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Abstract

Tourism is a very complex industry and represents one of the most profitable activity in the world. A tourist
product requires the execution of several multifaceted activities. Indeed, transportation, accommodation, en-
tertainment, food, and beverages represent only some of the products/services required by a tourist. It is
evident that a single enterprise cannot provide all the components of a tourist product, but several interre-
lated actors should collaborate. This leads to a very complex supply tourist chain that needs to be optimized.
The relevant theories and methods of logistics can be used to efficiently manage all the flows that are gener-
ated in a tourist chain. The definition of appropriate policies, at the different nodes of the chain, can improve
the performance of all the actors involved in tourism logistics. In this paper, we concentrate our attention on
tour operators that are relevant in the touristic logistic chain since they are involved in several activities. We
introduce different revenue management policies to support tour operators in the decision of accepting the
most profitable tourist requests. A request consists of flights and hotel booking, characterized by a starting
time of the trip and the length of stay at the destination. We allow for various combinations of flight legs
and multiple categories of hotels to accommodate a variety of customer preferences and needs. A computa-
tional study is carried out by considering different scenarios, and the performance of the considered revenue
management policies is analyzed in detail.

Keywords: tourism logistics; holiday package; revenue management; booking limit policy; bid price policy; buy-up

1. Introduction

Efficient management of the flow of people and goods within the tourism logistics chain is
vital for the tourism industry, which ranks among the most profitable sectors in the world
(https://www.statista.com/topics/962/global-tourism). The flows need to be properly organized
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in terms of safety, services, and resources in order to achieve higher profits. The fulfillment of
this objective is not trivial and requires the optimization of strategical, tactical, and operational
decisions made at any point of the tourism chain (Alkier et al., 2023). It is necessary to organize
and coordinate several “logistics nodes,” including booking sites, airports, stations, hotels, and
places of interest. The quality of the tourist experience is closely related to the management of
the overall logistics chain. A crucial role, in the touristic chain, is played by service suppliers, like
tour operators, that manage a large set of activities and flow chains (Muhcina and Popovici, 2008).
Tour operators combine basic services into packages to be offered to tourists or retailers. Given the
narrow profit margins in the tourism industry, the adoption of well-tailored strategies to efficiently
manage available capacity and define competitive prices is essential for tour operators (Holloway
et al., 2012; Ye et al., 2019). In this scenario, revenue management methodologies (McGill and
Ryzin, 1999) can be very effective in supporting companies to define optimal capacity allocation
and pricing policies (Yang et al., 2017).

The literature on revenue management is extremely rich and heterogeneous since it includes meth-
ods and techniques to model, estimate, and forecast demand; to set prices; and to control capacity,
with the aim of improving industries’ profits. Exhaustive reviews on revenue management features,
techniques, and sectors of application can be found in Chiang et al. (2007), Bell (2012), and Klein
et al. (2020). The relevance of revenue management research to optimally manage inventory is un-
derlined in Yeoman (2022), whereas the adoption of revenue management techniques in the tourism
and hospitality sector is investigated in Subying and Yoopetch (2023). The scientific literature pro-
vides contributions focusing on one sector at a time. This means that only one typology of resource
is considered, for example, seats for airlines, rooms for hotels, trucks for car rental, and tables
for restaurants.

In this paper, we focus on a capacity control strategy applied to manage two different resources,
that is, seats for airlines and rooms for hotels. We consider the problem of selling holiday pack-
ages with the aim of maximizing the revenue for a tour operator. We consider a holiday package
composed of flights and hotel accommodation with several categories and a certain length of stay.
At each decision time, a customer arrives and requires to travel from an origin to a destination at
a given time, possibly with more than one leg. Customers also define the hotel category and the
length of stay. The tour operator checks for seat availability on the flights and rooms in the hotel.
If these resources are available, then the tour operator decides whether to accept the customer’s re-
quest. The decision is made considering the simultaneous availability of both flight seats and hotel
rooms. Indeed, managing the two resources separately can lead to situations where, for example,
flights are booked for both departure and return trips, but no room is available in the hotel for the
length of stay or vice versa.

In the sequel, we briefly present the most relevant contributions dealing with rev-
enue management applications of capacity control techniques in the hotel and airline
industries.

Hotels industry. Among the first works in control capacity, we cite Bitran and Gilbert (1996),
where the problem of allocating rooms to a customer is discussed, considering a simple scenario
with one room type and one day stay. In Baker and Collier (1999), a simulation model is considered
in order to compare the performance of five heuristics under 36 realistic hotel operating environ-
ments for the optimal allocation of the hotel rooms. In Goldman et al. (2002), deterministic and
stochastic optimization problems are considered. In Badinelli (2000), a dynamic model for finding
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optimal booking policies for the hotel revenue management problem is presented. The proposed
model aims at maximizing the expected revenue for all customer stays that overlap a given booking
date. In Rusmevichientong et al. (2023), the authors propose a capacity control strategy tailored for
modern hotel types such as Airbnb, boutique hotels, and bed and breakfasts. The reader is referred
to Binesh et al. (2021) for a detailed survey of the hotel industry.

Airline industry. The airline industry is one of the first fields in which revenue management
techniques have been applied. Among the first contributions, we cite Belobaba (1989) which
introduced the concept of booking limits for seat inventory control. Following this seminal
work, several contributions have been published. Feng and Xiao (2001) consider a stochastic
control model, while An et al. (2021) propose a policy based on robust optimization. Addition-
ally, in Shihab and Wei (2022), the authors introduce a deep reinforcement learning approach
for determining the optimal policy for the seat inventory control problem. Gao and Le (2022)
address the case in which dynamic pricing and seat inventory control are jointly considered.
Other contributions consider customer choice behavior (Talluri and Ryzin, 2004a; Liu and
Garrett, 2008; Ryzin and Vulcano, 2008; Bront et al., 2009; Jiang and Miglionico, 2014) and
flexible/opaque products (Gallego and Phillips, 2004; Chen et al., 2010; Gonsch, 2020). The
reader is referred to Raza et al. (2020) for a recent survey on revenue management for the airline
industry.

To the best of our knowledge, this is the first attempt to apply revenue management techniques
to the problem of selling services that incorporate a combination of two types of different resources
(seats and rooms). Furthermore, we consider the possibility for a customer to upgrade to a product
with better features than those requested. We consider two different cases. In the first one, the tour
operator can offer a customer a higher hotel category than that requested at the price of the origi-
nal customer request. In a second case, we consider the possibility of upgrading by associating with
each customer a given buy-up probability. Thus, the customers, in case of rejection, can ask, with
a given probability, a more expensive hotel accommodation. We give a dynamic programming for-
mulation to the problem of accepting or denying a holiday package request on a given time horizon
with the aim of maximizing the total tour operator revenue. Due to “the curse of dimensionality,”
the dynamic programming model cannot be solved optimally (Talluri and Ryzin, 2004b). In or-
der to provide the decision-maker with a tool useful in taking decisions, we develop some integer
programming approximation of the problem (de Boer et al., 2002). Based on the proposed mathe-
matical models, we define several revenue-based policies taking into account the peculiarity of the
customer choice behavior.

The rest of the paper is organized as follows. In Section 2, we present the dynamic programming
formulation of the holiday packages problem. In Section 3, we propose two integer program-
ming approximations of the problem. The first, described in Section 3.1, refers to the case of a
single hotel category, while the second, reported in Section 3.2, is an extension to the multiple
hotel categories case. In Section 4, partitioned booking limits and bid price policies, based on
the solutions of the integer programming models, are presented. In Section 5, a computational
phase is carried out with the aim of evaluating the proposed policies considering a set of mean-
ingful instances. We draw some conclusions in Section 6. The paper ends with the Appendix in
which we prove that the constraint matrices associated with the considered problems are totally
unimodular.
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2. A dynamic programming formulation of the holiday packages problem

We consider the problem faced by a tour operator that offers holiday packages to several customers
on a given time horizon. Each package typically includes a round-trip ticket originating from a
selection of specific locations to designated destinations, along with accommodation arrangements.
At each time of the planning horizon, the tour operator has to decide how to manage the overall
capacity in the most profitable way, taking into account that complete information on the future
demand is not available. Let J = {1, . . . , n} denote the set of possible itinerary indexes. Define P =
{1, . . . , p} as the set of potential origin/destination (indexes) nodes, and let E = {1, . . . , e} ⊆ P
denote the subset containing the indexes of the nodes that are exclusively possible destinations.
We refer to the jth itinerary with origin O and destination D as (Oj, Dj ), Oj, Dj ∈ P and j ∈ J.
Let ITl = { j ∈ J : Dj = l}, l ∈ E be the set of itinerary indexes with the same destination l . Each
itinerary is a combination of one or more legs i ∈ I = {1, . . . , m}. Customers can be grouped in K
distinct classes k, k = 1, . . . , K, based on their length of stay requirement. A customer belongs to
class k if her/his required length of stay is k nights, indicating the duration of her/his stay at a hotel.
We also assume that customers will return to their origin node after the journey. A holiday package
is completely defined by a combination of an itinerary and a length of stay. We also assume that
customers will arrive at the destination in one day. At each time period t = 1, . . . , T of the booking
horizon, the tour operator has to decide on accepting/denying the request of a customer asking
for the itinerary j = (Oj, Dj ), j ∈ J, departure time at t̄, t̄ = 1, . . . , T̄ , and length of stay of k
nights.

The objective of tour operators is to maximize the total revenue generated from the accepted
requests within the booking horizon. It is also assumed that a customer, with departure time t̄, will
return at the origin after k nights, that is, at time t̄ + k, k = 1, . . . , K. In the sequel, we will refer to
1, . . . , T̄ as the “operational horizon,” that is, the horizon where the holiday takes place.

Let B denote a binary matrix with dimension (2m × n). Each element bi j, i = 1, . . . , 2m; j =
1, . . . , n is equal to 1 if itinerary j uses leg i and zero otherwise. Each column of matrix B contains
all the information related to the legs involved in both the outward and the return trip. In particular,
the first m rows refer to the outward trip while the last m rows refer to the return trip for the
itinerary j. For the sake of clarity, we report in Example 1 an instance of the problem along with
the associated sets and the matrix B.

Example 1. We consider four origins/destinations named Rome (ROM), Lamezia (SUF), Madrid
(MAD), and Warsaw (WAW). We associate indexes 1, 2, 3, and 4 with ROM, SUF, MAD, and
WAW, respectively. Hence P = {1, 2, 3, 4}. We consider six legs, represented as arcs in Fig. 1.
In particular, we have legs 1 (SUF/ROM), legs 2 (ROM/MAD), legs 3 (ROM/WAW), legs 4
(ROM/SUF), legs 5 (MAD/ROM), and legs 6 (WAW/ROM). Hence I = {1, 2, 3, 4, 5, 6}.

The instance contains four itineraries, whose characteristics are depicted in what follows:

• Itinerary j = 1 = (SUF,WAW) (red arrow) with origin O1 = 2 (SUF) and destination D1 =
4(WAW ). Therefore, itinerary 1 is constituted by legs 1 and 3 (outward trip) and by legs 6 and 4
(return trip).

• Itinerary j = 2 = (ROM, MAD) (yellow arrow) with origin O2 = 1 (ROM) and destination D2 =
3 (MAD). Therefore, itinerary 2 is constituted by legs 2 (outward trip) and by legs 5 (return trip).

© 2024 International Federation of Operational Research Societies.
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Fig. 1. Graphical representation of the instance of Example 1. (For interpretation of the references to color of this
figure, the reader is referred to the web version of this article).

Fig. 2. The matrix B associated with the instance of Fig. 1.

• Itinerary j = 3 = (ROM, WAW) (green arrow) with origin O3 = 1 (ROM) and destination D3 = 4
(WAW). Therefore, itinerary 3 is constituted by legs 3 (outward trip) and by legs 6 (return trip).

• Itinerary j = 4 = (SUF, ROM) (orange arrow) with origin O4 = 2 (SUF) and destination D4 = 1
(ROM). Therefore, itinerary 4 is constituted by legs 1 (outward trip) and by legs 4 (return trip).

It follows that the set of itineraries J is J = {1, 2, 3, 4} and the set of destinations E is E =
{1, 3, 4}, that is, ROM, MAD, and WAW.

The sets ITl , l ∈ E , containing the itineraries with destinations l ∈ E , are characterized as IT1 =
{ j = 4}, IT3 = { j = 2}, and IT4 = { j = 1, j = 3}.

The matrix B associated with the considered instance is reported in Fig. 2.

© 2024 International Federation of Operational Research Societies.
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The capacity of the system depends on both the plane capacities and the room availability for the
entire length of stay at the destination hotel.

The state of the network at time t is described by a matrix X (t) of resource capacities

X (t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1
1(t) · · · xt̄

1(t) · · · xT̄
1 (t)

...
. . .

...
. . .

...
x1

m(t) · · · xt̄
m(t) · · · xT̄

m(t)
...

. . .
...

. . .
...

x1
m+e(t) · · · xt̄

m+e(t) · · · xT̄
m+e(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

whose generic column xt̄ (t) = (xt̄
1(t), . . . , xt̄

m(t), xt̄
m+1(t) . . . , xt̄

m+e(t)), t̄ = 1, . . . , T̄ represents the
resources availability at each time t̄ of the “operational horizon.” Indeed at each time period t̄, t̄ =
1, . . . , T̄ , the first m rows refer to the leg capacities while the latter e to the hotel capacity at each
destination. We assume that each flight is operated every day in the whole operational horizon.

We indicate with B1
j the vector containing the first m rows of the jth column of B (outward route)

and e additional rows equal to zero. We also indicate with B2
j a vector containing the remaining m

rows of the jth column of B and e additional rows equal to zero. Time is discrete, and there are T
booking periods indexed by t, which runs forward so that t = T is the departure time. In each time
period t, at most one request for a holiday package can arrive. We denote with λt

jt̄k, the probability

that at time t one request of class k for itinerary j ∈ J and departure time t̄ = 1, . . . , T̄ , is made.
It holds that

∑K
k=1

∑T̄
t̄=1

∑
j∈J λt

jt̄k + λt
0 = 1, where λt

0 is the probability that no request for holiday
packages arrives at time t.

Let us introduce Boolean variables ut
jt̄k, with ut

jt̄k = 1 if the customer request, arriving at time t
of the booking horizon, for a holiday with itinerary j, length of stay of k nights, and departure time
at t̄ is accepted and ut

jt̄k = 0 otherwise.

Let Rk
j be the revenue associated with the holiday package of class k for the itinerary j ∈ J. We

assume that, on the given booking horizon, the revenue is independent of time, that is, a revenue of
Rk

j is obtained from the holiday package of class k for itinerary j ∈ J whatever it is the departure
time t̄ and the time t in which the request arrives.

The problem can be formulated as a dynamic program by defining Vt (X (t)) as the maximum
expected revenue obtainable from periods t, t + 1, . . . , T given that, at time t, the network capacity
is X (t). The Bellman equation for Vt (X (t)) is reported as follows:

Vt (X (t)) =
K∑

k=1

e∑
l=1

∑
j∈ITl

λt
jt̄k max

ut
jt̄k∈{0,1}

[
Rk

j u
t
jt̄k + Vt+1(X (t + 1))

]
+ λt

0Vt+1(X (t)) (1)

with boundary conditions:

Vt (0) = 0, ∀t, (2)

VT (X (T )) = 0, if xt̄
r(T ) ≥ 0 ∀r, t̄, (3)

© 2024 International Federation of Operational Research Societies.
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Vt (X (t)) = −∞, if xt̄
r(t) < 0 for some r, t̄, ∀t, (4)

where (2) states that, at each time period t, if the capacity equals zero, the expected revenue is also
zero; conditions (3) ensure that at the end of the planning horizon, there is no further opportunity
for revenue generation. Finally, the boundary conditions (4) discourage the optimization process
from exploring infeasible solutions.

We denoted by X (t + 1) the matrix obtained by appropriately updating the network capacity. It
is worth noting that the update of the network capacity is related to the following event: At time
t, a customer requires a holiday package, thereby defining the itinerary j, the length of stay k, and
the arrival time t̄.

The tour operator can accept or deny the current request. If the request is accepted, we need to
update the leg capacities by filling the seats on all the legs involved in itinerary j ∈ J. In particular,
the columns t̄ and t̄ + k of matrix X (t) need to be updated as follows: xt̄ (t + 1) = xt̄ (t) − B1

j u
t
jt̄k

and x(t̄+k)(t + 1) = x(t̄+k)(t) − B2
j u

t
jt̄k.

Moreover, we need to modify the hotel capacity for the destination index l = Dj associated with
the itinerary j ∈ J. In fact, a new room at the destination indexed by l will be occupied from t̄ to
t̄ + k − 1, that is, xt̃

(m+l )(t + 1) = xt̃
(m+l )(t) − 1, ∀t̃ = t̄, . . . , t̄ + k − 1.

It is worth observing that, if at time t, the tour operator denies the current request or no request
arrives, the network capacity available at time t + 1 remains unchanged (i.e., X (t + 1) = X (t)).

3. Integer programming formulations

The proposed dynamic programming model is unlikely to be solved optimally due to the curse of
dimensionality. In the next sections, we present two integer programming approximations of the
problem that we use to define several revenue management policies.

3.1. The holiday package problem

Starting from the dynamic programming problem, in the integer programming approximation, we
replace stochastic quantities by their mean values and we assume that capacity and demand are
continuous. Let be

• d the random cumulative future demand at time t, and d̄ its mean. In particular, dt̄
jk is the aggre-

gate number of requests for a holiday package with itinerary j ∈ J, length of stay k = 1, . . . , K,
and departure time t̄ = 1, . . . , T̄ ;

• Rk
j the revenue associated with a holiday package with itinerary j ∈ J and length of stay k =

1, . . . , K;
• bi j, i ∈ I, j ∈ J, equal to 1 if itinerary j uses leg i and zero otherwise. bi j is an element of matrix

B introduced in Section 2;
• xt̄ (t) = (xt̄

1(t), . . . , xt̄
m(t), xt̄

m+1(t) . . . , xt̄
m+e(t)) the resource vector constituted by m + e elements,

indicating the leg and room capacity for the operational instant time t̄ at booking period t;

© 2024 International Federation of Operational Research Societies.
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• zt̄
jk integer variable indicating the number of accepted holiday packages with itinerary j ∈ J,

departure time at t̄ = 1, . . . , T̄ and length of stay k = 1, . . . , K;
• yt̄

lk integer variable indicating the number of rooms occupied at t̄ by a customer of class k =
1, . . . , K at the destination l ∈ E .

The total revenue achievable by the tour operator at booking time period t, when the network
capacity is X (t), can be calculated by solving the following optimization problem:

RHPP(X (t)) = max
T̄∑

t̄=1

K∑
k=1

n∑
j=1

Rk
j z

t̄
jk, (5)

zt̄
jk ≤ d̄ t̄

jk ∀ k, j, t̄, (6)

n∑
j=1

bi j

K∑
k=1

zt̄
jk +

n∑
j=1

b(m+i) j

K∑
k=1

∑
{t̃≤t̄|t̄=t̃+k}

zt̃
jk ≤ xt̄

i (t) ∀ i, t̄, (7)

∑
j∈ITl

zt̄
jk = yt̄

lk ∀ l, k, t̄, (8)

∑
k∈K

yt̄
lk +

t̄−1∑
t̃=1

K∑

k̃=(t̄−t̃)+1

yt̃
lk̃

≤ xt̄
(m+l )(t) ∀ t̄ l, (9)

z, y ≥ 0, integer. (10)

Constraints (6) state that the tour operator cannot allocate more holiday packages to initial
booking requests than the average demand d̄ . Constraints (7) control the availability of seats in
all the legs involved in the itinerary. Equations (8) are link constraints between z and y variables.
Constraints (9) control the availability of rooms at each destination for the entire length of stay.
Finally, the variable domain constraints are shown in Equation (10).

3.2. The holiday package problem with multiple hotel categories

We consider an extension of the model defined in Section 3.1 by introducing the possibility of
different hotel categories. Let S = {1, . . . , S̄} be the set of possible hotel categories, named also
starts, associated with a holiday package. In the following, we will also consider the possibility for a
customer that requires a hotel with s̃ ∈ S stars to upgrade to a hotel with a higher number of stars
s′ ∈ S, s′ > s̃. In particular, we consider two types of possible upgrades, dealing with two different
versions of the holiday package problem (HPP) with multiple hotel categories (HPPS):

© 2024 International Federation of Operational Research Societies.
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1. The tour operator can assign to customers a hotel category s′ greater than that requested, that
is, s̃, at the price associated with a hotel of category s̃. The associated problem is referred to as
HPPS1;

2. at any time t, the tour operator has to make the following decisions: (D1) accept or reject a
booking request for a holiday package with itinerary j, departure time at t̄, and length of stay k
in a hotel with s̃ stars. (D2) In the case of rejection in D1 and if the customer wants to buy up
to a hotel with category s′, accept or reject the customer’s new booking request. The associated
problem is referred to as HPPS2.

3.2.1. Mathematical formulation for HPPS1
To formulate HPPS1, we need to introduce the following parameters and variables:

• d the random cumulative future demand at time t, and d̄ its mean. In particular, dt̄
jks is the aggre-

gate number of requests for a holiday package with itinerary j ∈ J, length of stay k = 1, . . . , K
in a hotel with s ∈ S stars and departure time t̄ = 1, . . . , T̄ ;

• Rk
js the revenue associated with a holiday package with itinerary j ∈ J and length of stay k =

1, . . . , K in a hotel with s ∈ S stars;
• ξ t̄

l s(t) the number of available rooms for t̄ = 1, . . . , T̄ at the destination l ∈ E in a hotel with s ∈ S
stars at the booking time period t;

• zt̄
jkss′ integer variable indicating the number of the accepted requests for a holiday package with

itinerary j ∈ J, length of stay k = 1, . . . , K, departure time t̄ = 1, . . . , T̄ in a hotel with s ∈ S
stars by using an hotel with s′ ∈ S stars s′ ≥ s. In particular if s′ > s an upgrade takes place.

• yt̄
lks integer variable indicating the number of occupied rooms at t̄ = 1, . . . , T̄ by customers of

class k = 1, . . . , k at the destination l ∈ E in a hotel with s ∈ S stars.

The total revenue achievable by the tour operator at time t, when the network capacity is X (t),
can be calculated by solving the following holiday package problem with S categories, that is,
HPPS1:

RHPPS1(X (t)) = max
T̄∑

t̄=1

K∑
k=1

n∑
j=1

S∑
s=1

S∑
s′=s

Rk
jsz

t̄
jkss′, (11)

S∑
s′=s

zt̄
jkss′ ≤ d̄ t̄

jks ∀ k, j, t̄, s, (12)

n∑
j=1

bi j

K∑
k=1

S∑
s=1

S∑
s′=s

zt̄
jkss′ +

n∑
j=1

b(m+i) j

K∑
k=1

∑
{t̃≤t̄|t̄=t̃+k}

S∑
s=1

S∑
s′=s

zt̃
jkss′ ≤ xt̄

i (t) ∀ i t̄, (13)

∑
j∈ITl

s∑
s′=1

zt̄
jks′s = yt̄

lks ∀ l, k, t̄, s, (14)
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∑
k∈K

yt̄
lks +

t̄−1∑
t̃=1

K∑

k̃=(t̄−t̃)+1

yt̃
lk̃s

≤ ξ t̄
l s(t) ∀ t̄, l, s, (15)

z, y ≥ 0, integer. (16)

Constraints (12) state that the tour operator cannot allocate more holiday packages to the initial
booking requests than the average demand d̄ . Constraints (13) control the availability of seats in
all the legs involved in the itinerary. Equations (14) are link constraints between z and y variables.
Constraints (15) control the availability of rooms at each destination for the entire length of stay.
Indeed, it states that the number of rooms occupied at t̄ plus those filled before t̄ but still busy have
to be less than or equal to the number of rooms available at t̄.

3.2.2. Mathematical formulation for HPPS2
To formulate HPPS2, we need to introduce the following parameters and variables:

• Qjkss′ the probability that a customer (with a request characterized by itinerary j ∈ J and length
of stay k = 1, . . . , K), whose initial request to stay at a hotel with s ∈ S stars is rejected, wishes
to buy up to a hotel with s′ ∈ S, s′ > s stars;

• zt̄
jks integer variable indicating the number of accepted holiday packages with itinerary j ∈ J,

departure time at t̄ = 1, . . . , T̄ and length of stay k = 1, . . . , K in a hotel with s ∈ S stars;
• zt̄

jkss′ integer variable indicating the number of upgraded holiday packages from a hotel with s ∈ S
stars to a hotel with s′ ∈ S, s′ > s stars with itinerary j ∈ J, departure time at t̄ = 1, . . . , T̄ and
length of stay k = 1, . . . , K; zt̄

jkss′ is the upgraded booking limit of capacity when a customer
(with a request characterized by itinerary j ∈ J and length of stay k = 1, . . . , K), whose initial
request of booking a hotel with s star is rejected, wishes to upgrade to a hotel with s′ star with
probability Qjkss′ .

The total revenue achievable by the tour operator at time t, when the network capacity is X (t),
can be calculated by solving the following holiday package problem with S categories, that is,
HPPS2:

RHPPS2(X (t)) = max
T̄∑

t̄=1

K∑
k=1

n∑
j=1

S∑
s=1

(Rk
jsz

t̄
jks +

S∑
s′=s

Rk
js′zt̄

jkss′ ), (17)

zt̄
jks ≤ d̄ t̄

jks ∀ k, j, t̄, s, (18)

zt̄
jkss′ ≤ (d̄ t̄

jks − zt̄
jks)Qjkss′ ∀ k, j, t̄, s, s′ = s, . . . , S, (19)
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n∑
j=1

bi j

K∑
k=1

S∑
s=1

(zt̄
jks +

S∑
s′=s

zt̄
jkss′ )+

n∑
j=1

b(m+i) j

K∑
k=1

∑
{t̃≤t̄|t̄=t̃+k}

S∑
s=1

(zt̃
jks +

S∑
s′=s

zt̃
jkss′ ) ≤ xt̄

i (t) ∀ i t̄

, (20)

∑
j∈ITl

(zt̄
jks +

s∑
s′=1

zt̄
jks′s) = yt̄

lks ∀ l, k, t̄, s, (21)

∑
k∈K

yt̄
lks +

t̄−1∑
t̃=1

K∑

k̃=(t̄−t̃)+1

yt̃
lk̃s

≤ ξ t̄
l s(t) ∀ t̄, l, s, (22)

z, y ≥ 0, integer. (23)

Constraints (18) state that the tour operator cannot allocate more holiday packages to the initial
booking requests than the average demand d̄ . Constraints (19) state that the capacity allocated to
the buy-up booking requests must not exceed the number of upgrade booking requests for each
product. Constraints (20), (21), and (22) are of the same type as (13), (14), and (15), respectively.

It can be proven that the sets of constraints related to HPP and HPPS1 are defined over a to-
tally unimodular matrices (see the Appendix). Hence, being the right-hand side of each constraint
an integer number, solving the linear relaxation of both HPP and HPPS1 we obtain integer op-
timal solutions. The constraint matrix of HPPS2 is not totally unimodular since the variable zt̄

jks
is multiplied by Qjkss′ . In the sequel, we define primal and dual policies. Hence, we consider the
linear relaxations for HPP and HPPS1. For HPPS2, we have to deal with the integer linear formu-
lation when considering the primal policy in order to consider optimal integer solutions, whereas
the linear relaxation has to be considered for the dual policy in order to retrieve dual information.

4. Revenue-based primal and dual policies

In this section, we provide partitioned booking limits and bid price controls to accept or reject a
request (Talluri and Ryzin, 2004b), based on the resolution of the formulations proposed in Sec-
tion 3.

In the partitioned booking limit control, a fixed amount of capacity for each resource is allocated
to every product offered. The demand for each product has access only to its allocated capacity, and
no other product may use this capacity.

In contrast, a bid price control policy sets a threshold price or bid price for each resource (Talluri
and Ryzin, 1998). Roughly speaking, this bid price is an estimate of the marginal cost of consuming
the next incremental unit of the resources capacity. When a booking request for a product arrives,
the revenue of the request is compared to the sum of the bid prices of all the resources required
by the product. If the revenue exceeds the sum of the bid prices, the request is accepted provided

© 2024 International Federation of Operational Research Societies.
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Algorithm 1. BLPHPP scheme.

that all the resources associated with the requested product are still available; if not, the request
is rejected.

It is worth noting that the linear relaxations of the defined formulations have to be solved in
order to implement the bid price policy.

4.1. Booking limit and bid prices policies for the HPP

With reference to the HPP defined in Section 3.1, optimal solutions z�t̄
jk, j ∈ J, k = 1, . . . , K, t̄ =

1, . . . , T̄ , give partitioned booking limits while bid prices are formed from optimal dual variables
π t̄

i , t̄ = 1, . . . , T̄ , i = 1, . . . , m, of constraints (7) and optimal dual variables ρ t̄
l , t̄ = 1, . . . , T̄ , l ∈ E

associated with constraints (9). We highlight that since the constraint matrix of HPP is totally
unimodular and the right-hand side of each constraint is an integer number, the linear relaxation
of HPP can be solved by obtaining optimal integer solutions. The partitioned booking limit policy
and the bid price policy based on the dual formulation can be formally stated as follows.

At a certain instant time t of the booking horizon, decisions about either accepting or denying
holiday package requests are to be made. In particular, for each instant time t = 1, . . . , T , the linear
relaxation of RHPP(X (t)) is solved obtaining the optimal primal solution, that is, z�t̄

jk, y�t̄
lk and dual

solution, that is, π�t̄
i , ρ�t̄

l . For each request, arrived at instant time t, policies are applied in order to
accept or deny such a request.

From a primal viewpoint, the strategy to be adopted is a partitioned booking limits policy (BLP ,
for short). The procedure BLP based on HPP, named BLPHPP , is depicted in Algorithm 1.

From a dual viewpoint, it is necessary to solve the linear relaxation of problem RHPP(X (t)) and
to deal with the dual variables associated with the capacity constraints. We will indicate with BPP
the bid price policy associated with the dual formulation.

The procedure of BPP based on HPP, named BPPHPP , is depicted in Algorithm 2.

© 2024 International Federation of Operational Research Societies.
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Algorithm 2. BPPHPP scheme

For both Algorithms 1 and 2, the control about the capacity’s availability requires that xt̄
i (t) ≥

bi j, ∀i = 1, . . . , m; xt̄+k
i (t) ≥ b(m+i) j, ∀i = 1, . . . , m; xt̃

m+l (t) > 0, l = Dj, ∀ t̃ = t̄, . . . , t̄ + k − 1.

4.2. Booking limit and bid prices policies for the HPPS

In this section, we provide partitioned booking limits and bid price policies for both HPPS1 and
HPPS2 defined in Section 3.2.

Revenue policies for HPPS1. It is worth noting that since the constraint matrix of HPPS1 is totally
unimodular and the right-hand side of each constraint is an integer number, the linear relaxation of
HPPS1 can be solved by obtaining optimal integer solutions. We recall that the tour operator can
assign to customers, requiring hotel category s, a higher hotel category at the price of category s.

From a primal viewpoint, the strategy adopted is a partitioned booking limits policy. The proce-
dure of BLP based on HPPS1, named BLPHPPS1, is depicted in Algorithm 3.

Let us indicate with π t̄
i , t̄ = 1, . . . , T̄ , i ∈ I and ρ t̄

l s, t̄ = 1, . . . , T̄ , l ∈ E s ∈ S the dual variables
associated with constraints (13) and (15), respectively.

A bid price policy BPP based on HPPS1, named BPPHPPS1, is depicted in Algorithm 4.
For both Algorithms 3 and 4, the control about the capacity’s availability requires that xt̄

i (t) ≥
bi j, ∀i = 1, . . . , m; xt̄+k

i (t) ≥ b(m+i) j, ∀i = 1, . . . , m; ξ t̃
l s′ (t) > 0, l = Dj, ∀ t̃ = t̄, . . . , t̄ + k − 1.

Revenue policies for HPPS2. Now, we discuss the possibility that the customer can upgrade with
a certain probability, that is, we consider HPPS2. In this case, the variables zt̄

jks are multiplied by
the probability of buy-up Qjkss′ (see constraint (19)). It follows that solving the linear relaxation
does not provide the optimal integer solution. Hence, when considering the bid prices policy, we do
not use optimal dual information, but rather a dual lower bound on the optimal integer solution.
A deep study of the buy-up case with reference to the airlines can be found in Jiang and Miglionico
(2014).

© 2024 International Federation of Operational Research Societies.
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Algorithm 3. BLPHPPS1 scheme

At any instant time t of the booking horizon, the tour operator has to make the following deci-
sions:

(D1) Accept or reject a booking request of class k in a hotel with s stars and itinerary j, with
departure at time t̄.

(D2) In the case of rejection in D1 and if the customer wants to buy up to a hotel with s′ > s stars,
accept or reject the customer’s new booking request.

We next formally describe the partitioned booking limit and bid price policies based on the
HPPS2, named BLPHPPS2 and BPPHPPS2, respectively. It is worth noting that the BLPHPPS2

and BPPHPPS2 schemes, depicted in what follows, have to be performed at each instant time
t = 1, . . . , T of the booking horizon. For each instant time t, the problem RHPPS2(X (t)) is solved
when considering BLPHPPS2, whereas its linear relaxation is solved for BPPHPPS2.

BLPHPPS2 scheme

Step BL1. A new booking request of product of class k in a hotel with s stars and itinerary j, with
departure at time t̄ arrives. Go to Step BL2.

Step BL2. If the number of bookings of the product j accepted from the first booking requests
is less than or equal to z∗t̄

jks − 1 and there are enough seats and rooms resources, then
accept the booking request, update the capacity, and go to Step BL1. Otherwise, reject
the booking request and go to Step BL3.

Step BL3. If the rejected customer does not wish to upgrade to any other product, go to Step BL1.
Otherwise, the rejected customer wishes to upgrade to a hotel with s′ > s stars. If the
number of accepted bookings of product s′ which has been upgraded from product s

© 2024 International Federation of Operational Research Societies.
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Algorithm 4. BPPHPPS1 scheme

to product s′ is less than or equal to zt̄
jkss′ − 1, and there are enough seats and rooms

resources, then accept the upgraded booking request, update the capacity, and go to
Step BL1. Otherwise, reject the upgraded booking request and go to Step BL1.

BPPHPPS2 scheme

Step BP1. A new booking request of product of class k in a hotel with s stars and itinerary j with
j ∈ ITl , with departure at time t̄ arrives. Go to Step BP2.

Step BP2. If Rk
js −

(∑m
i=1 bi jπ

t̄
i + ∑m

i=1 b(m+i) jπ
t̄+k
i + ∑t̄+k

t̃=t̄ ρ t̃
l s

)
>

∑S
s′=s max

{
Rk

js′ −
(∑m

i=1 bi jπ
t̄
i + ∑m

i=1 b(m+i) jπ
t̄+k
i + ∑t̄+k

t̃=t̄ ρ t̃
l s′

)
, 0

}
Qjkss′ , and there are

enough seats and rooms resources, then accept the booking request, update the capacity,
and go to Step BP1. Otherwise, reject the booking request and go to Step BP3.

Step BP3. If the rejected customer does not wish to upgrade to any other product, go to Step BP1.
Otherwise, the rejected customer wishes to upgrade to another product s′. If Rk

js′ ≥∑m
i=1 bi jπ

t̄
i + ∑m

i=1 b(m+i) jπ
t̄+k
i + ∑t̄+k

t̃=t̄ ρ t̃
l s′ and there are enough seats and rooms re-

sources, then accept the upgraded booking request, update the capacity, and go to
Step BP1. Otherwise, reject the upgraded booking request and go to Step BP1.

5. Computational experiments

In this section, we present the numerical results obtained by testing the policies described in Sec-
tion 4. All the models and policies have been implemented by using AIMMS 4.27, with Cplex 12.7
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Table 1
Scenarios characteristics

Hub α |E | |J| m

H1 20 21 420 40
H2 40 41 1640 80
H3 60 61 3660 120
H4 80 81 6480 160

as the solver, on an intel(R) core(TM) i7-4720HQ CPU, 2.60 GHz, 8.00 GB RAM machine, with
the Microsoft 10 operating system.

The computational analysis is divided into two parts. In the first one, we evaluate and compare
the policies in terms of effectiveness. The related numerical results are reported in Section 5.2.
The second part focuses on the efficiency of the proposed formulations. In particular, we analyze
the computational effort in order to provide empirical evidence of the applicability of the proposed
models to support the decision process of tour operators. The related numerical results are reported
in Section 5.3. The computational experiments have been carried out on several scenarios, whose
generation is described in Section 5.1

5.1. Instances generation

We generate different scenarios. In particular, as for the flights, we assume a hub and spokes airport
configuration. Possible destinations can be all the cities where an airport is located. Assuming that
α represents the number of spokes, each scenario is characterized by |E | = α + 1 destinations, |J| =
α(α + 1) itineraries, and m = 2α legs.

Table 1 reports the number of spokes α, destinations |E |, itineraries |J|, and legs m for each
considered scenario.

For each scenario, the length of stay has been set equal to k ∈ {1, 2, 3} and the departure time to
t̄ ∈ {1, 2, 3, 4, 5, 6, 7}. Thus, T̄ = 7. In addition, we consider a booking horizon T = 2. The leg and
hotel capacities are generated using a uniform distribution in the range [0, c], where c ∈ {25, 50, 75}.
We considered three categories for the hotels, that is, s ∈ {1, 2, 3}. The revenue Rk

js, j = 1, . . . , n, k =
1 is set equal to 5, 11, and 16 for s equal to 1, 2, and 3, respectively. It is incremented by a factor of
1.8 and 2.6 when the length of stay k is equal to 2 and 3, respectively.

For each test problem, the booking process was simulated 20 times. In each simulation run, the
holiday package requests are randomly generated by applying a two-phase procedure. In the first
phase, for each origin-destination pair, departure time, length of stay, and the number of stars (for
the correspondent model), the number of holiday package requests is randomly generated accord-
ing to a normal distribution, with a given expected demand and a given coefficient of variation,
chosen randomly from the interval [0, d ], with d ∈ {10, 20, 30} and [0, 1], respectively. The requests
generated by the procedure outlined above are then processed. In particular, at each time instant t
in the booking horizon, a holiday package request, for which the booking arrival time is less than
or equal to the considered booking instant, is chosen and the accept/deny decision is made based
on one of the proposed policies. The resource availability is then updated and another booking
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Table 2
Average revenue and number of accepted requests for each scenario, by varying the demand d for HPP

Revenue Requests
d H1 H2 H3 H4 Avg. H1 H2 H3 H4 Avg.

10 PK 19766 42806 63765 85398 52934 1361 2853 4216 5464 3473
FCFS 14218 28080 43973 54196 35117 1346 3050 4462 5338 3549
BLP 12752 41333 59978 79112 48294 847 2774 3991 5087 3175
BPP 16150 37159 57290 76559 46790 1125 2746 4065 5141 3269

20 PK 21078 43194 64776 86522 53893 1427 2907 4306 5612 3563
FCFS 14805 27450 42973 54608 34959 1473 3258 4706 5739 3794
BLP 14044 42340 61740 81740 49966 930 2838 4113 5298 3295
BPP 16561 36693 56389 75968 46403 1189 2737 4100 5194 3305

30 PK 21535 43299 65118 86894 54212 1444 2926 4352 5682 3601
FCFS 15143 26882 42262 54166 34613 1550 3343 4854 6002 3937
BLP 14607 42551 62889 83016 50766 963 2857 4210 5435 3366
BPP 16778 36300 55882 74701 45915 1221 2711 4151 5209 3323

request is processed. We move to the next booking time period when there are no more requests,
arrived before t, that need to be evaluated.

It is worth observing that the value of the revenue is affected by the order in which the booking
requests are processed. In our experiments, we solve the models, used to define the policies, a num-
ber of times equal to the length of the booking horizon. In each of the 20 simulation runs, all the
requests for each test problem, are processed considering all the policies defined in Section 4.

5.2. Effectiveness of the policies

In this section, we analyze the revenue and the number of accepted requests obtained by considering
a perfect knowledge of realized demand (PK), the first-come first-served (FCFS), the BLP , and
the BPP policies, for each problem, that is, HPP, HPPS1, and HPPS2. For HPPS2, we consider
two different values for the probability of buy-up, that is, Q ∈ {0.4, 0.8}. In particular, Qjkss′ = Q if
s′ = s + 1 (one category buy-up), and Qjkss′ = Q/2 if s′ = s + 2 (two categories buy-up).

The analysis is conducted in order to compare the policies, for each problem, by considering
the revenue obtained and the requests accepted by varying the demand d and the legs and hotels
capacity c. In addition, we compute the percentage of revenue obtained by each policy with respect
to that returned by PK, that is, %Rpol = 100 × (

Rpol/RPK
)

with pol ∈ {FCFS,BLP,BPP}, where
Rpol is the revenue obtained by policy pol. We also analyze the behavior of the policies by varying
the load factor LF computed as c/d . Hence, for the values of d and c considered, we have LF ∈
{0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.2}.

Tables 2–7 report the average revenue and number of accepted requests for each considered prob-
lem and policy by varying the demand d and the legs and hotels capacity c. The bold entries indicate
the highest obtained revenue among the proposed policies excluding the PK one.
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5.2.1. Main insights from the computational analysis
For HPP, BPP behaves the best only for a scenario with a number of spokes α at least equal to
20. On average, BLP is the best performing version, especially for a high value of demand d . In
addition, the higher the LF the higher the benefit of BLP with respect to BPP .

For HPPS1, BLP behaves the best and the benefit increases with increasing demand d . The rev-
enue obtained with BPP is lower than that obtained by BLP for each value of demand d and legs
and hotels capacity c considered in this paper. In addition, the gain of BLP with respect to BPP
increases at increasing values of LF . The revenue provided by BLP is higher than that returned by
BPP for each value of LF considered in this paper.

For HPPS2, BLP remarkably outperforms BPP for each value of the demand d , legs and ho-
tels capacity c, and LF . The bad performance of BPP can be attributed to the inaccurate dual
information derived from the linear relaxation of HPPS2 that provides an upper bound on the
optimal solution.

For all the considered problems, on average, BPP accepts a higher number of requests than
those accepted by BLP . However, the latter is able to accept more profitable requests compared to
those accepted by BPP . This result is mainly due to the characteristics of the considered problems.
We recall that we consider two types of resources, that is, the number of seats for the legs and
the number of rooms for the hotels, both of which are time dependent. In addition, the resources
used by each request depend on the instant time in which the trip associated with the itinerary
starts and on the length of stay. Hence, the decision to accept a request, when considering BPP , is
influenced by the estimated opportunity reward derived from a combination of the resources, which
depend on both the departure and the return time for the legs as well as the outward time and the
length of stay for the hotels.

In Sections 5.2.2, 5.2.3, and 5.2.4, we provide a detailed analysis of the effectiveness of the policies
considering HPP, HPPS1, and HPPS2, respectively.

5.2.2. Analysis for HPP
The numerical results collected in Tables 2 and 3 highlight that for scenario H1 (the smallest one)
BPP behaves the best.

Looking at Table 2, BPP returns an average revenue that is 1.27, 1.18, and 1.15 times higher
than that obtained by BLP for d equal to 10, 20, and 30, respectively. As observed, the gain of
BPP with respect to BLP slightly decreases for increasing values of d . The same trend is observed
by comparing BPP and FCFS, where the former provides an average revenue that is 1.14, 1.12,
and 1.11 times higher than that obtained by the latter, for d equal to 10, 20, and 30, respectively.
Table 3 shows the same behavior by varying the legs and hotels capacity c. BPP is the best policy,
for each value of c, considering scenario H1. BPP gives an average revenue, that is 1.08, 1.19, and
1.24 times higher than that provided by BLP . In this case, the higher the value of c the better BPP
than BLP . The same trend is observed by comparing BPP with FCFS.

For the scenarios H2, H3, and H4, BLP behaves the best, for each value of d and c. Even consid-
ering all the scenarios, the average revenue obtained with BLP is the highest (see column Avg. of
Tables 2 and 3). In particular, BLP provides an average revenue that is 1.03, 1.08, and 1.11 (1.38,
1.43, and 1.47) times higher than that obtained with BPP (FCFS) for values of d equal to 10, 20,
and 30, respectively (see the Avg. column of Table 2). The gain in revenue of BLP with respect to
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Table 3
Average revenue and number of accepted requests for each scenario, by varying the legs and hotels capacity c for HPP

Revenue Requests
c H1 H2 H3 H4 Avg. H1 H2 H3 H4 Avg.

25 PK 11337 22617 34013 45474 28360 751 1519 2257 2971 1875
FCFS 8014 13892 21823 28194 17981 835 1765 2582 3222 2101
BLP 8113 21914 32949 43742 26680 527 1478 2191 2858 1764
BPP 8764 18985 28575 38652 23744 638 1412 2118 2698 1716

50 PK 21047 43170 64786 86527 53882 1423 2904 4313 5606 3562
FCFS 14889 27424 43041 54460 34954 1468 3249 4702 5746 3791
BLP 13919 42371 61991 81947 50057 923 2840 4134 5315 3303
BPP 16616 36284 56357 75630 46222 1167 2715 4104 5194 3295

75 PK 29995 63513 94860 126813 78795 2057 4261 6304 8181 5201
FCFS 21263 41097 64344 80316 51755 2065 4637 6738 8111 5388
BLP 19371 61939 89667 118179 72289 1290 4150 5988 7646 4768
BPP 24110 54882 84630 112945 69142 1730 4067 6094 7652 4886

both BPP and FCFS increases with increasing values of demand d . Looking at the Avg. column
of Table 3, we observe that the revenue achieved by BLP is 1.12, 1.08, and 1.05 (1.48, 1.43, and
1.40) times higher than that obtained by BPP (FCFS), for values of c equal to 25, 50, and 75,
respectively. In this case, the higher the value of c the lower the gain in terms of revenue of BLP
with respect to both BPP and FCFS.

Looking at the number of accepted requests by varying the demand d (Table 2), it is evident that,
on average, BLP accepts a lower number of requests compared to BPP , for each value of d except
when d is equal to 30. The high revenue obtained by BLP , for each value of d , can be justified by
the fact that BLP is able to accept more profitable requests compared to those accepted by BPP .
Indeed, BLP accepts requests with an average revenue equal to 15.21, 15.17, and 15.08, whereas
for BPP we have 14.31, 14.03, and 13.82, for d equal to 10, 20, and 30, respectively.

The same trend is observed by varying the legs and hotels capacity c (see Table 3). In this case,
BLP accepts a higher number of requests than those accepted by BPP , for each value of c except
when c is equal to 75. BLP accepts requests with an average revenue equal to 15.13, 15.15, and
15.16, whereas for BPP we have 13.83, 14.03, and 14.15, for c equal to 25, 50, and 75, respectively.

Figure 3 shows the average percentage of revenue obtained by each policy with respect to PK,
that is, %Rpol, by varying both d (see Fig. 3a) and c (see Fig. 3b).

The average %Rpol is equal to 93%, 86%, and 65% for BLP , BPP , and FCFS, respectively.
%RBLP tends to increase at increasing values of d . An opposite trend is observed by varying c. For
both BPP and FCFS, it is observed a decrease for increasing values of d , whereas the higher the
value of c, the higher the average %RBPP and %RFCFS . It is worth to be observed that BLP shows
the best average percentage of revenue for each value of both d and c.

Figure 4 shows the trend of %Rpol by varying the load factor LF .
The results suggest that %RBLP is higher than %RFCFS for each value of LF . Figure 4 shows

that %RBLP and %RBPP present the same value for LF = 0.1. %RBLP is higher than %RBPP for all
other values of LF . In addition, %RBLP increases at increasing values of LF , whereas the higher
LF , the lower both %RBPP and %RFCFS .
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Fig. 3. Average percentage of revenue obtained by each policy with respect to PK for HPP.

Fig. 4. Average percentage of revenue obtained by each policy with respect to PK for HPP by varying the load factor
LF .

5.2.3. Analysis for HPPS1
Tables 4 and 5 show that BLP is the best performing version by varying both the demand d and
the legs and hotels capacity c. In particular, the revenue obtained with BLP is 1.11, 1.21, and 1.27
(1.87, 2.19, and 2.42) times higher than that returned by BPP (FCFS), for d equal to 10, 20, and
30, respectively. It is worth to be observed that the higher the value of d , the higher the gain of BLP
with respect to both BPP and FCFS.

The average number of accepted requests when BLP is applied is lower than that observed for
BPP , for each value of d but 30. The good behavior of BLP in terms of revenue is justified by the
average revenue per accepted request. Indeed, this value is equal to 31.96, 31.52, and 31.35 for d
equal to 10, 20, and 30, respectively. Whereas, for BPP we have 28.00, 25.89, and 24.84 for d equal
to 10, 20, and 30, respectively. These results suggest that BLP is able to accept more profitable
requests than those accepted by BPP for each value of d .

When considering the value of c (see Table 5), we observed that the higher c the higher the gain
of BLP with respect to both BPP and FCFS. In particular, the revenue obtained with BLP is
1.30, 1.20, and 1.15 (2.57, 2.19, and 1.99) times higher than that returned by BPP (FCFS).
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Table 4
Average revenue and the number of accepted requests for each scenario, by varying the demand d for HPPS1.

Revenue Requests
d H1 H2 H3 H4 Avg. H1 H2 H3 H4 Avg.
10 PK 66797 131795 190830 255903 161331 2120 4213 6052 7977 5091

FCFS 36927 68696 101565 125045 83058 2359 4965 7053 9244 5905
BLP 64080 125974 184377 246744 155294 2038 4024 5819 7556 4859
BPP 59693 114097 167550 218167 139877 2122 4166 5990 7704 4995

20 PK 68997 134404 194111 259501 164253 2177 4330 6249 8196 5238
FCFS 33371 61022 90492 107721 73152 2536 5222 7414 9601 6193
BLP 67037 130424 190053 253549 160266 2132 4211 6085 7911 5085
BPP 57485 107349 160047 206544 132856 2197 4261 6154 7918 5132

30 PK 69656 135350 195233 260526 165191 2203 4369 6322 8264 5290
FCFS 30932 56223 82731 98456 67085 2589 5290 7506 9646 6258
BLP 68050 132269 192647 256512 162370 2174 4271 6208 8062 5179
BPP 54299 101678 154102 201899 127994 2173 4270 6232 7938 5153

Table 5
Average revenue and number of accepted requests for each scenario, by varying the legs and hotels capacity c for HPPS1

Revenue Requests
c H1 H2 H3 H4 Avg. H1 H2 H3 H4 Avg.

25 PK 36207 70410 101629 135551 85949 1135 2246 3242 4247 2718
FCFS 15176 27489 40529 48518 32928 1344 2727 3875 4991 3234
BLP 35481 69105 100408 133700 84673 1121 2210 3194 4163 2672
BPP 27485 52108 78188 103564 65336 1109 2192 3204 4104 2652

50 PK 68837 134401 193905 259339 164120 2178 4330 6237 8184 5232
FCFS 33378 60935 90026 107948 73072 2525 5210 7382 9558 6169
BLP 66842 130182 189581 253717 160080 2130 4192 6076 7911 5078
BPP 56880 107676 158709 208579 132961 2183 4237 6139 7896 5114

75 PK 100406 196738 284640 381040 240706 3188 6335 9144 12006 7668
FCFS 52676 97517 144233 174756 117295 3616 7539 10715 13942 8953
BLP 96844 189381 277089 369388 233175 3093 6103 8842 11455 7373
BPP 87112 163340 244803 314467 202431 3199 6268 9032 11560 7514

The average number of accepted requests when BLP is applied is lower than that observed for
BPP , for each value of c but 25. The good behavior of BLP in terms of revenue is justified by the
average revenue per accepted request. Indeed, this value is equal to 31.69, 31.53, and 31.62 for c
equal to 25, 50, and 75, respectively. Whereas, for BPP we have 24.63, 26.00, and 26.94 for c equal
to 25, 50, and 75, respectively. These results suggest that BLP is able to accept more profitable
requests than those accepted by BPP , for each value of c.

Figure 5 shows the average value of %Rpol by varying both d (see Fig. 5a) and c (see Fig. 5b).
The average %Rpol is equal to 97%, 82%, and 45% for BLP , BPP , and FCFS, respectively.

%RBLP tends to increase at increasing values of d . An opposite trend is observed by varying c. For
both BPP and FCFS, it is observed a decrease of %RBPP and %RFCFS for increasing values of
d , whereas the higher the value of c, the higher the average %RBPP and %RFCFS . It is worth to be
observed that BLP shows the best average percentage of revenue for each value of both d and c.
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Fig. 5. Average percentage of revenue obtained by each policy with respect to PK for HPPS1.

Fig. 6. Average percentage of revenue obtained by each policy with respect to PK for HPPS1 by varying the load factor
LF .

Figure 6 shows the trend of %Rpol by varying the load factor LF .
The results suggest that %RBLP is higher than both %RBPP and %RFCFS . In addition, %RBLP

increases at increasing values of LF , whereas the higher LF , the lower both %RBPP and %RFCFS .

5.2.4. Analysis for HPPS2
For HPPS2, we observed that the results with Q equal to 0.4 and 0.8 have small differences and the
analysis gives us the same conclusion. Hence, we present the numerical results averaged over the
two values of Q.

Tables 6 and 7 show that BLP is the best performing policy. In particular, BLP presents a revenue
that is 1.49, 1.61, and 1.69 (1.50, 1.54, and 1.58) times higher than that observed with BPP (FCFS)
for the value of d equal to 10, 20, and 30, respectively. The gain of BLP with respect to both BPP
and FCFS increases at increasing values of d .

Considering the results by varying the values of legs and hotels capacity -c, Table 7 shows that,
on average, BLP is 1.74, 1.61, and 1.53 (1.62, 1.54, and 1.51) times higher than that returned by
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Table 6
Average revenue and number of accepted requests for each scenario, by varying the demand d for HPPS2

Revenue Requests
d H1 H2 H3 H4 Avg. H1 H2 H3 H4 Avg.

10 PK 68297 133833 193446 259064 163660 2149 4297 6182 8149 5194
FCFS 43360 85188 128371 161920 104710 1899 4055 5867 7662 4871
BLP 64501 128358 187029 250234 157530 2033 4082 5913 7688 4929
BPP 45409 87387 127547 162223 105641 2297 4846 6899 9017 5765

20 PK 70113 135745 195854 261291 165751 2211 4393 6357 8303 5316
FCFS 44864 86962 129135 160737 105424 2130 4470 6391 8333 5331
BLP 67330 132689 192272 256627 162229 2132 4267 6198 8050 5162
BPP 43887 83159 122900 152711 100664 2498 5156 7342 9474 6117

30 PK 70594 136308 196479 261747 166282 2225 4430 6393 8344 5348
FCFS 45385 85917 125458 157874 103658 2259 4655 6611 8638 5541
BLP 68109 134168 193957 258970 163801 2155 4334 6296 8184 5242
BPP 42098 80434 119137 146968 97159 2559 5255 7479 9575 6217

Table 7
Average revenue and the number of accepted requests for each scenario, by varying the legs and hotels capacity c for
HPPS2.

revenue requests
c H1 H2 H3 H4 avg H1 H2 H3 H4 avg

25 PK 36605 70778 102128 136050 86390 1140 2267 3277 4271 2739
FCFS 23111 43447 63667 80463 52672 1197 2438 3477 4541 2913
BLP 35518 69769 100925 134529 85185 1111 2226 3229 4205 2693
BPP 21113 40418 59857 74265 48913 1330 2714 3866 4966 3219

50 PK 69962 135718 195621 261161 165616 2205 4394 6333 8294 5306
FCFS 45044 86488 127862 160283 104919 2128 4459 6367 8311 5316
BLP 67107 132389 191899 256429 161956 2126 4258 6176 8034 5148
BPP 43654 83294 122583 152902 100608 2479 5140 7313 9435 6092

75 PK 102437 199391 288030 384890 243687 3240 6460 9321 12231 7813
FCFS 65455 128131 191434 239786 156201 2964 6283 9027 11781 7514
BLP 97315 193056 280434 374873 236419 3083 6198 9002 11683 7491
BPP 66626 127269 187143 234734 153943 3545 7403 10542 13664 8788

BPP (FCFS) for values of c equal to 25, 50, and 75, respectively. In this case, the gain of BLP
with respect to both BPP and FCFS decreases at increasing values of c.

Figure 7 shows the average value of %Rpol, by varying both d (see Fig. 7a) and c (see Fig. 7b).
The values of %Rpol clearly highlight that BLP remarkably outperforms BPP . The average

%Rpol is equal to 99%, 61%, and 63% for BLP , BPP , and FCFS, respectively. BPP gives less
revenue than that provided by FCFS. The worst performance of BPP is justified by the fact that
it uses no optimal dual information. Indeed, the linear relaxation of HPPS2 does not provide an
integer solution, but rather an upper bound on the optimal revenue. Hence, to decide whether to
accept a request, BPP uses lower bound information of the dual problem of HPPS2. This allows
BPP to accept not profitable requests.
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Fig. 7. Average percentage of revenue obtained by each policy with respect to PK for HPPS2.

Fig. 8. Average percentage of revenue obtained by each policy with respect to PK for HPPS2 by varying the load factor
LF .

%RBLP increases at increasing values of d , whereas an inverted trend is observed by varying the
value of c. However, BLP provides a value of %RBLP at least equal to 96%, reaching a value of
99% for d equal to 30 and c equal to 25

Figure 8 shows the trend of %Rpol by varying the load factor LF .
The results suggest that BLP behaves the best with increasing values of %RBLP at an increase of

LF . In addition, Fig. 8 confirms the bud performance of BPP with a value of %RBPP lower than
%RFCFS for LF ≥ 0.3.

5.3. Efficiency of the proposed formulations

In this section, we analyze the behavior of the proposed integer programming formulations. In
particular, we show the execution time required to solve the proposed formulations by varying the
parameters c and d , used to define the legs and hotel capacity and the demand, respectively.

We maintain the booking horizon T equal to 2. Hence, the formulations are solved twice, one for
each time period, for each considered policy, that is, BLP , BPP , and each problem, that is, HPP,
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Fig. 9. Average execution time, is seconds, to solve the formulation by varying the parameter α, that is, the scenarios
dimension.

HPPS1, and HPPS2. Each formulation is solved by considering the initial demand and capacity at
the first time period. Whereas, for the second time period, the capacity is modified based on the
requests accepted at the first time period and the demand is a half of the initial one.

In our analysis, we consider the execution time averaged over the two computational efforts due
to the first and the second run (instant time of the booking horizon T ).

We remark that the FCFS policy does not require any information on the resolution of the for-
mulations.

Figure 9 reports the average execution time by varying the dimension of the scenarios defined by
the number of spokes α involved.

The numerical results clearly show that the execution time grows at increasing scenario dimen-
sions. This trend is observed for each problem. However, it is worth to be observed that the two
policies, that is, BLP and BPP, show the same behavior for HPP and HPPS1, whereas, for HPPS2
the former presents a higher increase in the computational effort than that observed for BPP for
increasing values of α. This is mainly due to the fact that for BPP the linear relaxation of HPPS2
is solved. We note that, in the worst case (HPPS1), the formulations are solved within 200 seconds.
This is an acceptable computational effort for the case under study. We recall that the tour operator
run the formulation for each day of the booking horizon in order to retrieve the information from
the optimal solution. This information is used to decide whether to accept the requests that arrive
during the day. At the end of each day of the booking horizon, the operator runs the formulation
which information is used the day after. Hence, the formulation is solved offline during the night,
for instance.
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Fig. 10. Average execution time in seconds to solve the formulation by varying the parameter d , that is, the demand.

Figure 10 shows the average execution time, in seconds, by varying the demand, that is, parameter
d .

Figure 10 shows that the execution time decreases at increasing values of the parameter d . This
trend is observed for each problem. It is worth to be observed that for HPP BPP shows a similar
execution time for each value of d .

Figure 11 shows the average execution time, in seconds, by varying the capacity of both the legs
and the hotels, that is, parameter c.

Figure 11 shows that the execution time remains almost unchanged by varying the capac-
ity c when considering HPP. Whereas, an almost linear increasing trend is observed for HPPS1
and HPPS2.

6. Conclusions

In the last few decades, revenue management techniques have been applied to several logistic prob-
lems arising mainly, but not only, in airline, hotel, and car rental industries.

In this paper, we focused on an operational problem faced by tour operators that are known to
be strategical nodes of the tourism logistic chain. Tour operators have to decide whether to accept
or reject a booking request from their customers with the aim of maximizing the total expected
revenue. The products they sell, which we have called holiday packages, are complex since they are
the combination of different resources, at least a return flight, and a certain number of nights in
a hotel.
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Fig. 11. Average execution time, in seconds, to solve the formulation by varying the parameter c, that is, the capacity of
both legs and hotels.

A dynamic programming formulation and integer programming approximations of the problem
under consideration have been defined. Based on the proposed integer programming models, bor-
rowing revenue management techniques and primal and dual acceptance policies have been defined,
which use partitioned booking limits and bid price controls. Models incorporating different hotel
categories have been discussed together with the possibility of upgrading to a hotel of a higher
category than that requested.

The performances of the different booking control policies are evaluated and the numerical
results show that all the booking control policies, on average, perform better than the simple
first-come first-served policy, opening the possibility of exploiting new policies in the case of more
complex holiday package typologies.
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Appendix A

Lemma 1. The constraints matrix of HPP is totally unimodular.

Proof. To prove the totally unimodularity of the matrix, we may elaborate on the rows in order to
obtain values equal to −1, 0, or 1 when sum over all rows, for each column.

We may express the constraints (6)–(9) related to the HPP as a matrix notation as follows:

M =

⎛
⎜⎜⎝

0 IJ
0 Bz
IE A
By 0

⎞
⎟⎟⎠

where the first row is related to the demand constraints (6), the second row is related to the leg
capacity constraints (7), the third is related to the constraints (8) linking variables y and z, and the
fourth row is related to the room capacity constraints (9). Recalling that n = |J| is the number of
itinerary, m = |I | is the number of legs, e = |E | is the number of destinations, K is the highest length
of stay, and T̄ is the operational horizon, we have that IJ is identity matrix with dimension (n ×
T̄ × K ) × (n × T̄ × K ), matrix Bz has dimension (m × T̄ ) × (n × T̄ × K ), IE has zero elements but
−1 in the diagonal with dimension (e × T̄ × K ) × (e × T̄ × K ), matrix A has dimension (e × T̄ ×
K ) × (n × T̄ × K ), and matrix By has dimension (e × T̄ ) × (e × T̄ × K ). The first column of M is
related to variables y, whereas the second column is related to variables z. We first elaborate on the
first column, that is, matrices IE and By.

Elaboration on IE and By. Matrix By has the following form:

By =

⎛
⎜⎜⎜⎝

Bl1
y 0 · · · 0

0 Bl2
y · · · 0

...
...

. . .
...

0 0 · · · Be
y

⎞
⎟⎟⎟⎠

where each matrix Bl
y is related to the destination l . In the sequel, we elaborate on a specific sub-

matrix Bl
y. All the considerations can be extended to all submatrices. Each column (l, tc, k) of Bl

y

© 2024 International Federation of Operational Research Societies.
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has a value equal to 1 derived from the first summation of constraints (9). Considering the second
summation, in each row (l, tr), presents a value equal to 1 if (1) tc + k > tr, meaning that at time tr

a room is occupied by a request arrived at time tc for k time periods, and (2) tc < tr, hence a zero
value is present for each row such that tc > tr. It follows that, given a column (l, tc, k) and a row
(l, tr) of the matrix Bl

y, we have
1 if tc = tr;
1 if tc + k ≤ tr;
0 if tc > tr or tc + k > tr.
Hence, each column (l, tc, k) has at most T̄ − 1 element equal to 1 associated with the rows

(l, t) with t = tc, . . . , tc + k − 1. We also observe that each column (l, t, k) with k = 1 has only one
element equal to 1.

We can multiply by −1 the rows (l, t) of By for odd values of t. In order to obtain values equal
to 1, 0, and −1 when sum over all rows associated with matrices By and IE , we can elaborate on IE
as follows:

Each row (l, t, k) of IE is multiplied by −1 if the following conditions hold:

(1) t is odd and t + k ≤ T̄ ;
(2) t is even and t + k ≤ T̄ with k > 1.

We observe that the modifications that occurred for matrix IE affect matrix A.
Elaboration on IJ , Bz, and A. Let us consider matrix Bz that represents the leg capacity constraints

(7). We remark that the case considered in this paper takes into account a structure of hub-spokes
type for the airports. Hence, we have two legs connecting each spoke to the hub, named leg1 and
leg2. We consider the set of legs ordered in such a way the first |I |/2 legs are of the type leg1 and
the remaining ones are of the type leg2. We note that the set I contains an even number of legs.

Let Ij be the set of legs involved in the itinerary j. Then, each column ( j, tc, k) has one element
equal to 1 for each row (u, tr), ∀u ∈ Ij with tr = tc, derived from the first summation (outward trip),
and an element equal to 1 for each row (u, tr), ∀u ∈ Ij with tr = tc + k, derived from the second
summation (return trip). Hence, we have exactly |Ij| values equal to 1 for each column ( j, tc, k)
such that tc + k > T̄ , meaning that any return trip takes place out of the operational horizon. We
can elaborate on matrix Bz multiplying by −1 the first |I |/2 rows. Summing over all rows of matrix
Bz we have a value equal to 0 for each column ( j, t, k) such that t + k ≤ T̄ , whereas we have a value
equal to either −|Ij| if the itinerary j is composed of outward legs in the first |I |/2 positions of the
set I or |Ij| if the outward legs of the itinerary j are in the last |I |/2 positions of the set I , for each
column ( j, t, k) such that t + k > T̄ . Summing up, we have the following situation when sum all
rows of matrix Bz.

(1) 0 for column ( j, tc, k) such that tc + k ≤ T̄ ;
(2.1) −|Ij| for column ( j, tc, k) such that tc + k > T̄ and j is composed of outward legs in the first

|I |/2 positions of the set I ;
(2.2) |Ij| for column ( j, tc, k) such that tc + k > T̄ and j is composed of outward legs in the last

|I |/2 positions of the set I .

Let now consider the matrices IJ and A. We remark that matrix A is modified according to the
elaborations applied for matrix IE . We multiply by −1 all rows ( j, tr, k) of IJ such that tr is even,
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k = 1, and tr + k < T̄ and by an integer number v j all rows ( j, tr, k) of IJ such that tr + k > T̄ .
Summing over all rows of both IJ and A, we obtain

(1) 0 for column ( j, tc, k) such that tc + k ≤ T̄ ;
(2) 1 + v j for column ( j, tc, k) such that tc + k > T̄ .

Recalling that the sum over all rows of matrix Bz is equal to 0 for column ( j, tc, k) such that
tc + k ≤ T̄ , and −|Ij| (or |Ij|) for column ( j, tc, k) such that tc + k > T̄ , summing over all rows
associated with matrices IJ , A, and Bz, we obtain the following situations:

(1) 0 for column ( j, tc, k) such that tc + k ≤ T̄ ;
(2) 1 + v j − |Ij| (or 1 + v j + |Ij|) for column ( j, tc, k) such that tc + k > T̄ .

Hence, we can always choose a value for v j such that 1 + v j − |Ij| = −1, or 0, or 1 (or 1 + v j +
|Ij| = −1, or 0, or 1).

This concludes the proof. �
Applying the same rationale for HPPS1, we can prove that the associated constraints matrix is

totally unimodular.
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