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Chapter 1
Chimera states in pulse coupled neural
networks:
the influence of dilution and noise

Simona Olmi and Alessandro Torcini

We analyse the possible dynamical states emerging for two

symmetrically pulse coupled populations of leaky integrate-and-fire

neurons. In particular, we observe broken symmetry states

in this set-up: namely, breathing chimeras, where one population

is fully synchronized and the other is in a state of partial

synchronization (PS) as well as generalized chimera states,

where both populations are in PS, but with different levels

of synchronization. Symmetric macroscopic states are also

present, ranging from quasi-periodic motions, to collective

chaos, from splay states to population anti-phase partial

synchronization. We then investigate the influence disorder,

random link removal or noise, on the dynamics of collective

solutions in this model. As a result, we observe that broken

symmetry chimera-like states, with both populations partially

synchronized, persist up to 80% of broken links and up to

noise amplitudes ≃ 8% of threshold-reset distance. Furthermore,

the introduction of disorder on symmetric chaotic state has
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a constructive effect, namely to induce the emergence of

chimera-like states at intermediate dilution or noise level.

1.1 Introduction

The emergence of broken symmetry states (Chimera states) in population of os-
cillators or rotators is an extremely popular and active research field nowdays, in
particular after that experimental evidences for the existence of these states have
been reported in several contexts ranging from ensembles ofmechanical oscillators,
to laser dynamics, to populations of chemical oscillators (for a recent review on the
subject see [14]). Chimera states in neural systems have been firstly reported by Sak-
aguchi for a chain of nonlocally coupled Hodgkin-Huxley models with excitatory
and inhibitory synaptic coupling [18], while the first evidence of chimeras in models
of globally coupled populations has been reported in [12] for leaky integrate-and-
fire (LIF) excitatory neurons. More recently, chimeras in LIF networks have anal-
ysed in different contexts, ranging from small-network topology [17], to chains of
non-locally coupled LIFs with refractoriness [20], to the emergence of chimeras in a
single fully coupled neural population [4]. Globally pulsecoupled Winfree models,
reproducingθ -neuron dynamics, also support chimera states, ranging from breath-
ing (periodic and quasi-periodic) to chaotic ones [15].

Since the connectivity in the brain is definitely sparse and noise sources cannot be
avoided, it is fundamental in order to understand the possible relevance of chimera-
like states in neural dynamics to test for the robustness of these solutions to dilution
and to the presence of noise. Studies in this direction have been performed mainly
for oscillator models [6, 7, 8] or excitable systems [19]. Inparticular, chimera states
in random diluted Erdös-Renyi networks have been observedup to a dilution of 8%
of the links [6], furthermore it has been shown that noise hasnot only a washing out
effects on chimera solutions, but it can also have a constructive role promoting new
dynamical phenomena [7, 19].

In this paper, we focus on the dynamics of two fully pulse coupled populations
of excitatory LIF neurons with stronger synaptic coupling among the neurons of the
same population and a weaker coupling with those of the otherpopulation, similarly
to the simplest set-up showing the emergence of chimera states in phase oscillator
networks [1]. Furthermore, the neurons are synaptically connected via the transmis-
sion of pulses of finite duration. This model for globally coupled systems reveal the
emergence of broken symmetry population states, chimera-like, [12], as well as of
chimera states even within a single population [4].

Our main aim is to study how the macroscopic solutions, foundin the determin-
istic fully coupled networks, will be modified by considering randomly connected
networks of increasing dilution and by adding noise of increasing amplitude to the
system. In particular, after having introduced the considered models in Sect. 1.2, we
will report the complete phase diagram for the macroscopic solutions of the fully
coupled case in Sect. 1.3. These solutions vary from chimera-like, to symmetric so-
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lutions with complex dynamic ranging from collective quasi-periodic dynamics to
macroscopic chaos. Furthermore, we will concentrate on theeffect of random di-
lution and noise on the dynamics of broken symmetry and chaotic states in Sect.
1.4 and 1.5. Finally, we will devote Sect. 1.6 to a brief discussion of the reported
results. The algorithm employed to exactly integrate the fully coupled populations
is explained in the Appendix.

1.2 The model

Firstly we consider two fully coupled networks, each made ofN LIF oscilla-

tors. Following Refs. [23], the membrane potentialx(k)j (t) of the j − th oscillator
( j = 1, . . . ,N) of thekth population (k = 0,1) evolves according to the differential
equation,

ẋ(k)j (t) = a− x(k)j (t)+ gsE
(k)(t)+ gcE

(1−k)(t) (1.1)

wherea > 1 is the suprathreshold input current, whilegs > 0 andgc > 0 gauge the
self- and, resp., cross-coupling strength of the excitatory interaction. The discharge
mechanism operating in real neurons is modeled by assuming that when the mem-

brane potential reaches the threshold valuex(k)j = xth = 1, it is reset to the value

x(k)j = xR = 0, while aα-pulsep(t) = α2t exp−αt is transmitted to and instanta-

neously received by the connected neurons. For this kind of pulses the fieldE(k)(t)
generated by the neurons of the populationk, satisfies the differential equation

Ë(k)(t)+2αĖ(k)(t)+α2E(k)(t) =
α2

N ∑
j,n

δ (t − t(k)j,n) , (1.2)

wheret(k)j,n is thenth spiking time of thejth neuron within the populationk, and the
sum is restricted to times smaller thant. In the limit casegs = gc = g, the two pop-
ulations can be seen as a single one made of 2N neurons with an effective coupling
constantG = 2g.

Secondly we consider two random undirected Erdös-Renyi networks, each made
of N LIF oscillators and with an average in-degree K, therefore the probability to
have a link between two neuron is simplyK/N. We assume that the membrane

potentialx(k)j (t) of the j − th oscillator of thekth population (k = 0,1) evolves ac-
cording to the differential equation

ẋ(k)j (t) = a− x(k)j (t)+ gsE
(k)
j (t)+ gcE

(1−k)
(t) ; (1.3)

where the fieldE(k)
j (t) takes in account of the pulses received by neuronj from

neurons of its own population, while the fieldE
(1−k)

(t) represents the effect of the
neuron beloging to the other population.
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In particular,E(k)
j (t) is the linear superposition of the pulsesp(t) received by

neuroni of the kth-population at all timestn < t (the integer indexn orders the
sequence of the pulses emitted in the network), namely :

E(k)
j (t) =

1
K ∑

i
∑

n|tn<t

C(k)
i(n), jθ (t − tn)p(t − tn) , (1.4)

whereθ (x) is the Heavyside function and the connectivity matrixC(k)
i, j has entries

1 (0) depending if the neuronj presents a post-synaptic neuron connection with
neuroni or not. For each neuron we should introduce a different field,since each
neuron has a different connectivity in the network. It is more convenient to turn also
this time, as previously done for the globally coupled case,the explicit Eq. (1.4) into
the following differential equation

Ë(k)
j (t)+2αĖ(k)

j (t)+α2E(k)
j (t) =

α2

K ∑
i,n

C(k)
i(n), jδ (t − t(k)i,n ) . (1.5)

Furthermore,E
(1−k)

(t) = 1
N ∑N

i=1E(1−k)
i (t) represents a “mean field” effect of the

second population on the neuron of the first population, since it is the average of all

the fieldsE(1−k)
i of the second population. As a result, the dynamics of the neural

network model takes the more “canonical” form of a set of coupled ordinary differ-
ential Eqs. (1.3) and (1.5), which can be analyzed with the standard methods of dy-
namical systems. The setup we have employed, diluted randomconnectivity within
each population, but mean-field like cross coupling, will favour the stabilization of
the broken symmetry state as suggested in [6]. The have studied the diluted net-
works in so-called massively connected case, namely where the average in-degree
is proportional to the system sizeK = (1− d)×N.

Finally we consider two diluted networks with noise. The noise is introduced in
the system every time the membrane potential has reached thethreshold value and
it is reset to the reset value. In particular, instead of using a reset valuexR = 0, the
neuron is reset to a random value chosen in the intervalxR ∈ [−∆ ,∆ ], where∆ takes
into account the level of the noise. In this case the percentage of dilution is kept
fixed (d = 0.2).

The integration of the above models is performed exactly in terms of so-called
event driven maps analogously to what previously done in [23, 12], for the two fully
coupled cases, where non trivial round-off problems can occur a more refined event
driven map has been developed and it is explained in the Appendix.

The degree of synchronization within each population of neurons can be quanti-
fied by introducing the typical order parameter used for phase oscillatorsr(k)(t) =

|〈eiθ (k)
j (t)〉|, whereθ (k)

j is the phase of thejth oscillator, that can be properly defined

as a (suitably scaled) time variable [22],θ (k)
j (t) = 2π(t − t(k)j,n)/(t − t(k)m,n−1), where

n identifies the time of the last spike emitted by thejth neuron, whilem identifies
the neuron that has emitted the last spike at timet. One can verify that this phase is



1 Chimera states in pulse coupled neural networks: the influence of dilution and noise 5

bounded between 0 and 2π , as it should. Furthermore, the fully synchronized regime
corresponds tor(k) ≡ 1, and in the asynchronous regime one expectsr(k) ≃ 1/

√
K,

whereK is the average in-degree of the network.

1.3 Fully Coupled Network: Phase Diagram

Fig. 1.1 (Color Online) Phase diagram in the(gc,gs)-plane reporting the stability region of the
observed various collective solutions. For the definitionsof the different phases see the text.

The phase plane(gc,gs) shown in Fig. 1.1 has been obtained by studying the
model (1.1,1.2) fora = 1.3 andα = 9. As already mentioned, along the diagonal
(g = gs = gc) the two population model (1.1) reduces to a single population with
coupling strengthG = 2g. For our choice ofa andα values, the system exhibits
Partial Sybnchronization PS, where the macroscopic field displays collective pe-
riodic oscillations and the microscopic dynamics is quasiperiodic [21, 23]. Below
the diagonal, the evolution is still symmetric but the neurons are nowFully Syn-
chronized (FS); the neurons of both populations fire at the unison. Moreinteresting
phenomena can be observed above the diagonal. In this situation a solution with
broken symmetry emerges naturally, where one population isFS and the other is
PS, this represents a generalized form of chimera state. In particular, one observes
that while the order parameter of one population is exactly one, the other oscillates
periodically, as shown in Fig. 1.2 (c). Therefore this chimera state can be classified
as aperiodically breathing chimera, which has been previously reported for the Ku-
ramoto model [1, 16] as well as for a two population network ofrotators in [13]. De-
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Fig. 1.2 (Color Online) Macroscopic attractors displayed by reporting P ≡ E +α Ė vs E for a
PS-FS state (a) and a PS1-PS2 (b), the time evolution of the corresponding order parametersr(0)

and r(1) is also reported in (c) and (d). In panels (e), (f) are reported the time behaviors of the
macroscopic fieldsE(0) andE(1). The variables corresponding to population 0 (resp. 1) are shown
in blue (resp. maroon). As regards the parameter values,(gc = 0.07,gs = 0.1) in (a),(c) and(gc =
0.02,gs = 0.17) in (b),(d).

spite the macroscopic fildsE(0) andE1 are both oscillating periodically and locked,
as evident from Figs. 1.2 (a),(e), the two populations are characterized by different
behaviour at a microscopic level, where the neurons are periodic in the FS popula-
tion and quasi-periodic in the PS population. This means that the neurons subject to
two different linear combinations ofE(0) andE(1) behave differently: a population
locks with the forcing field, while the other one behaves quasi-periodically.

Another even more interesting symmetry broken state (termed PS1-PS2) can be
observed for largergs-values andgc < 0.055; in this case both populations exhibit
PS, but their dynamics take place over two different attractors with two different
degrees of synchronization, as shown in Fig. 1.2 (b),(d). Analogously to the PS-FS
state, the two fields are periodic and phase locked, as it can be seen by looking at the
time behavior ofE(0) andE(1) in Fig. 1.2 (f). However, at variance with PS-FS, here
both populations exhibit quasi-periodic motions. This simmetry broken state can be
also considered a Chimera state and it has been reported onlyfor LIF populations
so-far [12].
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Fig. 1.3 (Color Online) Macroscopic attractors displayed by reporting P ≡ E +α Ė vs E for an
APS (a), a chaotic state (b), and a TORUS state (c), the time evolution of the corresponding order
parametersr(0) andr(1) is also reported in (d), (e) and (f). In panels (g), (h), (i) are reported the
time behaviors of the macroscopic fieldsE(0) andE(1). The variables corresponding to population 0
(resp. 1) are shown in magenta (resp. blue). As regards the parameter values,(gc = 0.07,gs = 0.35)
in (a),(d),(g),(gc = 0.08,gs = 0.16) in (b),(e),(h) and(gc = 0.07,gs = 0.3) in (c),(f),(i).

For largergs values the symmetry between the two collective fields is recovered
with the only difference of phase shift between the two fieldswhich oscillate in
antiphase and this is why we term this regimeAntiphase Partial Synchronization
(APS) (see Fig. 1.3 (a), (g)). In this regime, at finiteN the istantaneous maximum
Lyapunov exponent strongly fluctuates and we cannot excludethat this regime is
weakly chaotic. Analogously to the chaotic behaviour found in single population of
massively coupled LIFs [11], we expect that the chaoticity disappears in the ther-
modynamic limit. However, it is peculiar the behaviour of the order parameters in
this case, as shown in Fig. 1.3 (d): the two populations are not equally synchronized
and the two order parametersr(0) andr(1) are behaving periodically in time, but at
each oscillation the role of most synchronized population switches from one to the
other.

In a limited region above the diagonal and forgc > 0.055 the collective be-
haviour is still symmetric but irregular (Collective Chaos), as revelead by the two
macroscopic attractors (see Fig. 1.3(b)). Furthermore, inthis case one can observe
quite wide oscillations of the order parameters of the two populations in the range
0.4≤ r(0),r(1) ≤ 1, as shown in Fig. 1.3(c). Whenever one population gets synchro-
nized, with an order parameter≃ 1, the other partially desynchronizes reaching val-
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uesr ≃ 0.4. These collective oscillations in the order parameters occur on quite long
timescale with respect to the periods of oscillations of thetwo macroscopic fieldE(0)

andE(1) reported in Fig. 1.3(h). However, the oscillations in the level of synchro-
nization induce modulations with periods of the same order in the field dynamics.
In a previous paper [12] we have demonstrated that the finite-amplitude Lyapunov
exponent [3], for this state, coincides with the microscopic maximal Lyapunov ex-
ponent, thus suggesting that the microscopic chaos is induced by the collective drive
and therefore the origin of chaos is indeed collective in this case.

Moreover, in a strip above the chaotic region, one can observe a symmetric col-
lective quasiperiodic motion on aTorus T 2 for both populations (see Fig. 1.3 (c)).
This means that the quasiperiodic motion of the fields is accompanied by a dynam-
ics of the single neurons along a torusT 3. An analogous regime has been previously
reported in [10] for a population of coupled Stuart-Landau oscillators. Here, we
find it in a model where the single units are described by an single variable. Fur-
thermore, the motion on the macroscopicT 2 attractor reported in Fig. 1.3 (c) can
be characterized by estimating the winding numbers for various system sizes, we
observe that the winding number is constant, indicating that the torus survives in the
thermodynamic limit. In this case, we observe quite regularantiphase oscillations
in the synchronization order parameters between values 0.4≤ r(0),r(1) ≤ 0.8 occur-
ring on time scales definitely longer than those associated to the oscillations of the
macroscopic fields (as shown in Fig. 1.3 (f) and (i).

Finally, for yet largergs-values both populations converge towards aSplay State,
characterized by constant fields, no collective motion and periodic microsocpic evo-
lution of the neurons. This is not surprising, as we already know that for the cho-
senα- anda-values, the splay state is stable in a single population of neurons for
G > G0 ≡ 0.425 [21, 23].

1.4 Diluted Networks

In order to observe the influence of dilution on the dynamics,we considered in
absence of dilution a PS-FS state with broken symmetry and a Chaotic state. In
particular, we have analyzed the modifications of the macroscopic attractors, of the
level of synchronization, as well as the microscopic dynamics induced by cutting
randomly links for these 2 states.

To characterize the two macroscopic states, we have decidedto consider the level
of synchronization in the two populations. In general, we observe that the effect of
dilution is, as expected, to reduce the level of synchronization in the system. In
particular, starting from the PS-FS state in the fully coupled case, the average val-
ues ¯r(0) andr̄(1) remain distinct up to some critical dilutiondc ≃ 0.75 (as shown in
Fig. 1.5 (a)). For intermediate values of the dilution, in the range 0.2≤ d ≤ dc, a bro-
ken symmetry state is still observable, characterized by two periodically oscillating
fields with associated different attractors (see Figs 1.4 (a),(e), and (o)). Therefore,
we can safely classify this as a chimera PS1-PS2 state, despite the dilution induces
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Fig. 1.4 (Color Online)Influence of Dilution. Macroscopic and microscopic characterization for
two different dilutions (namelyd = 0.2 and 0.8) of two states that atd = 0 were FS-PS (first and
third columns) and chaotic (second and fourth columns). In the first row the corresponding macro-
scopic attractors are reported, namely,P ≡ E +α Ė vs E are shown; the raster plots are shown in
the second row; the time evolution of the order parametersr(0) andr(1) is reported in the third row,
while that of the macroscopic fieldsE(0) andE(1) is shown in the forth row. The variables corre-
sponding to population 0 (resp. 1) are shown in black (resp. red). As regards the parameter values,
(gc = 0.04,gs = 0.1) for the first and third columns, and(gc = 0.08,gs = 0.16) for the second and
fourth columns. The employed values of dilution are reported over the corresponding columns.

fluctuations in the macroscopic fields [11, 2]. For larger dilution, above the critical
value, the two attractors essentially merge (as shown in Figs 1.4 (i)), but both the
macroscopic fields are still presenting clear collective periodic oscillations even at
these levels of dilution (see Figs 1.4 (c)), confirming the robustness of the PS states
in this model.

As a general remark when we considered the influence of dilution on a PS1-PS2
state , we observed a similar scenario, obviously without aninitial window where
the FS was still observable.

The dilution has a quite peculiar effect on the chaotic, symmetric, state; in fact, up
to dilutiond ≃ 0.2, we did not observe any new effect, as evidenced by the average
value of the synchronization order parameters reported in Fig. 1.5 (b). However,
already atd = 0.2 the dilution induce a symmetry break among the two population
dynamics. This is clear in Fig. 1.4 (b), where one populationis still in a collective
chaotic state, similar to the one observed for the globally coupled system, while
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the other reveals an attractor analogous to the one seen for the PS state. This is
even more evident by considering the time evolution of the order parameters, while
one population exhibits large oscillations ofr(0), similar to the one observed for
the chaotic state, the other reveals more limited oscillations (see Fig. 1.4 (l)). By
further increasing the dilution, the system show a clear chimera PS1-PS2 state over
a range 0.3≤ d ≤ 0.5. Ford > 0.5 the two attractors merge in a commons PS state,
analogously to the previously considered set of parameters(as shown in Fig. 1.4
(d)(h)(p) and (r) ford = 0.8).

In this latter case we also measured the maximal Lyapunov exponentλ M and
we observed that it stays positive for all the considered dilution values (see inset
Fig. 1.4(b)). However, while for vanishing dilutions the origin of the chaotic dy-
namics can be considered as a collective effect induced by the chaotic motion of the
coupled macroscopic fields, analogous to the chaotic state observed for two fully
coupled populations [12], for larger dilution we expect chaotic effects to be present
at the level of the single populations, in the form of (microscopic)weak chaos. This
form of chaos disappears in the thermodynamic limit, and it is due to stochastic fluc-
tuations of the single macroscopic fields induced by finite in-degree effects [11, 2].
At intermediate dilution both effects are present and the level of chaoticity is big-
ger with respect to the fully coupled case (where,λM ≃ 0.02); this is also evident
from Fig. 1.4 (b) where one attractor appears as being chaotic, while the other is
in a PS state plus finite size fluctuations. To summarize, the system in absence of
dilution, thanks to the interaction of the two populations,exhibitscollective chaos,
the dilution induces another form of chaos termedweak chaos, because it present
only in systems of finite size. However, for the chosen systemsize and parameters
the level of chaoticity due to finite size fluctuations is definitely higher than that due
to collective chaos.

0 0.2 0.4 0.6 0.8
Percentage of dilution

0.6

0.8

1.0

r
(0

) ,
r

(1
)

(a)
0 0.2 0.4 0.6 0.8
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0

0.5

1

0 0.2 0.4 0.6 0.8
0

0.1

0.2
λM

r
(0

) ,r
(1
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Fig. 1.5 (Color Online) In panels (a), (b) are reported the average values of the order parameters
r̄(0) and r̄(1) as a function of the percentage of dilution. In the inset is reported the maximum
Lyapunov exponent as a function of the percentage of dilution. As regards the parameter values,
(gc = 0.04,gs = 0.1) in (a) and(gc = 0.08,gs = 0.16) in (b).
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1.5 Noisy Dynamics

In this case, we consider as unperturbed state a network witha small level of di-
lution d = 0.2 and we study how the noise modify the original dynamics. In ab-
sence of noise we consider once more a chimera PS-FS state anda chaotic state.
Please, notice that the small dilution modifies the phase diagram shown in Fig.1.1
for the globally coupled case. In particular in order to observe a chaotic sym-
metric state, we have been forced to employ parameter valuesslightly different
from those considered in the previous Section for the same state, namely we used
(gc = 0.08,gs = 0.2).

For the chimera FS-PS, it is evident from Fig. 1.7 (a) that thecomplete synchro-
nization in one population persist only up to noise of amplitudes∆ ≃ 0.02, however
the two populations behave differently over a quite wide range of noise amplitudes
(namely, 0≤ ∆ ≤ 0.07). In all this range we observe chimera states of the type PS1-
PS2, obviously with fluctuations in the macroscopic variables induced by noise, as
it is evident from Fig. 1.6 (a), (e), (i), and (o). By further increasing the noise ampli-
tude a complete symmetry is recovered but the fields still exhibit periodic collective
oscillations as shown in Fig. 1.6 (q). Also all the other indicators suggest that each
population is still PS, in particular the synchronization degree remains quite high
r̄(0), r̄(1) ≃ 0.8 (see also Figs 1.6 (c),(g), (m) and (q)).

For what concerns the chaotic state, this remains symmetricand characterized by
an unique chaotic attractor up to noises of quite large amplitude, namely∆ = 0.05.
As evident, from Figs. 1.6 (b),(f),(l) and (p), all the characteristics of a collectively
chaotic state seems present: overlapping chaotic attractors filling a closed portion of
the phase space, anti-phase irregular oscillations in the order parameters over long
time scales etc. The quite unexpected result is that by further increasing noise the
symmetry of the attractors is broken and the system evolves towards a chimera PS1-
PS2 state, which is observable in the range 0.06≤ ∆ ≤ 0.08 (as shown in Fig. 1.7
(b)). A specific example of this broken symmetry state is reported in Figs. 1.6
(d),(h),(n) and (r) for∆ = 0.08. For even larger noise amplitudes the two attractors
converge towards a common PS state with level of average synchronization ¯r ≃ 0.6.

1.6 Discussion

A first important aspect to notice, is that in the present model the Chimera states
FS-PS and PS1-PS2 do not coexist with a stable regime where both populations
are FS, as usual for Chimera states emerging in phase oscillator populations. This
implies that in the present case the initial conditions should not be prepared in some
peculiar way to observe the emergence of broken symmetry states, therefore they
are not induced by the choice of the initial conditions as in most of the examined
models. Spontaneously emerging Chimera, in system where the FS was unstable,
have been reported also for chains of Hodgkin-Huxley neurons [18] and of Stuart-
Landau oscillators [5].
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Fig. 1.6 (Color Online)Noise Influence.Macroscopic and microscopic characterization for two
different noise amplitudes, (namely,∆ = 0.05 and 0.08) of two states that for∆ → 0 andd = 0.2
were FS-PS (first and third columns) and chaotic (second and fourth columns). In the rows the same
variables as in Fig. 1.4 are displayed. Macroscopic attractors displayed by reporting The variables
corresponding to population 0 (resp. 1) are shown in black (resp. red). As regards the parameter
values,(gc = 0.04,gs = 0.1) for first and third columns, and(gc = 0.08,gs = 0.2) for second and
fourth columns. The employed noise amplitude are reported above the corresponding columns. In
all cases the dilution was fixed tod = 0.2 andN = 400.
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Fig. 1.7 (Color Online) In panels (a), (b) are reported the average values of the order parameters
r̄(0) andr̄(1) as a function of the noise∆ . As regards the parameter values,(gc = 0.04,gs = 0.1) in
(a) and(gc = 0.08,gs = 0.2) in (b). In both cases the dilution isd = 0.2.
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As general results, we observe that dilution or noise have a similar influence on
the studied macroscopic dynamics, despite random dilutionrepresents a quenched
form of disorder, while dynamical noise an annealed one. In particular, starting from
a broken symmetry state dilution or noise reduce the level ofsynchronization in the
two population, leading the dynamics of the two networks to be more and more
similar for increasing dilution/noise. On the other hand, starting from a symmetric
state, namely a chaotic one, the role of disorder is to break (at some intermediate
dilution or noise amplitude) the symmetry among the dynamics of the two popula-
tions. Thus in this case, the disorder can promote the emergence of a chimera-like
state (a PS1-PS2) in a range of parameters where the dynamicswas fully symmet-
ric in the globally coupled deterministic set-up. For largedilution/noise the system
always ends up in a partially synchronized regime. This can be explained by the
fact that the stable state, for the chosen parameter and for identical coupling among
neurons of both populations (namely,gs = gc), is the regime PS. Indeed, for large
dilution or noise the heterogeneity in the synaptic coupling among neurons lying in
one population or in another become less pronounced and the PS emerge. Thefer-
ore, disorder has at some intermediate level a constructiveeffect inducing the birth
of a more complex (broken symmetry) state from a fully symmetric one, similarly
to what reported in [19], wherecoherence-resonance chimeras have been observed.

Another interesting aspect, is that the chimera-like states PS1-PS2 are quite
robust to dilution, they can be observed up to 80% of randomlybroken links
within each population, while previous results on phase oscillators pointed out that
chimeras are observable up to 8% of dilution [6]. The origin of this noticeably dif-
ference is probably due to the fact that in this model PS states can be observed even
in sparse networks with an extremely small in-degree (K ≃ 10 ) as shown in [9].
Furthermore, another stabilizing factor is the choice of the cross synaptic current,
in our model the effect of one population on the neurons of theother population is
mimicked via a macroscopic mean field, representing the average synaptic current.

The reported results represent only a first step in the study of the emergence of
chimera states in neural systems characterized by a sparse topology and by the pres-
ence of noise. Further analysis will be required to investigate more realistic models
and to understand if chimera states can have a role in the encoding of information
at a population level in brain circuits.
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Appendix: Accurate event driven map for the two fully coupled
populations

In the two symmetrically fully coupled populations setup here discussed we find
various kind of symmetric and symmetry broken states; in particular we find syn-
chronized states. The integration of such states can be become a difficult issue, due
to numerical round-off it can become extremely difficult to determine the next firing
neuron, thus to increase the numerical accuracy and to avoidspurious clustering due
to numerical round-off, we implemented the following integration scheme.

In particular, instead of integrating the membrane potentials, we performed the
integration of the logarithm of the difference of two successive neurons. This trans-
formation is uniquely defined in globally coupled systems, since the order of the
neurons passing threshold is preserved in time. Therefore,it is possible to define an
ordered list of the potentials and, on this basis, to define uniquely the “neighbours”

of a neuron. Given a set ofN membrane potentials
{

x(k)j

}

j=1,...,N
, with k = 0,1 de-

pending on the considered family, we introduce at a generic time t the following
N +1 auxiliary variables:

ω(k)
1 (t) = ln

[

1− x(k)1 (t)
]

ω(k)
j (t) = ln

[

x(k)j−1(t)− x(k)j (t)
]

j = 2, . . . ,N

ω(k)
N+1(t) = ln

[

x(k)N (t)
]

where the threshold (resp. reset) value isxth = 1 (resp.xR = 0) andx(k)1 is the next
to threshold neuron.

Since we would like to define an event driven map for the two coupled families, it
is necessary to find which neuron is going to fire next and then evolve the membrane
potentials of the two populations untile the successive spike emission. The evolution
of the two populations is different and it depends on the factthat the firing neuron
belongs to the considered family or not. Let us schematize the algorithm in three
steps:

1. As a first step we comparex(0)1 with x(1)1 to identify to which family the firing
neuron belongs.

2. As a second step we check if the firing neuron belongs to a family which has al-
ready fired at the previous event or not. Depending on this, wehave two possible
alternatives: if the next and previous firing neurons belongto the same family we
iterate the network as in point (a) below, otherwise as in point (b).

a. Let us suppose that the firing population is the family(0). We evolve all the

N + 1 variables
{

ω(0)
j

}

j=1,...,N+1
for the firing family, while, for the other

family, it is sufficient to evolve just the variablesω(1)
1 andω(1)

N+1. All the above
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mentioned variables are evolved for a lapse of time corresponding to the in-
terval elapsed from the last firing event of the family(0).

b. If the firing family is(1) and previously fired a neuron of family(0), the evo-

lution is more complicated. The variablesω(k)
1 andω(k)

N+1 of both families are
integrated for the time interval elapsed from the last firingtime of family (0).

The N − 1 variables
{

ω(1)
j

}

j=2,...,N
should be instead evolved for a longer

time corresponding to the last interspike interval associated to family(1), be-
cause these variables have not been updated since the last firing of family (1).

3. The firing family is iterated in the comoving frame: this amounts to update the
membrane potentials and to shift the index of all neurons by one unit. The mem-
brane potentials of the other family are updated in the fixed reference frame.

4. The simulation is iterated by repeating the above three steps.

In order to evolve the a linearized system the previous algorithm is no more ef-
fective since now it is necessary to evolve all the variablesat each time step in order
to calculate the linearized equations in the tangent space.In this case we use directly
the difference of the membrane potentials of two successiveneurons instead of the
logarithm. We still search for the first to fire neuron betweenthe two populations
and we treat differently the variables of the two populations at each time step de-
pending on which neuron has emitted a spike previously. As inthe previous case
we employ different reference frames for the firing or not firing family (see point 3
above).
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20. Tsigkri-DeSmedt N. D., Hizanidis J., Hövel P., ProvataA, Procedia Computer Science66,

13-22 (2015).



16 Simona Olmi and Alessandro Torcini

21. van Vreeswijk C., Phys. Rev. E54, 5522 (1996).
22. Winfree A.T.,The Geometry of Biological Time, (Springer Verlag, Berlin, 1980).
23. Zillmer R., Livi R., Politi A., Torcini A., Phys. Rev. E76, 046102 (2007).


	1 Chimera states in pulse coupled neural networks:  the influence of dilution and noise
	Simona Olmi and Alessandro Torcini
	1.1 Introduction
	1.2 The model
	1.3 Fully Coupled Network: Phase Diagram
	1.4 Diluted Networks
	1.5 Noisy Dynamics
	1.6 Discussion
	Appendix
	References



