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Chapter 1

Chimera states in pulse coupled neural
networks:
the influence of dilution and noise

Simona Olmi and Alessandro Torcini

We analyse the possible dynamical states emerging for two

symmetrically pulse coupled populations of leaky integrate-and-fire

neurons. In particular, we observe broken symmetry states

in this set-up: namely, breathing chimeras, where one population

is fully synchronized and the other is in a state of partial
synchronization (PS) as well as generalized chimera states,
where both populations are in PS, but with different levels
of synchronization. Symmetric macroscopic states are also
present, ranging from quasi-periodic motions, to collective
chaos, from splay states to population anti-phase partial
synchronization. We then investigate the influence disorder,
random link removal or noise, on the dynamics of collective
solutions in this model. As a result, we observe that broken
symmetry chimera-like states, with both populations partially
synchronized, persist up to 80% of broken links and up to
noise amplitudes ~8% of threshold-reset distance. Furthermore,
the introduction of disorder on symmetric chaotic state has
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a constructive effect, namely to induce the emergence of

chimera-like states at intermediate dilution or noise level.

1.1 Introduction

The emergence of broken symmetry stat€hilfera states) in population of os-
cillators or rotators is an extremely popular and activeaesh field nowdays, in
particular after that experimental evidences for the exist of these states have
been reported in several contexts ranging from ensemblegodfianical oscillators,
to laser dynamics, to populations of chemical oscillatéws 4 recent review on the
subject se€ [14]). Chimera states in neural systems havdibstty reported by Sak-
aguchi for a chain of nonlocally coupled Hodgkin-Huxley retedwith excitatory
and inhibitory synaptic couplin@ 18], while the first evit of chimeras in models
of globally coupled populations has been reported_in [12]daky integrate-and-
fire (LIF) excitatory neurons. More recently, chimeras ifrldetworks have anal-
ysed in different contexts, ranging from small-networkdlmgy [17], to chains of
non-locally coupled LIFs with refractorine$s[20], to theergence of chimeras in a
single fully coupled neural populationi[4]. Globally pulseupled Winfree models,
reproducingd-neuron dynamics, also support chimera states, rangimg lir@ath-
ing (periodic and quasi-periodic) to chaotic ories [15].

Since the connectivity in the brain is definitely sparse asideasources cannot be
avoided, it is fundamental in order to understand the ptessbevance of chimera-
like states in neural dynamics to test for the robustnedsesfe solutions to dilution
and to the presence of noise. Studies in this direction haee performed mainly
for oscillator modeld]6.17.18] or excitable systems|[19]phrticular, chimera states
in random diluted Erdds-Renyi networks have been obsarged a dilution of 8%
of the links [6], furthermore it has been shown that noisert@®nly a washing out
effects on chimera solutions, but it can also have a cornsteumle promoting new
dynamical phenomen@l[7.119].

In this paper, we focus on the dynamics of two fully pulse dedgopulations
of excitatory LIF neurons with stronger synaptic couplimgaag the neurons of the
same population and a weaker coupling with those of the @ihyeulation, similarly
to the simplest set-up showing the emergence of chimerassiafphase oscillator
networks[[1]. Furthermore, the neurons are synapticaliyneated via the transmis-
sion of pulses of finite duration. This model for globally pded systems reveal the
emergence of broken symmetry population states, chiniezafLZ], as well as of
chimera states even within a single populat(an [4].

Our main aim is to study how the macroscopic solutions, faarttle determin-
istic fully coupled networks, will be modified by consideginandomly connected
networks of increasing dilution and by adding noise of iasiag amplitude to the
system. In particular, after having introduced the congidenodels in Sect. 1.2, we
will report the complete phase diagram for the macroscogligtions of the fully
coupled case in Sect. 1.3. These solutions vary from chifile¥ato symmetric so-
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lutions with complex dynamic ranging from collective qupsiriodic dynamics to
macroscopic chaos. Furthermore, we will concentrate oretfeet of random di-
lution and noise on the dynamics of broken symmetry and ahatdtes in Sect.
1.4 and 1.5. Finally, we will devote Sect. 1.6 to a brief di&ian of the reported
results. The algorithm employed to exactly integrate thly ftoupled populations
is explained in the Appendix.

1.2 The model

Firstly we consider two fully coupled networks, each madeNoLIF oscilla-

tors. Following Refs.[[23], the membrane potentigf (t) of the j —th oscillator
(j = 1,...,N) of thekth population kK = 0,1) evolves according to the differential
equation,

Xﬁk) (t)=a- ng) (1) +gsE® (t) + gEF N (1) (1.1)

wherea > 1 is the suprathreshold input current, while> 0 andg. > 0 gauge the
self- and, resp., cross-coupling strength of the exciyatderaction. The discharge
mechanism operating in real neurons is modeled by assummaigvhen the mem-

brane potential reaches the threshold vad‘.‘f)e: Xh = 1, it is reset to the value

xﬁk) = xr = 0, while aa-pulsep(t) = a’texp—at is transmitted to and instanta-
neously received by the connected neurons. For this kindilsgp the fieldE (t)

generated by the neurons of the populatpsatisfies the differential equation
- (9 00y 4+ q 220 (1) = O G
EY(t)+2aEY(t)+ a“E (t):WJZn‘S(t_tJ’“)’ (1.2)

Wheretj(fﬂ is thenth spiking time of thejth neuron within the populatioky and the

sum is restricted to times smaller thianin the limit caseys = g = g, the two pop-
ulations can be seen as a single one madéNafi@urons with an effective coupling
constanG = 2g.

Secondly we consider two random undirected Erdds-Renwiarés, each made
of N LIF oscillators and with an average in-degree K, therefbeegrobability to
have a link between two neuron is simy/N. We assume that the membrane

potentialxgk) (t) of the j —th oscillator of thekth population k = 0,1) evolves ac-
cording to the differential equation

() =a—x 1)+ eEM O +aE ) (13)

where the fieIcEfk) (t) takes in account of the pulses received by neurdrom

neurons of its own population, while the fig " " (t) represents the effect of the
neuron beloging to the other population.
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In particular,Ej(k) (t) is the linear superposition of the pulsp&) received by
neuroni of the kth-population at all times, < t (the integer indexn orders the
sequence of the pulses emitted in the network), namely :

EVD =25 Y Ci 0t—tplt—tn) | (1.4)

i(n),j
I njth<t

wheref(x) is the Heavyside function and the connectivity ma(tfg) has entries

1 (0) depending if the neurop presents a post-synaptic neuron connection with
neuroni or not. For each neuron we should introduce a different figle each
neuron has a different connectivity in the network. It is ;moonvenient to turn also
this time, as previously done for the globally coupled ctseexplicit Eq.[(T.K) into
the following differential equation

- (K - (K K az K K
B0 +20E0) + @’ (1) = 3 5 G St -tE) . (@9)

n

FurthermoreE™* t) = ﬁzi”:lEi(l*k) (t) represents a “mean field” effect of the
second population on the neuron of the first population gsinis the average of all
the fieldsEi(lfk) of the second population. As a result, the dynamics of theateu
network model takes the more “canonical” form of a set of dedprdinary differ-
ential Eqs.[(T.8) and (1.5), which can be analyzed with thedsdrd methods of dy-
namical systems. The setup we have employed, diluted racdamectivity within
each population, but mean-field like cross coupling, willdiar the stabilization of
the broken symmetry state as suggestedlin [6]. The haveestule diluted net-
works in so-called massively connected case, namely wheraverage in-degree
is proportional to the system sike= (1—d) x N.

Finally we consider two diluted networks with noise. Thesgois introduced in
the system every time the membrane potential has reachedrésihold value and
it is reset to the reset value. In particular, instead of gisimeset valueg = 0, the
neuron is reset to a random value chosen in the intep/al[—A, A], whereA takes
into account the level of the noise. In this case the pergentd dilution is kept
fixed d =0.2).

The integration of the above models is performed exactlgims of so-called
event driven maps analogously to what previously done {123 for the two fully
coupled cases, where non trivial round-off problems camioaanore refined event
driven map has been developed and it is explained in the Afipen

The degree of synchronization within each population ofraesican be quanti-
fied by introducing the typical order parameter used for preillators ™ (t) =

A (K)
|<e'9j <t)>|, Whereej(k) is the phase of thgh oscillator, that can be properly defined
as a (suitably scaled) time variabl]_e__[ZP)](,k) (t) = 2m(t —tf?)/(t —t® ), where

, mn—1
n identifies the time of the last spike emitted by thle neuron, whilem identifies

the neuron that has emitted the last spike at tin@@ne can verify that this phase is
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bounded between 0 andr?as it should. Furthermore, the fully synchronized regime
corresponds to¥) = 1, and in the asynchronous regime one expeéts~ 1/vK,
whereK is the average in-degree of the network.

1.3 Fully Coupled Network: Phase Diagram

0.6 SPLAY STATE ]

Fig. 1.1 (Color Online) Phase diagram in ttigc, gs)-plane reporting the stability region of the
observed various collective solutions. For the definitiohthe different phases see the text.

The phase planéyc,gs) shown in Fig. Il has been obtained by studying the
model [T.A.1R) fom = 1.3 anda = 9. As already mentioned, along the diagonal
(g = gs = gc) the two population mode[{1l.1) reduces to a single popartatiith
coupling strengthG = 2g. For our choice of anda values, the system exhibits
Partial Sybnchronization PS, where the macroscopic field displays collective pe-
riodic oscillations and the microscopic dynamics is quasaqulic [21,23]. Below
the diagonal, the evolution is still symmetric but the newsrare nowFully Syn-
chronized (FS); the neurons of both populations fire at the unison. Nttteresting
phenomena can be observed above the diagonal. In thisisituatsolution with
broken symmetry emerges naturally, where one populati¢iSigind the other is
PS, this represents a generalized form of chimera staterticplar, one observes
that while the order parameter of one population is exadaily, éhe other oscillates
periodically, as shown in Fi§l. 1.2 (c). Therefore this chiangtate can be classified
as aperiodically breathing chimera, which has been previously reported for the Ku-
ramoto model[ll, 16] as well as for a two population networkovétors in[[13]. De-
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Fig. 1.2 (Color Online) Macroscopic attractors displayed by reipgr® = E + aE vs E for a
PS-FS state (a) and a PS1-PS2 (b), the time evolution of thespmnding order parametar§)
andr® is also reported in (c) and (d). In panels (e), (f) are rembttes time behaviors of the
macroscopic field&© andEW. The variables corresponding to population 0 (resp. 1) lows
in blue (resp. maroon). As regards the parameter va(gess 0.07,gs = 0.1) in (a),(c) and(gc =
0.02,gs = 0.17) in (b),(d).

spite the macroscopic filds© andE* are both oscillating periodically and locked,
as evident from Fig$. 1.2 (a),(e), the two populations asratterized by different
behaviour at a microscopic level, where the neurons ar@gierin the FS popula-
tion and quasi-periodic in the PS population. This meantsthiganeurons subject to
two different linear combinations &© andE(®) behave differently: a population
locks with the forcing field, while the other one behaves gpasiodically.

Another even more interesting symmetry broken state (tdff&1-PS2) can be
observed for largegs-values and); < 0.055; in this case both populations exhibit
PS, but their dynamics take place over two different attractvith two different
degrees of synchronization, as shown in Eigl 1.2 (b),(dalégously to the PS-FS
state, the two fields are periodic and phase locked, as itearén by looking at the
time behavior oE(® andE® in Fig.[I2 (f). However, at variance with PS-FS, here
both populations exhibit quasi-periodic motions. Thismsietry broken state can be
also considered a Chimera state and it has been reportedoonliF populations

so-far [12].
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Fig. 1.3 (Color Online) Macroscopic attractors displayed by reipar® = E + aE vs E for an
APS (a), a chaotic state (b), and a TORUS state (c), the timletion of the corresponding order
parameters(® andr® is also reported in (d), (e) and (f). In panels (g), (h), (& aeported the
time behaviors of the macroscopic fieE€) andE(>). The variables corresponding to population 0
(resp. 1) are shown in magenta (resp. blue). As regards thenpter valueqg. = 0.07,gs = 0.35)

in (a),(d).(0).(ge = 0.08,gs = 0.16) in (b),(€),(h) andge = 0.07. g = 0.3) in (c), () (-

For largergs values the symmetry between the two collective fields isvesx
with the only difference of phase shift between the two fieddsch oscillate in
antiphase and this is why we term this regidiphase Partial Synchronization
(APS) (see Fid 113 (a), (g)). In this regime, at findethe istantaneous maximum
Lyapunov exponent strongly fluctuates and we cannot exdhualethis regime is
weakly chactic. Analogously to the chaotic behaviour found in single pagioh of
massively coupled LIF$T11], we expect that the chaoticisadpears in the ther-
modynamic limit. However, it is peculiar the behaviour oé thrder parameters in
this case, as shown in F[g1.3 (d): the two populations areaqually synchronized
and the two order parametar§ andrY) are behaving periodically in time, but at
each oscillation the role of most synchronized populatisitches from one to the
other.

In a limited region above the diagonal and fgy > 0.055 the collective be-
haviour is still symmetric but irregulaCpllective Chaos), as revelead by the two
macroscopic attractors (see Hig.]1.3(b)). Furthermorthigicase one can observe
quite wide oscillations of the order parameters of the twpysations in the range
0.4<r© r@M <1, as shown in Fig.113(c). Whenever one population getstspac
nized, with an order parameterl, the other partially desynchronizes reaching val-
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uesr ~ 0.4. These collective oscillations in the order parametecsioon quite long
timescale with respect to the periods of oscillations ofwemacroscopic fielé (©)
andE® reported in FigCLI13(h). However, the oscillations in theeleof synchro-
nization induce modulations with periods of the same ordéhé field dynamics.
In a previous papef[12] we have demonstrated that the famitphtude Lyapunov
exponent([B], for this state, coincides with the microscapaximal Lyapunov ex-
ponent, thus suggesting that the microscopic chaos is @tlog the collective drive
and therefore the origin of chaos is indeed collective in taise.

Moreover, in a strip above the chaotic region, one can olesgsymmetric col-
lective quasiperiodic motion onBorus T2 for both populations (see Fig.1.3 (c)).
This means that the quasiperiodic motion of the fields is mg@mied by a dynam-
ics of the single neurons along a tofiid An analogous regime has been previously
reported in [[10] for a population of coupled Stuart-Landagilkators. Here, we
find it in a model where the single units are described by aglsivariable. Fur-
thermore, the motion on the macroscoit attractor reported in Fig. 1.3 (c) can
be characterized by estimating the winding numbers forouwarsystem sizes, we
observe that the winding number is constant, indicatingttieatorus survives in the
thermodynamic limit. In this case, we observe quite regatdiphase oscillations
in the synchronization order parameters between valides 6 r(Y) < 0.8 occur-
ring on time scales definitely longer than those associat¢llet oscillations of the
macroscopic fields (as shown in Fig.11.3 (f) and (i).

Finally, for yet largeigs-values both populations converge towar®&pkay Sate,
characterized by constant fields, no collective motion artbglic microsocpic evo-
lution of the neurons. This is not surprising, as we alreadgvkthat for the cho-
sena- anda-values, the splay state is stable in a single populatioreafons for
G > Gp=0.425[21]23].

1.4 Diluted Networks

In order to observe the influence of dilution on the dynamies,considered in
absence of dilution a PS-FS state with broken symmetry andaoi@ state. In
particular, we have analyzed the modifications of the mawois attractors, of the
level of synchronization, as well as the microscopic dyrnmduced by cutting
randomly links for these 2 states.

To characterize the two macroscopic states, we have demdensider the level
of synchronization in the two populations. In general, wealse that the effect of
dilution is, as expected, to reduce the level of synchrdignan the system. In
particular, starting from the PS-FS state in the fully cedptase, the average val-
uesr® andr™ remain distinct up to some critical dilutialy ~ 0.75 (as shown in
Fig.[1.5 (a)). For intermediate values of the dilution, ia tange @ < d < d,, a bro-
ken symmetry state is still observable, characterized loyperiodically oscillating
fields with associated different attractors (see Eigb 1)4elg and (0)). Therefore,
we can safely classify this as a chimera PS1-PS2 state teéispidilution induces
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Fig. 1.4 (Color Online)Influence of Dilution. Macroscopic and microscopic characterization for
two different dilutions (namely = 0.2 and 0.8) of two states that dt= 0 were FS-PS (first and
third columns) and chaotic (second and fourth columnskérfirst row the corresponding macro-
scopic attractors are reported, namélys= E + aE vs E are shown; the raster plots are shown in
the second row; the time evolution of the order paramet&sandr® is reported in the third row,
while that of the macroscopic field&® andE(® is shown in the forth row. The variables corre-
sponding to population O (resp. 1) are shown in black (resg). As regards the parameter values,
(gc = 0.04,gs = 0.1) for the first and third columns, ar{d. = 0.08,gs = 0.16) for the second and
fourth columns. The employed values of dilution are regbdeer the corresponding columns.

fluctuations in the macroscopic fields [11, 2]. For largeutiin, above the critical
value, the two attractors essentially merge (as shown ia[Eig (i), but both the
macroscopic fields are still presenting clear collectivequic oscillations even at
these levels of dilution (see Figs1L.4 (c)), confirming thieusiness of the PS states
in this model.

As a general remark when we considered the influence of dilth a PS1-PS2
state , we observed a similar scenario, obviously withoundial window where
the FS was still observable.

The dilution has a quite peculiar effect on the chaotic, swtmit, state; in fact, up
to dilutiond ~ 0.2, we did not observe any new effect, as evidenced by the geera
value of the synchronization order parameters reportedgnE3 (b). However,
already atd = 0.2 the dilution induce a symmetry break among the two poprati
dynamics. This is clear in Fig._1.4 (b), where one populaisostill in a collective
chaotic state, similar to the one observed for the globadlypted system, while
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the other reveals an attractor analogous to the one seehdd?$ state. This is
even more evident by considering the time evolution of tlteeoparameters, while
one population exhibits large oscillations 8f), similar to the one observed for
the chaotic state, the other reveals more limited osailfeti(see Fid._114 (1)). By
further increasing the dilution, the system show a cleamea PS1-PS2 state over
arange B < d < 0.5. Ford > 0.5 the two attractors merge in a commons PS state,
analogously to the previously considered set of paraméasrshown in Figl_T]4
(d)(h)(p) and (r) ford = 0.8).

In this latter case we also measured the maximal LyapunoereqA™ and
we observed that it stays positive for all the consideredtidih values (see inset
Fig. [1.4(b)). However, while for vanishing dilutions thegin of the chaotic dy-
namics can be considered as a collective effect inducedegtthotic motion of the
coupled macroscopic fields, analogous to the chaotic stagereed for two fully
coupled populations12], for larger dilution we expectatimeffects to be present
at the level of the single populations, in the form of (micmgic)weak chaos. This
form of chaos disappears in the thermodynamic limit, ansldiLie to stochastic fluc-
tuations of the single macroscopic fields induced by finitdegree effects [11] 2].
At intermediate dilution both effects are present and tiellef chaoticity is big-
ger with respect to the fully coupled case (whexg,~ 0.02); this is also evident
from Fig.[T.4 (b) where one attractor appears as being ahaatiile the other is
in a PS state plus finite size fluctuations. To summarize, yeem in absence of
dilution, thanks to the interaction of the two populatioashibitscollective chaos,
the dilution induces another form of chaos ternvehk chaos, because it present
only in systems of finite size. However, for the chosen systenm and parameters
the level of chaoticity due to finite size fluctuations is digdity higher than that due
to collective chaos.
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Fig. 1.5 (Color Online) In panels (a), (b) are reported the averadigegaof the order parameters
19 andr as a function of the percentage of dilution. In the inset fsoreed the maximum
Lyapunov exponent as a function of the percentage of diluths regards the parameter values,
(ge = 0.04,gs = 0.1) in (a) and(ge = 0.08,gs = 0.16) in (b).
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1.5 Noisy Dynamics

In this case, we consider as unperturbed state a networkanstiall level of di-
lution d = 0.2 and we study how the noise modify the original dynamics.dn a
sence of noise we consider once more a chimera PS-FS state @drabtic state.
Please, notice that the small dilution modifies the phasgrdia shown in Fig.1]1
for the globally coupled case. In particular in order to aleea chaotic sym-
metric state, we have been forced to employ parameter valigigly different
from those considered in the previous Section for the saate,stamely we used
(gc = 0.08,gs = 0.2).

For the chimera FS-PS, it is evident from Hig.]1.7 (a) thatci@plete synchro-
nization in one population persist only up to noise of anojpliésA ~ 0.02, however
the two populations behave differently over a quite widegeaaf noise amplitudes
(namely, 0< A < 0.07). In all this range we observe chimera states of the tyde PS
PS2, obviously with fluctuations in the macroscopic vagabhduced by noise, as
it is evident from Fig[Ll6 (a), (e), (i), and (o). By furthecireasing the noise ampli-
tude a complete symmetry is recovered but the fields stilitetgperiodic collective
oscillations as shown in Fif. 1.6 (q). Also all the other oadors suggest that each
population is still PS, in particular the synchronizatiagdee remains quite high
r9 i ~ 0.8 (see also Figs 1.6 (c),(g), (m) and (q)).

For what concerns the chaotic state, this remains symnaetdcharacterized by
an unique chaotic attractor up to noises of quite large aog#i namelyA = 0.05.
As evident, from Figd_116 (b),(f),(l) and (p), all the chetexistics of a collectively
chaotic state seems present: overlapping chaotic attedfdtmg a closed portion of
the phase space, anti-phase irregular oscillations inrither parameters over long
time scales etc. The quite unexpected result is that by duititreasing noise the
symmetry of the attractors is broken and the system evobvesrtls a chimera PS1-
PS2 state, which is observable in the rand#6< A < 0.08 (as shown in Fid._117
(b)). A specific example of this broken symmetry state is regzbin Figs[1.6
(d),(h),(n) and (r) ford = 0.08. For even larger noise amplitudes the two attractors
converge towards a common PS state with level of averagénsynizationr ~ 0.6.

1.6 Discussion

A first important aspect to notice, is that in the present rhtfue Chimera states
FS-PS and PS1-PS2 do not coexist with a stable regime whéhepbpulations
are FS, as usual for Chimera states emerging in phase tmcplapulations. This
implies that in the present case the initial conditions &thoot be prepared in some
peculiar way to observe the emergence of broken symmetrgsstinerefore they
are not induced by the choice of the initial conditions as wstrof the examined
models. Spontaneously emerging Chimera, in system wher&$hwas unstable,
have been reported also for chains of Hodgkin-Huxley nesi[té] and of Stuart-
Landau oscillatorg[5].
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Fig. 1.6 (Color Online)Noise Influence.Macroscopic and microscopic characterization for two
different noise amplitudes, (hamely,= 0.05 and 008) of two states that foA — 0 andd = 0.2
were FS-PS (first and third columns) and chaotic (secondaumthfcolumns). In the rows the same
variables as in Fig. 114 are displayed. Macroscopic atiraatisplayed by reporting The variables
corresponding to population O (resp. 1) are shown in blaegp(rred). As regards the parameter
values,(ge = 0.04,gs = 0.1) for first and third columns, an@. = 0.08,gs = 0.2) for second and
fourth columns. The employed noise amplitude are repoiedethe corresponding columns. In
all cases the dilution was fixed tb= 0.2 andN = 400.
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Fig. 1.7 (Color Online) In panels (a), (b) are reported the averadigegaof the order parameters
r® andr® as a function of the nois&. As regards the parameter valuég, = 0.04,gs = 0.1) in
(a) and(gc = 0.08,gs = 0.2) in (b). In both cases the dilution &= 0.2.
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As general results, we observe that dilution or noise havm#as influence on
the studied macroscopic dynamics, despite random dilugpresents a quenched
form of disorder, while dynamical noise an annealed oneahtiqular, starting from
a broken symmetry state dilution or noise reduce the leveypn€hronization in the
two population, leading the dynamics of the two networks ¢ontoore and more
similar for increasing dilution/noise. On the other hartdrting from a symmetric
state, namely a chaotic one, the role of disorder is to braakdme intermediate
dilution or noise amplitude) the symmetry among the dynarofche two popula-
tions. Thus in this case, the disorder can promote the emeegaf a chimera-like
state (a PS1-PS2) in a range of parameters where the dynaasdslly symmet-
ric in the globally coupled deterministic set-up. For ladij@tion/noise the system
always ends up in a partially synchronized regime. This caedplained by the
fact that the stable state, for the chosen parameter anddotical coupling among
neurons of both populations (namely,= gc), is the regime PS. Indeed, for large
dilution or noise the heterogeneity in the synaptic cougpimong neurons lying in
one population or in another become less pronounced andStemferge. Thefer-
ore, disorder has at some intermediate level a construetfiget inducing the birth
of a more complex (broken symmetry) state from a fully synrinetne, similarly
to what reported if [19], whereoherence-resonance chimeras have been observed.

Another interesting aspect, is that the chimera-like st®81-PS2 are quite
robust to dilution, they can be observed up to 80% of randobnbken links
within each population, while previous results on phasdlatars pointed out that
chimeras are observable up to 8% of dilutibh [6]. The oridithis noticeably dif-
ference is probably due to the fact that in this model PS stz be observed even
in sparse networks with an extremely small in-degré&e~+ 10 ) as shown in[9].
Furthermore, another stabilizing factor is the choice ef ¢thoss synaptic current,
in our model the effect of one population on the neurons ofbther population is
mimicked via a macroscopic mean field, representing theageesynaptic current.

The reported results represent only a first step in the stfittypoemergence of
chimera states in neural systems characterized by a spaaedy and by the pres-
ence of noise. Further analysis will be required to invedégnore realistic models
and to understand if chimera states can have a role in thagmgrof information
at a population level in brain circuits.
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Appendix: Accurate event driven map for the two fully coupled
populations

In the two symmetrically fully coupled populations setupéhdiscussed we find
various kind of symmetric and symmetry broken states; iti@#ar we find syn-
chronized states. The integration of such states can berteeadifficult issue, due
to numerical round-off it can become extremely difficult etefmine the next firing
neuron, thus to increase the numerical accuracy and to apaidous clustering due
to numerical round-off, we implemented the following intetion scheme.

In particular, instead of integrating the membrane po#dsitive performed the
integration of the logarithm of the difference of two su&ies neurons. This trans-
formation is uniquely defined in globally coupled systenisce the order of the
neurons passing threshold is preserved in time. Therdfasegossible to define an
ordered list of the potentials and, on this basis, to defingualy the “neighbours”

of a neuron. Given a set &f membrane potential%xgk)}_ LN with k= 0,1 de-
=1,

pending on the considered family, we introduce at a gengrmie t the following

N+ 1 auxiliary variables:

1) = In ()]

where the threshold (resp. reset) valugjs= 1 (respxg = 0) andxgk) is the next
to threshold neuron.

Since we would like to define an event driven map for the twbsdifamilies, it
is necessary to find which neuron is going to fire next and thielve the membrane
potentials of the two populations untile the successiviespimission. The evolution
of the two populations is different and it depends on the tlaat the firing neuron
belongs to the considered family or not. Let us schematigeatorithm in three
steps:

) 1o identify to which family the firing

1. As afirst step we compalstéo> with x(l1
neuron belongs.

2. As a second step we check if the firing neuron belongs to adyfavhich has al-
ready fired at the previous event or not. Depending on thig)ave two possible
alternatives: if the next and previous firing neurons betorthe same family we

iterate the network as in point (a) below, otherwise as imp().

a. Let us suppose that the firing population is the fartly We evolve all the
N+1 variables{wj(())}. for the firing family, while, for the other
j=1,..N-+1

family, it is sufficient to evolve just the variableél) andw,ﬁl. All the above
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mentioned variables are evolved for a lapse of time cormedipg to the in-
terval elapsed from the last firing event of the fanidy.

b. If the firing family is(1) and previously fired a neuron of fami(®), the evo-
lution is more complicated. The variablaék) andw,i,kl1 of both families are
integrated for the time interval elapsed from the last fitinge of family (0).

TheN -1 variables{ wfl)}_ N should be instead evolved for a longer
j=

time corresponding to the Iaist'in'terspike interval asgedito family(1), be-
cause these variables have not been updated since theitegofifamily (1).

. The firing family is iterated in the comoving frame: this@mts to update the

membrane potentials and to shift the index of all neuronsrigyunit. The mem-
brane potentials of the other family are updated in the fixéerence frame.

. The simulation is iterated by repeating the above thiggsst

In order to evolve the a linearized system the previous dlgaris no more ef-

fective since now it is necessary to evolve all the variabtesach time step in order
to calculate the linearized equations in the tangent spatieis case we use directly
the difference of the membrane potentials of two succesmweons instead of the
logarithm. We still search for the first to fire neuron betwées two populations
and we treat differently the variables of the two populagiah each time step de-
pending on which neuron has emitted a spike previously. Akénprevious case
we employ different reference frames for the firing or nonfirfamily (see point 3
above).
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