PROGETTO FINALIZZATO
SISTEMI INFORMATICI E CALCOLO PARALLELO

SOTTOPROGETTO 8

Iniziativa di Supporto al Calcolo Parallelo

Coordinatore Stefano Trumpy

R. Baraglial, D. Laforenzal, R. Perego!l
A. Lagana2, O. Gervasi>
M. Fruscione4, P. Stofella4

PORTING OF REDUCED QUANTUM
REACTIVE SCATTERING CODES ON A
MEIKO COMPUTING SURFACE

N. 8 20 Maggio 1991

1 CNUCE, Italian National Research Council, Pisa, Italy
2 Dept. of Chemistry, University of Perugia, Italy
3 Academic Computing Center, University of Perugia, Italy
4 Advanced Computing System, Milano, Italy.

Rapporto Tecnico

CNUCE - CNR, via S. Maria 36, 56126, Pisa, Italy

-

AN 1) - o1 AU PP PO PUPSP PPN 1

R U (Yo L1 Lol s (o) o UORO O PP PRP PPN 1
2. Meiko Computing Surface architeCturecoeevvuiiiieeminiiiiininnennen. 1
3. CSTools - a parallel programming tOOL........cccoviiiiiiiiiiiiiiiininennen. 5
4. Structure of the IOSA €Ode...ccoieieis 7
5. Problem definition.......cccoieuiiiiiiiiiiiiiiiiii e e ne e 9
6. Code restructuring for parallel processingcceevunerrrinnirennnnennne. 10
7. Performance analysis and optimization Strategies.........ceeevuervenrnnnnnns 13
B. COMCIUSIONS . eunieeeitieeeeiteeee e e eereeee et s rtaa e raa e e nae e e s e e snanesrnaaanns 15

9 Appendix A
the theoretical approach bt e e et et e e ea e res 15

-t

Abstract

The aim of this paper is to investigate the restructuring of a typical computing
intensive application on a massively parallel architecture. A reduced dimensionality
application to the calculation of reactive properties of atom-diatom systems has
been restructured to run on the Meiko Computing Surface. By using the execution
times analysis of the application made on IBM 3090-VF mod.18E we have
reorganized the application according to a master-slave model. This paper presents
the Meiko Computing Surface architecture, the parallel programming tool CSTools
and the analysis of the restructure steps made to get the parallel version. Finally,
the performance of the parallel code is discussed.

Keywords: massive parallelism, massively parallel architectures, coarse-grain
parallelism, speedup measurement.

1. Introduction

The calculation of accurate (starting from first principles) estimates of physical
observables of elementary chemical processes is of great importance both for pure and
applied research advances. From the pure scientific investigation point of view, these
calculations are, in fact, bound to the properties of the electron distribution around the
nuclei and therefore are a severe test of the "ab initio" efforts to calculate electronic
energies. In addition, the accurate calculations of physical observables is the key strategy

for building a unified picture of the complex world of atoms and moleculesl.
From the applied research point of view, the calculation of these observables is the
building material for the modelling of complex chemical systems which plays a vital role

in designing several modern technological applications? such as laser sources, ion
sources, space craft design, etc. In fact, very seldom the experiment can supply an
estimate of physical observables of elementary chemical processes. This is due not only
to the intrinsic difficulty of isolating an elementary process to the end of measuring its
properties, but also to the fact that the range of initial conditions to be investigated in this
way is rather restricted. On the contrary, for the modeling, a quite large interval of initial
conditions has to be scanned when supplying physical observables.

The above mentioned intrinsic complexity of these techniques (associated with their
"from first principle" nature) and the large amount of values to be calculated (due to the
wide range of initial conditions) make the computational effort so heavy to render the use
of parallel computing indispensible. A typical calculation of this kind is the evaluation of

cross sections and rate costants for atom diatom reachers3. To this end use has been made

in the past of suparcomputer* and of vector and parallel features of shared memory few
processors machine. However due to the difficulty of obtaining all the time and
processors needed on a large machine, our investigation has been focussed on highly
parallel computers.

One of the goals of our subproject within the finalized project "Sistemi informatici e
Calcolo parallelo" is, indeed, that of assessing the advantage of using non conventional
architectures. For this reason we have ported the version of a reduced dimensionality
program calculating atom diatom reactive cross sections working on a parallel IBM 3090
to a Meiko Computing Surface. The aim was to single out the features of distributed
memory concurrent processor machines more important to exploit the potential
parallelism of reactive scattering codes in particular.

The report is organized as follows: section 2 presents the Meiko Computing Surface
architecture, section 3 describes the major CSTools's components, section 4 analyses the
structure of the IOSA code, sections 5 and 6 illustrate the code restucturing strategy to
running the code on a distributed parallel architecture and section 7 shows the speedups
and efficiency values obtained after restructuring.

i

%

2. Meiko Computing Surface architecture

The Computing Surface exploits the concepts of parallel processing and advanced VLSI
technology to provide users with a range of machines from entry level systems with a
few processors delivering a few megaflops, up to systems with some hundreds, or even
thousands, processors providing a supercomputing level of performance.

As illustrated in some details in figure 1, the Computing Surface is a distributed memory
machine made of processors having their own local memory and working independently
on their own programs and data. The communication between different processors occurs
through the passing of messages. This kind of system architecture is based on CSP

(Communicating Sequential Processes)® computational model described by Hoare. In the
Hoare model the computation is seen as the output of an interaction between a set of
processes communicating through point to point channels. The hardware implementation
of this model is often able to go over the major problem of shared memory MIMD

architecture, that is the communicating bus saturation when adding new processorsS. The
INMOS transputer and transputer based-machines are well suited hardware architectures
for reproducing this computational model. The Computing Surface, a transputer-based
machine integrated with Intel i860 nodes and a Sparc node, is a typical example of these
architectures.

Compute resource
and memory

Networking gg H m

Computing Surface
Network

Figure 1: Computing Surface architecture

S

The Computing Surface can be provided as a set of modules, each of them containing
either 10 or 40 boards. Each board is based on transputers used as processors dedicated
to both communications and scalar computations. Each board may be dedicated to pure
scalar computations, in which case it is made only of transputers; vector boards can be
assembled by integrating transputers with Intel 1860 chips. Specialized boards for parallel
high performance I/O, display elements, frame grabber elements etc. are also available.
Multiple modules can be connected in such a way that it is possible to assemble
achitectures with teorically unlimited computational power.

The Computing Surface is not only designed to be a compute-intensive machine, but also
to be both independent from, and adaptable to, requirements of any particular application.
This adaptability is based on the idea that the Computing Surface does not need to have a
fixed network topology. It is, in fact, designed to provide an adjustable interconnection
topology between computational nodes, by making use of Meiko switching chips and an
electronic configuration tool. Another important features of the Computing Surface is the
System Supervisor bus, a global communication bus orthogonal to the inter-processor
message routing network. Its function is to support the system housekeeping with an
alternative way to the transputer link, by allowing a direct control over individual
processing elements.’

The building block of the system is the INMOS transputer, a RISC processor which in
the T800 25MHz version delivers a power of 12 MIPS RISC and 1.5 Mflops on floating-
point computation. It provides 4 bidirectional links for point to point communications
with other transputers in the network. It can be profitably used for applications showing
non-vector features. To achieve better performances on vector application, the 1860-based
Meiko board has to be used. This board, as described in figure 2, is based on two
computational elements (seen as nodes by the remainder of the network). Each node is
made of a i860 processor having a peak performance of 80 Mflops, and two transputers
dedicated to communication services only. Transputers and i860 communicate via an up
to 32 Mbytes shared RAM memory. Communications between nodes are supported by
transputer links.

32 Mbytes
Memory Subsystem

VA U It ﬁ

TROO T800 su;?é?\\/]fsor 1860
interface
I I
Network Interface Supervisor
bus

Figure 2: Meiko 1860-based computational element architecture

N

To manage the whole system, a board based on a standard SPARC processor is used.
This is able to provide a standard operating environment (SunOS), and make use of all
the software running on it. It can also be integrated with parallel applications (by using
CSTools) as well as with software development and debugging environments.

3. CSTools - a parallel programming tool

CSTools (Communicating Sequential Tools)8 is a program development toolset for
multiprocessor computer systems. It supports the programming of single and multi-
processor applications using familiar development environments (UNIX, VMS) and
standard languages (C, FORTRAN, PASCAL, LISP). It consists of cross development
tools, compilers, configuration systems, and runtime facilities such as high level
communication services and symbolic debuggers. CSTools is not a new parallel
operating system; it yet provides a set of tools and facilities allowing cross-development
of codes for parallel machines.

Parallel programming in CSTools is based on the CSP model, which structures a single
application as a set of ordinary sequential programs, written in standard languages. They
exchange data and synchronize the work being done by means of message-passing

élibrary routines. These routines are independent both from processor and communication
hardware.

One of the most important feature of CSTools is the fact that it allows the programming
of a large variety of hardware by using exactly the same techniques and the same source
code. As an example a single multiprocessor application can run entirely on a network of
transputers. By making small changes to configuration parameters and recompiling the
source code for the proper processor without any alteration the same application can be
run on a real network of transputers i860 or on a single SUN workstation, whose UNIX
multiprocessing simulates concurrency and makes the parallel program development
completely independent from specific parallel hardware.

The CSTools major components provide several distinct types of functionality:

» Communication Services (CSN);
» System services (RTE);

» Configuration tools;

» Runtime development tools.

CSN (Computing Surface Networking) communication services provide cushioning
between the programmer and the hardware by presenting to the user a clean high level
model of the parallel machine. The programmer interface to these services is a number of
function libraries allowing an interprocess communication in the network regardless of
whether a direct physical link can be established between related processors. The
interprocessor communication is maneged by an efficient message router, providing
message retransmission, multiplexing and buffering. Under CSN the programmer sees
the hardware as an idealised, fully connected and homogenenous system. The porting of
the code to a different machines very often requires only a recompilation and a linking to
the library. The mechanism which underlies all CSTools communication services takes
the form of a background process.

RTE (Run Time Executives) provides the standard operating system services to all nodes
and processes of the parallel resource. These services can be local services, memory
allocations or more often remote services (e.g. file and screen I/O). This is also taken care

o

by a background process allocated to the processors requiring RTE and having a size
proportional to the kind of services requirements.

Parallel processing
resource

Figure 3: User processes and system services with CSTools

Configuration tools allow the programmer to describe the structure and the layout of the
parallel application, to state where each process will run and how the processors will be
connected. All these details can be supplied by editing a configuration file or alternatively
by using the power and the flexibility of the CSbuild C function library that provides the
user with the possibility of building his own parallel application loader.

An example of configuration file that loads an application consisting of 10 processes (one
graphics, one master and 8 slave instances) running on different hardware processors,
and chooses a binary tree in connection between the processors is given in the following
scheme.

PAR
processor 0 (proc_type sun4) graphics
processor 1 (proc_type T8) master
processor 2 for 8 (proc_type 1860) slave
networkis binary tree

ENDPAR

Runtime development tools are particularly important during the construction of parallel
programs. An important part of CSTools is TDB, an implementation of the standard
UNIX dbx symbolic debugger. When debugging multi-process applications, a separate
tdb has to be invoked for every process of interest.

4. Structure of the IOSA code

Nowadays the only pratical way of computing cross sections of elementary atom diatom
reactions is by solving the nuclei Schrodinger equation under some dynamical

-t

&

constraints. In this way the mathematical problem reduces to the solution of a set of
differential equations in two variables. One of these approaches is the infinite Order
Sudden Approach (IOSA) that approximates the cross section as an integral of fixed angle
contributions. Details of the reduced dimensionality equations and of the numerical
techniques for calculating the cross section and its fixed angle of approach components
are given in appendix A.

The goal of the IOSA code, whose profile is shown in table 1, is the calculation of the
fixed collision angle contribution to the reactive cross section for a given value of
traslation energy.

Application Name IOSA

Load Module Dimension 13 Mbytes

Lines of Code 2500 FORTRAN Statements
Number of Subroutines: 40

Table 1: Application profile

The structure of the original version of the application? is shown in figure 4 using a
pseudo-Fortran code.

SECTION I
LOOP on sectors
Calculation of energy independent quantities needed for the propagation

END of the sector-loop

SECTION II
LOOP on energies
LOOP on [-values
SUBROUTINE CSL (argl,.c.cccccoeeeenen argn)
LOOP on arrangement channels
LOOP on Polar-sectors
Step propagation

END of the Polar sector-loop

LOQP on Cartesian-sectors
Step propagation
END of the Cartesian sector-loop
END of the channel-loop
Asymptotic analysis and S matrix elements evaluation
END CSL

END of the [-value loop
Evaluation of fixed angle reactive quantities

END of the energy-loop

Figure 4: Structure of the IOSA application

“%

In the first section, energy independent quantities needed for costructing the coupling
matrix elements are evaluated for each point of the reaction coordinate grid. This section
consists of one principal DO-loop running over all sectors. The second section of the
program is devoted to the propagation of the solution through all sectors from the origin
to the asymptotes and to the evaluation of the final quantities for an array of energies.
This section contains four nested main DO-loops. The outer DO-loop runs over the
specified energy values. The next internal DO-loop runs over the quantum number /.

The innermost DO-loop runs over the various steps of the propagation. Inside this DO-
loop several calls to the routines performing different matrix manipulations (add,
multiply, transpose, invert) are made. A higher level DO-loop repeats the propagation on
both reactant and product channels. This double level DO-loop structure is incorporated
into a single routine (CSL) making the structure of the code higly modular. A list of the
main routines called and of the tasks they accomplish is given in table 2.

COOLEY calculates the sector vibrational eigenfunctions;

MATINV inverts complex matrices;

MMULO performs a matrix times matrix product;

MMUL1 performs a transposed matrix times matrix product;

MMUL2 performs a matrix times transposed matrix product;

OVLP evaluates the overlap matrix between different
sets of vibrational eigenfunctions;

POT evaluates the potential energy value;

4 RMATRIX propagates the R matrix along the potential energy

channel;

SDMATQ solves a system of real linear algebraic equations;

TQL2 and TRED2 find eingenvalues by tridiagonalizing the
interaction matrix;

Table 2: Tasks accomplished by principal routines

A previous execution time analysis performed on IBM 3090-VF mod. 18E4 has shown
that the most time consuming part of the program is CSL. The routine performing the
integration of the differential equation on the two reaction channels for a given value of
the angular moment / and total energy E.

The dimension of the data structure depends on the size of the problem choosen for each
specific run. When the reaction channel is segmented into 400 sectors about 4Mbytes of
RAM are occupied if the basis set has dimension NV=15 and about 12Mbytes when
NV=30.

5. Problem definition

As already mentioned the execution of the IOSA program needs the use of high
peformance computing systems. The porting of the IOSA program on a MEIKO
Computing Surface is the first implementation of the code on a massively parallel
architectures, therefore it is interesting to discuss in detail the features of the software
development environment of such a computer .

Execution times of the IOSA code measured on a IBM 3090-VF mod. 18E are shown in
table 4 . The IOSA version "Vector + ESSL" was obtained substituting the most
frequently called routines: MMULO, MMLU1, MMLU1, TRED2, TQL2 and SDMATQ,

with equivalent ESSL (Engineering and Scientific Subroutine Lybrary) routines!1.

-

Processor CPU time
IBM 3090-VF mod.18E (seconds)
Scalar version 458.57
Vector version 347.72
Vector + ESSL version 287.32

Table 4: Time consumption for single energy IOSA runs

The IOSA code was ported on a IBM multiprocessor VE-400. Parallel speedup were
measured both for implicit and explicit parallelization. The first one was obtained by
compiling the code with the option "AUTO" without parallelization primitives. The
second one was obtained by using the parallelization primitives and a coarse-grain
parallelism. The coarse-grain parallelism, being best suited for those sections of the
program which are large enough to render negligible the syncronization times overhead,
was applied to the CSL routine. Related time consumptions, speedups and processor
efficiency are shown in table 5.

IOS A Version Vector+ESSL

Processors Elapsed times Elapsed times Speedup | Efficiency
in seconds in seconds
(implicit parallelism) | (explicit parallelism)

1 335.78 329.38

2 342.11 215.05 1.53 0.76
3 341.39 176.59 1.86 0.62
4 339.38 219.47 1.5 0.37

Table 5: Time consumptions for parallel runs in stand-alone mode

It is worth noticing from data reported in the table, that implicit parailelism leads to no
time saving. It has also to be noticed that the elapsed times measured for explicit
parallelism runs worsens when using 4 processors because the IBM 3090 VF-400 used
had 3 VF only and calculations on different processors are syncronized at each batch of /
value.

-

e

6. Code restructuring for parallel processing

The porting and the parallelization of the IOSA application on the Meiko parallel system
have been carried out in four different steps:

a) recompilation and execution of the code on a single transputer;

b) analysis of the application structure and selection of the optimum parallelization
strategy;

c) definition and implementation of the software structure to support the
parallelization strategy;

d) parallel execution and analysis results.

a. Porting the code on a single processor

The compilation process to execute the code on a single node has needed only two main
changes: one about the timing routines, the other to substitute the Fortran statements
NAMELIST not supported by the Meiko compiler version used at this step (the actual
version of the Meiko Fortran compiler supports this function). However, the porting on
a single processor has confirmed that both the application and the Meiko Fortan
compiler follow the standard specification of the Fortran language.

The available system configuration uses INMOS Tranputer T800 with 4 Mbyte RAM
and Intel i860 with 8 Mbyte RAM. This allowed to run IOSA in sequential mode with a
basic set of NV=15 and 400 sectors.

b. Parallelization strategies

As shown in figure 4, this application has a kind of natural coarse-grain parallelism. On
massively parallel systems the use of the "coarse-grain” parallelism leads to an optimum
ratio value of the computing-time/communication-time. Therefore, it was obvious to
choose the coarse-grain parallelism as parallelization strategy.

The program execution time analysis indicates that only about 15% of the overall cpu
time is spent in the section 1. Therefore, our effort was mainly focussed on reorganizing
the second section of the program. :

As for the IBM3090 it has been parallellized the DO loop running on the [/ quantum
number. In fact the outermost DO-loop (running over the energy) might be too small
(even one energy value), while the inner DO-loop over sectors is strictly sequential. On
the contrary each iteration on [is independent from the others, and its time consumption
is quite heavy. As will be discussed later on, both characteristics are very important also
for the application scalability when the number of used processors increases.

The parallelization has been structured using a master-slave model with dynamic
allocation of work. The model consists of a set of slave processes, all executing the
CSL subroutine, and a master process that dynamically send to the slaves a quantum
number [to start their execution. Whenever one of the slaves sends back to the master
the result of its processing, the master process controls the convergency of the solution.
If the convergency is not reached the master process sends to the free slave further
work. When convergency is reached the master process ends the execution by stopping
the work on the active slave processes.

Se

c. Definition and implementation of the parallel structure

The development environment on the Meiko Computing Surface is CSTools. By using
CSTools the programmer sees only the logical configuration choosen to perform his
parallel application. He needs not to know the physical message-passing organization
through the communication network. Moreover CSTools provides the possibility of
defining mixed programming architectures allowing a structuring of the parallel code
indipendent from the kind, the number and the nodes configuration, (both transputers
and 1860 processors can be used). Accordingly the code was first parallelized on a
transputer based Computing Surface.Then it was run on a i860-based Computing
Surface without any change of the software managing parallelism.

Figure 5 shows the master-slave logic configuration choosen to parallelize the
application, while figure 6 shows the network configuration adopted. The network
configuration is a ternary tree. Since each transputer has 4 communication links a ternary
tree can be easily and efficiently mapped on the hardware architecture.

MASTER

SLAVE 1 SLAVE 2 SLAVEn

Figure 5: Data parallel master-slave model

MASTER

Figure 6: The adopted configuration

10

PR

In those cases in which the communication links of the physical configuration do not
match with the communication channel pattern, the message routing is arranged by
CSTools. As a result the routing is trasparent to the programmer.

In figures 7 and 8 the master and slave process structure in which the application has
been reorganized are shown.

Master Process

Execution of the section I
Send constant data structure to the slave processor
Quantum number allocation to the slave processor

DO-loop on [-values
Receive result from slave processor
Convergency control (if converged go to stop processors)
Send further work to the free processor

END DO-loop

Stop processors
Output of the results

Figure 7: Structure of master process

Slave process
Receive data structure from the master process

DO-loop

Receive quantum number L
CALL CSL
Send to the master process the risults

END DO-loop

Figure 8: Structure of slave process

7. Performance analysis and optimization strategies

Two important indicators of the effective use of parallel processing are the measured
speedup and the efficiency. The speedup (S) is defined as the ratio between the time
required to execute a given calculation on a single-node processor and that needed on
concurrent processors. If T is the elapsed time of the application on a single-node
processor and T, is the elapsed time on a concurrent computer, the speedup is given by:

§=1
Tp

11

The efficiency (E) is defined by:

_ Speedup
"~ Number of processors

and can be used to compare different parallel version of the same program.

As already mentioned the present investigation has been performed using two different
configuration of the Meiko Computing Surface system. The first one has 25 Mhz
transputer processors, each one with 4Mbyte of local RAM and with 6 MIPS VAX and
1.5 MFlops of peak performance. The second one has both transputer (for message
routing) and 1860 nodes. In our job the i860 processor has been used only in scalar
mode, because the Intel vector compiler is not yet available. On experimental test base
Meiko corporation states that it is possible to get a factor speedup of 2-3 by using the
new vector compiler.

In table 5 are shown the execution times of the original version (problem size NV=15
and 400 sectors) performed on single transputer node and 1860 node.

Executin times T800 1860
TIOSA (section 1 and 2) 13128,05 1722
IOSA (section 1) 2006,3 610
IOSA (section 2) 11121,75 1111

Tabella 5: IOSA execution times

To give a more appropriate evaluation of the limiting speedup reachable on the Meiko
machine execution times limited to section 2 (subroutine CSL) are shown in table 6.

Number of Subroutine CSL Speed-up Efficiency
Processors execution time
(in seconds)

1+21860 595.84 1.86 0.62
1 +41860 315.1 3.52 0.70
1+71860 181.59 6.02 0.76
1+ 161860 88.3 12.5 0.74
1+2T800 5496.16 2.02 0.63
1 +4T800 2780.52 3.99 0.79
1+7 T800 1514.96 7.34 0.91

Tabella 6: CSL exection times

In the table the notation "1+n processor" means a configuration of processors consisting
of a master processor and n slave processors.

12

Since the computational workload of the master node is poor, it can be allocated jointly
with a slave process on the same node. That would lead to an insignificant increase of
the execution time giving in return a speedup and efficiency increase because of the
reduction of the processors involved in the program execution.

Judging from our results, the application presents a good scalability. A further increase
of perfomance could be obtained by parallelizing the section 1.

For further comparison, figure 9 shows histograms for the execution time of the CSL
routine on both IBM 3090 and Meiko Computing Surface systems.

Processors

3090-VF18

3090-VF400

21860 |

4 860

16 i860

£

] * | M |

o 100 200 300 400 500 600

CPU time (seconds)

Figure 9: CPU times spent to run the subroutine CSL

8. Conclusions

In this paper we have investigated the restructuring of a typical intensive computer
application on a massively parallel architecture. By using the execution times analysis of
the application made on IBM 3090-VF mod.18E we have reorganized the application in
according to a master-slave model .

The compilation process of the sequential version of the application has not required
particular code modifications pointing out that the Meiko Fortran compiler works
according to standard specifications.

The parallelization of the code has required the restructuring of the program for
introducing the explicit parallelism management, without any alteration of the
computational kernel.

As expected, the parallel version of the application, obtained by using CSTools, is
indipendent from the number of processors, from the kind of processors (transputer or
Intel i860) and from the network topology.

Speedups and efficiency measured for the IOSA code on the Meiko Computing Surface
are excellent confirming that when coarse-grain parallelism can be exploited on highly
parallel distributed memory architectures leads to top performances and unique
price/performance ratios.

13

-

9 Appendix A: the theoretical approach

The most popular way of reducing the dimensionality of an atom-diatom reactive
scattering problem is to apply both the energy sudden and the centrifugal sudden

decoupling schemes (the so-called Infinite Order Sudden Approach - IOSA)I0 . In this
way the exact three mathematical dimension Schroedinger equation is reduced to a set of

fixed collision angle ¥ two mathematical dimension ones. These equations read as

2 2
hi1 o 197 L

Ja
I [T RS Tk (S il R ;Y "E @ =0
Qo2 Bag Y @ o (Qua 7)) B [* Qa1

D

Where A labels the type of atom-diatom arrangement (A = o indicates the reactant

channel, A = B or B'indicates a product channel), E is the total energy, Q; and g are the
properly mass scaled atom to the diatom center of mass and the diatom internuclear
distances, pis the reduced mass of the system and L, and J;, are costants the orbital

ﬁrelated to [, and the rotational j, quantum numbers respectively.
Y Equations (1) can be solved by dividing the fixed collision angle Yy (Qg, qy) Plane

into two regions using a straight line. Such a line originates at Q, =0 and q, =0 and
follows the ridge separating the entrance from the exit channel. This choice makes the

correspondence between Yo and Yg unique and ensures the proper matching of the
reactants’ and products' half-channel.

To integrate equations (1) the o and P half-channels are segmented into many small
sectors. Within each i sector the global wavefunction @4(Q; , gy ; Ya) is expanded in
terms of NV products of two terms: a propagation X v (Qy ; ¥3) and a bound ¢; 3v (qy;

v, » Q%) function. The value of NV is chosen large enough to include for each sector all

open channels and the lowest closed ones. By averaging equations (1) over g, a set of
NV differential equations

2 .
- D3 Xy Qa3 1) =0
d Qx

(2)

is obtained. The sector matrix D, plays the role of coupling the equations for different v

values. Equations (2) are integrated from the line separating the reaction channels to the
asymptotes.

For our the IOSA procedure used here (which is limited to systems having a central
atom much heavier than the external ones) rectants’ and products' coordinates are

exchangeable (Qq = qg; 9o, = Qp; Yo =Yg =), the value of j' is linked to that of / (! — ')
and the matching at the separatrix is straightforward. By imposing the appropriate

boundary conditions® at both reactant and product asymptotes the detailed IOSA fixed vy

S matrix elements (Sjvw (¥, E)) for the reactive process can be derived. Usually, because
of the nature of the IOSA approach j is set equal to zero and therefore can be dropped

14

from the notation from these values, the fixed y detailed state (v) to state (v') reactive

Cross section (S Ev (v.E)) can be calculated using the relationship

vy’ — T ' 2
Sg IV.E 2k2(21+1) [Stvv Y,E| 3

{ v

2 .
where, as usual, Xv is [2m (E-Evj)/hl 2 and E, is the energy associated with the
considered rectant vibrational state. Then the corresponding global IOS 3D reactive cross

section for a given total energy can be obtained by integrating (S R (v.E)) over cos ¥

¥ 1 .
S ®)= %_—J Sy (v.E) dcosy (4.
-1

References

[1] A.Lagana, Supercomputer Algorithms for Reactivity, Dynamics and Kinetics of
Small Molecules (Kluwer, Dordrecht, 1989).

[2] M. Capitelli and J.N. Barsdley, Nonequilibrium Process in Partially Ionized Gases
(Plenum, New York, 1990).

[3] D.M. Hirst, A computational Aprroach to Chemistry (Blackwell, Oxford, 1990).

[4] A. Lagana, O. Gervasi, R. Baraglia, D. Laforenza, Vector and Parallel
Restructuring for Approximate Quantum Reactive Scattering Computer Code, in:
J.L. Delhaye, E. Gelembe, (ed.), High Performance Computing (Noth-Holland,
1989) pp. 287-298.

[5] M. Vanneschi, Architetture General Purpose, in: atti convegno AICA
"Elaborazione parallela”, 1988.

[6] C.AR. Hoare, Communicating Sequential Processes, Communications of ACM,
vol.21, Num. 8,1978.

{71 Meiko Hardware Reference Manual, Meiko 1989
[8] CSTools reference Manual, Meiko 1989

[9] Engineering and Scientific Subroutine Library Guide and Reference Version 2,
IBM Order No. SC23-0184.

[10] Pack, R. T, J. Chem. Phys. 60 (1974) 653; McGuire, P.M. and Kouri, D.J,,
J.Chem. Phys. 60 (1974) 2488; Kouri, D.J., in: Berustein, R.B., (ed.), Atom
Molecule Collision Theory: A Guide for the Experimentalist (Plenum, New York,
1979) pp.301-358; Kouri, D.J. and Fitz, D.E., J. Phys. Chem. 86 (1982) 2224.

[11] A.Lagana, E. Garcia and O. Gervasi J. Chem. Phys. 89, 7238 (1988).

15

g

