- 40° C,
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Converter

A converter used in the iron and steel industry was studied. It is subjected to its own weight and a
high thermal gradient. The converter, having axial symmetry, has been discretized using 5068
eight-node axisymmetric elements (figure 52), for a total of 16803 nodes. It is made up of an outer
steel casing, plus a wear layer and protective lining, both made of refractory materials, though
with different characteristics (figure 53). For the refractories, Poisson’s ratio is zero, while

Young’s modulus varies with temperature. The thermal expansion coefficient B(@) is

temperature-dependent, varying as a linear function for the refractories, but a quadratic one for the
steel. The converter is subjected to its own weight and the temperature distribution shown in
figure 54. Concerning the boundary conditions, we have imposed symmetry conditions and
assigned nil axial displacements to the cylindrical part of the converter (figure 51) in
correspondence to the suspension trunnions. Two thermo-mechanical analyses have been carried
out: one, considering the refractory to be a material not withstandind tension, the other, modelling
the refractory as linear elastic. In both the cases, the steel has been assumed to be a linear elastic
material. The results of the analyses have been compared in order to reveal any differences in
behaviour.

With regard to the stress field, the regions subjected to tensile stresses in the linear analysis are
characterized by nil stress in the non-linear one. Moreover, although the stress fields in the other
regions are essentially equal in the two cases, the maximum compressive stresses in the non-linear
case are slightly lower. For comparison’s sake, figures 55 and 56 show the deformed
configuration superimposed upon the initial one for the two analyses. In the case of non-linear
behavior, a greater displacement of the lower part is observed.

Disregarding the filling zones, it can be observed that fractures (figures 57 and 58) are
concentrated in the protective layer, and will close up during the operational lifetime of the
converter. Thus, the foregoing numerical analysis confirms the converter’s safety. Moreover, the
presence of fractures near the inner surface and parallel to it can be explained by the so-called
“onion peeling” mechanism that every converter exhibits at the beginning of its operation.
Regarding the steel container, the areas subjected to the greatest stresses are located near the lower
elbow, under the thick reinforcement ring. The calculated stress levels in this zone show that an

elastoplastis analysis would have yielded good results. Despite such simplification, the predictions
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have been substantiated. In fact, at the end of their opérational lifetime, such converters exhibit the
greatest problems precisely in the area of the inferior elbow.

The availability of a constitutive equation suitable to modeling refractory behavior, togheter with
the numerical techniques necessary to achieve realistic evaluation of the thermo-mechanical
behavior of a steel-manufacturing plant’s components contributes to reducing the risks and

uncertainties associated to the design and control of such plants themselves.
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Figure 52, The converter discretized into finite elements.
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Figure 53. Detail of the converter: wear layer, protective lining and steel casing.
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Figure 54. Temperature distribution in the converter,
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Figure 56. Displacements magnified 10 x, non-linear elastic case.
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Figure 57. Fracturing pattern along the meridional planes.
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Figure 58. Fracturing pattern along the planes orthogonal to meridians.
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