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Interface to Security Functions: An overview and

comparison of I2NSF and OpenC2
Matteo Repetto

Abstract—Recent management paradigms for software-defined
infrastructures bring more agility in the creation and operation of
digital services, but also introduce new cyber-security issues due
to fast-changing environments, dynamic topologies, and wider
attack surfaces. Rigid and statically-configured architectures are
no more suitable for the detection of cyber-attacks in mixed
cloud/6G/IoT environments, hence new frameworks must be
designed that are more flexible and adaptable, up to become
cognitive. A fundamental step in this direction is represented by
the adoption of common interfaces to orchestrate heterogeneous
and multi-vendor security functions in an homogeneous way.

In this paper, we consider two recent interfaces to security
functions that are representative of different approaches and
industrial domains, namely I2NSF and OpenC2. We briefly
review the latest advances in their definition, provide a deep
comparison and outline major limitations and research challenges
for concrete application scenarios. The main purpose of our

work is to make an unbiased evaluation of the current status of
these standards and to foster researchers to actively contribute
to their development by adopting them and by proposing further
extensions and refinements.

Index Terms—Cyber-defense, security orchestration and au-
tomation, interfaces, security functions

I. INTRODUCTION

The evolution of 5G networks into a large, pervasive, and

powerful computing continuum is radically changing the way

digital services are created and operated. Service-oriented

architectures and software-defined infrastructures boost new

management models, where digital services are composed by

chaining software-defined resources and functions from het-

erogeneous domains: Network Function Virtualization (NFV),

cloud/edge/fog applications, Internet of Things (IoT), and data

[1], [2]. They also continuously evolve at run-time, accord-

ing to human-defined orchestration rules or, in perspective,

even cognitive Artificial Intelligence (AI) processes. Effective

protection of such systems against cyber-threats becomes

more challenging, due to the lack of a sharp and effective

security perimeter, the usage of third parties’ infrastructures

and services, and the introduction of serverless computing. A

transition towards adaptive and agile cyber-defense architec-

tures is therefore necessary beyond existing models, where

most cyber-security appliances are manually configured for

static environments and work in isolation [3], which eventually

M. Repetto is with the Institute for Applied Mathematics and Information
Technologies “E. Magenes” (IMATI), National Research Council (CNR), Italy.
Email: matteo.repetto@cnr.it.

©2023 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

delays mitigation and response actions. The ultimate goal

is homogeneous, seamless, and transparent orchestration of

capillary and programmable monitoring, detection, and en-

forcement capabilities at the edge and in user devices [1].

The realization of adaptive and agile cyber-defense frame-

works requires knowledge of the service composition and

topology at run-time, including security functions that imple-

ment monitoring, detection, and enforcement tasks. Relevant

examples of this approach are already available for individual

and homogeneous domains [4], [5], but extension to a more

general scenario relies on common interfaces for exposing,

discovering, and controlling security capabilities embedded in

digital infrastructures and services.

Standard interfaces to security functions would simplify the

composition of monitoring, detection, and enforcement pro-

cesses over heterogeneous service chains deployed in mixed

5G/6G/cloud/IoT infrastructures, removing the need for inflex-

ible and hardly manageable adapters, as commonly happens

with Cloud Access Security Brokers (CASBs). In this respect,

Interface to Network Security Functions (I2NSF) [6] and Open

Control and Command (OpenC2) [3] were proposed by IETF

and OASIS, respectively. They address the same problem,

but from a different perspective and with different use cases

in mind, which reflect the peculiarities of the corresponding

communities, namely the telecommunication industry for IETF

and software industry for OASIS. The selection of these

standards is motivated by the fact that they are the first and

only management interfaces explicitly designed for cyber-

security operations that are backed by significant communities.

The concrete contribution of this paper is twofold:

• a short review of the current status of I2NSF and OpenC2,

including updates with respect to previous works;

• a comparative analysis of these interfaces, together with

the identification of existing gaps, application scenarios,

and future research directions.

The rest of the paper is organized as follows. First, we give

a brief overview of Related Work. Then, we describe I2NSF

and OpenC2. Afterwards, we compare the two initiatives,

and outline main limitations and research directions for target

application scenarios. Finally, we give our conclusion.

II. RELATED WORK

The geographical distribution of cloud infrastructures has al-

ways been seen as an opportunity to fulfill conflicting require-

ments in terms of processing capabilities, latency, reliability

and availability [7]. Cui et al. [2] also consider telecommuni-

cation networks, by discussing the implementation of Service



2

Function Chaining (SFC) over a federated environment made

of cloud and edge installations. Repetto et al. [1] further extend

the scenario, by including the IoT and data stores; the same

paper also points out the need to monitor both the service itself

and the underlying infrastructure, to address the widest threat

landscape.

The need to discover and configure remote security agents

in large computing environments has been a recurring issue.

In the SECURED project [5], high-level policies are translated

into specific configurations, similarly to CASBs; unfortunately,

this approach does not scale well with heterogeneous inter-

faces, because a different “adapter” or “driver” should be

provided for each of them. A similar approach was followed

by Bondan at al. [8], who use an orchestrator abstraction

driver to retrieve information about running Virtual Network

Functions (VNFs) and to notify anomalies; however, the scope

is limited to SFC status and network configuration, hence

leaving out any form of integrity verification and network

attack. A similar approach is followed by Repetto et al. [4],

who also introduce an abstraction layer to discover and con-

figure capabilities of security agents. Morais et al. [9] describe

how Manufacturer Usage Description (MUD) can be matched

with a Malicious Traffic Description (MTD) data model to

mitigate vulnerabilities in an IoT installation. Even if MUD

does not include security capabilities, it anyway represents a

minimal example of interface to retrieve context information.

Carrega et al. [10] implemented the GUARD framework for

remote management of cyber-security functions and dynamic

composition of monitoring, detection, and response processes

for digital service chains; in this case, a Smart Data Model

(SDM) is used to discover their location, to describe their

capabilities, and to configure them.

The I2NSF framework was previously described by Hyun

et al. [6], together with its integration with a Software-Defined

Networking (SDN) controller for Voice-over-IP (VoIP) and

time-dependent web access control use cases. An overview

of OpenC2 was originally given by Mavroeidis and Brule [3],

but without including comparison with alternative approaches

(i.e., I2NSF). In both cases, the authors were directly involved

in the definition of the standards, so an unbiased discussion

of their limitations and technical gaps is still missing.

III. INTERFACE TO NETWORK SECURITY FUNCTIONS

The I2NSF framework introduces a set of common inter-

faces to automatically discover the capabilities of Network

Security Functions (NSFs), to derive behavioral rules from

high-level policies, to automate response to external triggers,

and to monitor their behavior and integrity over time. Relevant

use cases include content filtering in access networks, on-

demand distributed firewalling, attack detection and mitigation

[11].

The current architecture of the I2NSF framework [12] is

depicted in Fig. 1. In Fig. 1(a), the I2NSF functional elements

are shown, together with the interfaces between them. In Fig.

1(b), the high-level concept for I2NSF is depicted, namely

the translation between the high-level policies into concrete

configuration rules; the proposed workflow to implement this

translation is then shown in Fig. 1(c). I2NSF data models

for capabilities and configurations of NSFs are described in

several IETF working drafts.1

A. I2NSF functional elements

The I2NSF architecture includes the necessary elements

to implement closed-loop response to network-based attacks

through re-configuration of NSFs.

1) I2NSF user: This element includes any potential source

of high-level security policies (intents). Besides humans,

this definition also accounts for applications (e.g., video-

conference network manager), and network/IoT management

systems that define policies in NSF-agnostic way.

2) Network Security Function: This represents a monitor-

ing and/or enforcement function, such as firewall, Intrusion

Detection System (IDS)/Intrusion Protection System (IPS),

antivirus, Virtual Private Network (VPN), and so on. Though

not strictly necessary, the use of VNFs simplifies automation

of their life-cycle management.

3) Security Controller: The Security Controller (SC) is

the smart component that generates configuration rules from

intents (see Fig. 1(b)). This operation includes the selection of

the most appropriate types of NSFs to cooperatively enforce

the policy, the generation of low-level rules, and finally the

configuration of each concrete instance. Additionally, the SC

is also responsible for registration of NSF capabilities.

4) Developer’s Management System: The Developer’s

Management System (DMS) is a registry that describes the

NSFs of a specific vendor and their capabilities. In general,

there can be multiple DMSs available to the SC, to take advan-

tage of vendor diversity in terms of capabilities, performance

and cost.

5) Analyzer: This is the smart engine that derives new

behavioral policies from events and data generated by NSFs

(perhaps using some form of AI), hence automating mitigation

of and response to cyber-attacks.

B. I2NSF interfaces

I2NSF interfaces are defined in terms of YANG2 mod-

ules, which are then encoded in XML3 to be transferred

over RESTCONF or NETCONF. Beside actual data, I2NSF

modules also define message types, namely queries and no-

tifications. Security and access controls are demanded to

RESTCONF/NETCONF.

I2NSF policies and configuration rules are expressed with

the Event-Condition-Action (ECA) pattern:

• An Event triggers the evaluation of the policy/rule. It may

be a security alert, a hardware alarm, or a time period.

• A Condition is evaluated when the event occurs to check

some context, for instance packet headers and content,

hardware devices, users or groups.

1See https://datatracker.ietf.org/wg/i2nsf/documents/ (accessed: 18th Au-
gust 2022).

2Yet Another Next Generation (YANG) is a data modeling language con-
ceived for information to be transferred over network management protocols
like NETCONF and RESTCONF.

3eXtensible Markup Language (XML), a language and file format to encode
data in both a human- and machine-readable way.
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Fig. 1. Overview of the I2NSF framework.

• An Action is executed if the condition is satisfied. Actions

include filtering on ingress packets (pass, drop, mirror,

rate-limit), transformation on egress packets (encapsula-

tion, forwarding, signaling), and logging.

In the following, we give a brief overview of each interface,

with indication of the main elements in the corresponding data

models.

1) Registration interface: The Registration interface is used

to feed the SC with available NSF types. It includes two

messages. The Registration message is sent by the DMS to

push the description of new or updated NSFs to the SC,

including their capabilities. The Query message is used by

the SC to look for an NSF in the DMS that has specific

capabilities, which are not available for any of the previously

registered NSFs. There are two sets of capabilities in the data

model, related to security and performance. Security capabili-

ties include the different types of events, conditions and actions

supported by the NSF. The list of possible events include both

alerts generated by cyber-defense appliances and hardware

alarms. There are both per-packet and per-session conditions,

covering packet headers, message signatures, content (e.g.,

Uniform Resource Locators (URLs), call identifiers in VoIP,

user agents), target types (computer, tablet, smartphone, etc.),

user or group identifiers and geographical locations. Supported

actions may include ingress filtering, egress transformation,

and logging. Performance capabilities indicate the average and

maximum load sustainable by the NSF and are expressed in

terms of both computing power and packet processing.

2) Consumer-Facing interface (CFI): This interface should

allow I2NSF users to specify security policies in the most

technologically-neutral manner, although the current data

model only provides limited abstraction with respect to the

original design [6]. A policy is a set of ECA rules that apply to

a given group of targets, either users or devices. Events refer to

specific classes of sources (e.g., anti-Denial-of-Service (DoS),

IPS, URL filtering, antivirus, VoIP) and time intervals, whereas

Conditions consist of typical parameters for such sources and

generic content inspection (payload, URL, context). Finally,

Actions distinguish between primary enforcement operations

and secondary logging operations. Figure 2(a) shows the

structure and main fields of the data model for the CFI.

3) NSF-Facing interface (NFI): This interface defines a

vendor-neutral syntax to express security policy rules for

NSFs. The overall structure and information of its data model,

shown in Fig. 2(b), is rather similar to the CFI. In particular,

both Event, Condition, and Action data models can be directly

mapped to the corresponding definitions in the CFI.

4) Monitoring interface: The range of collected informa-

tion extends to system/NSF alarm and alert events; access,

activity and utilization log records; system, interface, and

NSF counters. As regard to the communication model, both

subscription/notification and query mechanisms are allowed;

the notification can happen immediately or be delayed, so to

reduce the number and frequency of (aggregated) messages.

5) Application interface: This interface is used to auto-

matically trigger the SC based on the feedback collected by

NSFs. There are two kinds of messages expected on this

interface. The first one is for Policy Reconfiguration and

bears either new or augmented ECA rules generated by the

Analyzer; this message is intended to automatically implement

mitigation or response actions. The second message, denoted

as Feedback Information, is generated in case of anomalies

that cannot be solved by a policy, such as resource over-usage,

malfunctioning, failures.

C. Policy translation

This workflow, shown in Fig. 1(c), is implemented by the

SC.

The Data Extractor parses XML messages (high-level poli-

cies) and implements a state machine based on Deterministic

Finite Automaton (DFA) to move across the different con-

tainers, labels, and data. The Data Converter translates the

extracted data to the configuration of NSFs, according to the

mapping generated by the Data Model and stored in the NSF

database. The database contains two kinds of information:

endpoint information and NSF capability information. The
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Fig. 2. Comparison between the policy data model in the CFI and NFI, with detail of the Event, Condition and Action fields.

former is a translation of abstract objects (e.g., “John’s com-

puter”, “Illegal site”) into concrete values (e.g., IP addresses or

URLs), as supplied by the I2NSF user. The latter is provided

by the DMS, and used to select the appropriate NSF. Finally,

the Policy Generator emits the XML with the rules for the

NFI.

IV. OPEN CONTROL AND COMMAND

OpenC2 was born to make coordination in cyber-relevant

time between decoupled blocks that perform cyber-defense

functions. The purpose is to support technology diversity,

which undeniably introduces an extra layer of security, but

with standardized function-centric interfaces that make secu-

rity automation and orchestration feasible and less complex to

achieve. Differently from I2NSF, OpenC2 is more focused

on Machine-to-Machine (M2M) communication for cyber-

defense components and only implements the Acting part of

the Integrated Adaptive Cyber Defense (IACD) framework,

hence leaving sensing, analytics, and decision-making out of

scope.

A. OpenC2 framework

The OpenC2 communication stack is layered as shown in

Fig. 3, which shows the scope, purpose, main protocols, and

name for each layer. At the top of the stack, the Content

layer includes both common and function-specific language

elements, as defined by the language specification [13] and

actuator profiles [14], respectively. The Message layer de-

fines how OpenC2 content is encoded (as JSON4 objects)

and encapsulated into different transfer protocols, like HTTP,

CoAP, AMQP. The transfer specification (e.g., OpenC2 over

HTTPS [15]) maps metadata and content elements into specific

protocol elements (e.g., HTTP header and body, respectively).

Finally, Secure Transport conveys data in a secure way over

common Internet protocols (e.g., TLS/TCP).

4JavaScript Object Notation (JSON) is another human- and machine read-
able text format for storing and transporting data.
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Fig. 3. OpenC2 layering model. Orange boxes falls under the scope of
OpenC2, blue boxes are existing protocols.

As the name suggests, OpenC2 is designed to send com-

mands to remote cyber-defense appliances. The communi-

cation happens according to a client/server model, where a

Producer sends commands to a Consumer, which executes

them; the same entity can play both roles. In response to

commands, Consumers may generate a response, which carries

the result of executing the command.

An OpenC2 message is made of a header and a payload

(also indicated as “message body,” see Listing 1). The header

is composed of metadata, including content type, message

type, status, request identifier, creation date, origin and des-

tination; it is assembled at the Message layer as defined

by the transfer specification. The payload bears the OpenC2

content within an “openc2” object, and it follows the syntax

defined in the OpenC2 language. A relevant example of

transfer protocol is the Hyper-Text Transfer Protocol (HTTP):

OpenC2 commands are sent with the POST method to a well

known path (/.well-known/openc2), and the header and

payload are carried in the body of the HTTP message.
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POST /.well-known/openc2 HTTP/1.1

Content-type: application/openc2+json;version=1.0

Date: Wed, 19 Dec 2018 22:15:00 GMT

X-Request-ID: d1ac0489-ed51-4345-9175-f3078f30afe5

{

"headers": {

"request_id": "d1ac0489-ed51-4345-9175-f3078f30afe5",

"created": 1545257700000,

"from": "oc2producer.company.net",

"to": [

"oc2consumer.company.net" ]

},

"body": {

"openc2": {

"request": {

"action": "deny",

"target": {

"ipv4_connection": {

"protocol": "tcp",

"src_port": 21

}

},

"args": {

"slpf": {

"drop_process": "none",

"direction": "ingress"

}

},

"actuator": {

"slpf": {}

}

}

}

}

}

HTTP/1.1 200 OK

Date: Wed, 19 Dec 2018 22:15:10 GMT

Content-type: application/openc2+json;version=1.0

X-Request-ID: d1ac0489-ed51-4345-9175-f3078f30afe5

{

"headers": {

"request_id": "d1ac0489-ed51-4345-9175-f3078f30afe5",

"created": 1545257710000,

"from": "oc2consumer.company.net",

"to": [

"oc2producer.company.net" ]

},

"body": {

"openc2": {

"response": {

"status": 200,

"status_text": "Rule correctly inserted"

}

}

}

}

Listing 1: Example of OpenC2 command and response for

denying inbound FTP connections.

B. OpenC2 language

The language specification [13] defines the common syntax

for OpenC2 payloads, in a transfer-agnostic way. In this

respect, there are two distinct payload structures: Command

and Response.

A Command (top of Listing 1) contains the following

elements:

• Action: the instruction, task or activity to be performed

(e.g., start, stop, locate, set, update, create).

• Target: the object of the action, which is the logical entity

affected by the execution of the instruction (e.g., a file, a

domain name, an email, a feature, a network connection,

a device).

• Arguments: additional information on how the command

is performed (e.g., time interval, duration, periodicity).

• Actuator: the entity that executes the action (e.g., fire-

wall).

Both Targets and Actuators can be specified with different

levels of granularity, namely they may identify either a specific

object, or a list or a group of objects.

The syntax elements of OpenC2 follows typical language

patterns, with a subject (Actuator), a verb (Action), an ob-

ject (Target), and complements (Arguments). Each element

is defined in terms of primitive types (e.g., binary, integer,

string) and derived structures (e.g., array, map, enumerated).

Structures are recursively used and coupled with semantic con-

straints to derive typical data objects, as IP/MAC addresses,

emails, domain names, dates and times, digests, etc.

A Response (bottom of Listing 1) contains the following

elements:

• Status: An integer that represents the exit status of the

command execution.

• Status text: A human-readable description of the status.

• Result: a list of key/value pairs produced by the execution

of the command.

Even though the OpenC2 language is transfer-agnostic, status

code values substantially follow those already defined for

HTTP.

Serialization is necessary for interoperability with transfer

protocols. The language specification demands the support for

JSON serialization and defines the corresponding data type

mapping.

C. OpenC2 profiles

The list of Actions provided by the language specifica-

tion accounts for a broad range of discovery, control, and

manipulation operations. However, each Action can only be

meaningfully applied to a subset of Targets and implemented

by specific Actuators. Moreover, maintaining a common syn-

tax for the great heterogeneity of security functions and their

implementations is largely impracticable. Actuator profiles de-

fine semantic constraints and language extensions for specific

cyber-defense functions; currently, there are several working

documents for different appliances, but only the profile for

stateless packet filtering has been formally published [14].

An OpenC2 profile defines which combinations of Actions

and Targets are relevant for a specific Actuator, including the

corresponding Arguments, in the form of a command matrix.

A profile may also include extensions to the basic syntax,

which account for specific features and characteristics of the

Actuator. For instance, the Stateless Packet Filtering (SPF)

profile includes a “rule number” target which is typically

used to update/delete filtering rules, and specific arguments to

apply dropping strategies and distinguish between incoming

and outgoing packets.

V. COMPARISON

Even if both I2NSF and OpenC2 are conceived for remote

configuration of cyber-defense appliances, they follow rather

different designs and approaches, as explained in the following

and briefly summarized in Table I.
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TABLE I
COMPARISON BETWEEN I2NSF AND OPENC2.

I2NSF OpenC2

Scope Full IACD (claimed) Remote control (executing course-of-action)

Primary domain Networking (NFV) Cyber-defense (IoT)

Interfaces
User-to-Machine (CFI)

Machine-to-Machine only
Machine-to-Machine (NFI, Monitoring, Application, Registration)

Encoding XML JSON (+ any)

Transport RESTCONF/NETCONF Any (HTTP, CoAP, AMQP, ...)

Paradigm Declarative (intents/high-level policies) Imperative (verb + objects)

Configuration scope Load behavioral ECA rules Broad list of actions (verbs)

Capability Dynamic (Registration) Static (Actuator Profiles)

Built-in security
SSH (NETCONF), TLS (RESTCONF) TLS, IPSec, S/MIME
NETCONF Access Control Model (NACM) Coarse-grained access control (HTTP)

Community
I2NSF Working Group (Closed) OpenC2 Technical Committee (Open).
Several open-source repositories (mostly outdated) One software repository

A. Scope

The I2NSF framework aims at covering the whole IACD

scope, from sensing to analytics, decision-making, and re-

sponse; instead, OpenC2 explicitly narrows the scope down to

remote control only. However, the current definition of I2NSF

is largely network-biased, with fine-grained conditions for

packet headers but really bare models for control of antivirus,

Distributed Denial-of-Service (DDoS), IPS, VoIP/Voice-over-

LTE (VoLTE). This approach makes it more suitable to address

simple network threats (mostly limited to volumetric DoS)

rather than complex and multi-vector attacks, which exploit

encrypted channels, slow-DoS, malicious payloads, software

vulnerabilities, and malware.

The OpenC2 approach is more general and easier to extend;

however, current profiles restrict its usability to almost the

same scenarios as I2NSF.

B. Control models

The control model of I2NSF is largely limited to ECA

rules that define the local behavior in response to specific

events and conditions, and does not include configuration

aspects as algorithms, parameters, Indicator of Compromise

(IoC), signatures. Furthermore, ECA rules are largely trig-

gered by hardware/software alarms (e.g., CPU, memory, or

disk failures; configuration change) and rather generic secu-

rity alerts (e.g., list of URLs, packet/flow rate), which are

typically used for network management, but do not reflect

well the heterogeneity and granularity of events generated

by common cyber-defense appliances in terms of IoC. The

only practical examples concern filtering of individual packets

or HTTP/VoIP connections based on network address/port

numbers and URLs/user identifiers, respectively, which can

be both traced back to packet filtering.

OpenC2 provides a broader range of possible control actions

than plain ECA rules, including scanning files, loading con-

figuration files, locating objects, starting/stopping tasks, set-

ting/updating configuration values, creating/deleting entities,

and much more. Even if the scope is deliberately narrowed

down to response only, the expressiveness of OpenC2 is indeed

suitable for controlling monitoring and detection processes as

well, provided that some other kind of mechanism is available

to collect and deliver data.

C. Data models

There is a substantial difference in data modeling between

I2NSF and OpenC2. Indeed, I2NSF mostly revolves around

data models that define what the remote appliance is expected

to do, and assumes a common method to transfer such con-

figuration. On the contrary, OpenC2 defines how the remote

appliance is configured but basically disregards the actual form

and content of the configuration.

In practical terms, this means that OpenC2 can be virtually

applied to any kind of cyber-defense appliances, because it

provides generic actions for loading configuration files, setting

variables, and starting/stopping tasks. The definition of specific

Actuator profiles may be necessary for those applications that

either are configured by a command-line interface (CLI) (and

cannot load or reload data from a configuration file) or have

common usage patterns (e.g., setting rules for a packet filter).

Usage of I2NSF is instead more cumbersome, because of

the need to define specific data models for each appliance,

and this is poorly scalable due to their heterogeneity in terms

of capability and features, often introduced in an incremental

manner. The definition of data models for each NSF is also

problematic when the same function is provided by different

appliances, for instance packet filtering that can be available

both in a firewall or IPS. Additionally, extensions from vendors

are expected to leverage unique features of their products, but

this jeopardizes interoperability and diversity in real systems.

VI. APPLICATION SCENARIOS AND RESEARCH

DIRECTIONS

Interfaces to security functions are key to implement adap-

tive Security Orchestration and Automated Response (SOAR)

frameworks, where time-consuming and repetitive tasks are
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largely automated by plain behavioral rules or more advanced

forms of AI [10]. Control interfaces allow to continuously

and automatically tailor the behavior of security functions

to fast-changing computing environments (where applications

and devices are added, removed, or changed) and the ever-

evolving threat landscape.

Fig. 4 shows how I2NSF and OpenC2 can be used in a

SOAR framework. It includes the whole workflow to trans-

late high-level policies into low-level configuration rules for

remote security functions. This automation is provided by a

SC, which continuously update them at run-time according to

evolving threats (e.g., retrieved by Cyber-Threat Intelligence

(CTI) or vulnerability databases) and security alerts coming

from the battery of detectors and analytics engines provided

by a Security Information and Event Management (SIEM).

A Dashboard is used to control the behavior of the SC,

to supervise the operation of the SIEM, and to investigate

anomalies.5

As already discussed, the scope of OpenC2 is limited to

the control interface of security functions, whereas I2NSF

fully covers the whole workflow, even if we argued that it

is largely network-biased and would not fit the more general

scenarios for SOAR. We explicitly indicated the presence of a

Local Control Agent that manage security functions; it plays

the Producer role in OpenC2 and implements the NFI in

I2NSF. We assume that the description of security capabilities

(i.e., I2NSF Registration interface) is provided through the

management Dashboard, since there is no implementation of

a DMS available – indeed, this function is currently mapped

to the Element Management (EM) of the Management and

Orchestration (MANO) architecture by current I2NSF drafts,

which means it should be provided by each VNF vendor.

A. Limitations and complementary aspects

Although I2NSF provides all the functional elements to

implement the whole workflow, it currently lacks concrete

specifications and technologies to fully implement it. This is

the case, for instance, of the CFI, which is currently mapped to

the NFI in a rather straightforward way and does not provide

the high-level abstraction that was originally expected. The

Analyzer is another relevant example, which implementation is

not trivial and therefore the current design is mostly limited to

forward unchanged information from the monitoring interface.

We already noted that the ECA model is more suitable to

network management rather then cyber-defense operations,

since an I2NSF event is specifically intended to trigger an

I2NSF policy rule and not to be processed as an IoC by

correlation and detection engines. Now we also argue that

the I2NSF Monitoring Interface is not suitable for continuous

streaming and indexing of security events and alerts, where the

Elastic Stack and similar frameworks already provide better

and widely adopted solutions.

OpenC2 provides a better grammar and syntax to control

remote agents, beyond the mere “push” operation that is

intrinsic in I2NSF, hence it could represent a better transport

5An example of such framework is provided by the GUARD project [10],
https://guard-project.eu/ (accessed: 18th August 2022).

protocol for I2NSF data models. OpenC2 allows smoother

interaction with security functions that expose an Application

Programming Interface (API): while I2NSF encodes control

actions in ECA rules and delegates each security function to

autonomously react to external stimuli, OpenC2 keeps this

logic in the SC of the SOAR platform. This approach enables

more coordinated orchestration of security functions, by using

system-wide context to take decisions, hence following the

general principle behind software-defined networking. How-

ever, concrete impact of OpenC2 is currently hindered by the

lack of uniform profiles for security functions, starting from

simpler monitoring and enforcement agents to more complex

detection appliances (antivirus, IPS/IDS, etc.). This ultimately

jeopardizes most of the automation expected in the SC for

decision and response.

Both I2NSF and OpenC2 already provide mechanisms to

retrieve the capabilities of cyber-defense functions, but they

currently lack the ability to discover such functions deployed

within an infrastructure or digital service chain.6 With agile

cloud and NFV services, discovery becomes an essential

feature to know the placement and capabilities of security

functions every time the system composition or topology

changes.

As of the current status, OpenC2 looks more mature than

I2NSF; the latter has still many draft documents, which are

often contradictory in the terminology and functions and

do not seem to get contributions from a large community.

Unfortunately, there is no concrete example or use case of

applications of these standards to real systems.

B. Future research directions and challenges

In our opinion, future research should mostly focus on

addressing OpenC2 limitations. Although I2NSF provides a

more comprehensive framework, it suffers from a pronounced

network-biased approach, which mostly limits its scope and

significance to telco operation. Extensions to more general

domains would be worth, because both commercial and open-

source SOAR tools are already emerging with a broader

scope, targeting better coordination between the different

cyber-security teams that work in Security Operation Centers,

Incident Response, and Threat Intelligence. 7 More automation

is also expected beyond the execution of static response

playbooks, in the direction of smart systems that can adapt

monitoring, detection, and response processes to complex

multi-domain environments and service chains [2], [10].

Indeed, a common interface to security functions is still

the missing tile, which still requires to address two main

challenges. First, automatic discovery of security functions, in

addition to self-description of available capabilities already im-

plemented by I2NSF and OpenC2. Extensions are also neces-

sary for precise identification of security functions, especially

when multiple instances are present for load balancing (even

on the same node) or better coverage of the service topology.

6Indeed, the I2NSF Registration interface only discovers the definitions of
NSFs, not their deployed instances.

7Extend the power of SOAR with Threat Intelligence Management,
video from Palo Alto Networks, March 2020. Available: https://www.
paloaltonetworks.com/resources/videos/cortex-xsoar-threat-intelligence.
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Second, the definition of common yet extensible abstraction

models for addressing the large heterogeneity of security

functions, from plain agents to fully-featured appliances. The

scope should include both security controls and data, in order

to support the design of response logic that is agnostic of the

underlying implementation of security functions.

The experience gained with I2NSF may be brought to

OpenC2, at least for what concerns network modeling and

local behavioral rules. For instance, network traffic may be

steered across multiple VNFs for deep packet inspection

(e.g., URL or other application-specific properties), traffic

classification (e.g., based on protocol headers), and filtering.

This possibility is already partially present in I2NSF, but

should be considered in OpenC2 as well. However, such

integration is not straightforward with current technologies,

because existing security functions does not understand ECA

rules. Indeed, the open challenge remains the modeling of very

heterogeneous security functions, in terms of capabilities and

implementations, while avoiding the proliferation of profiles.

This requires a research effort in creating a common taxonomy

that identifies a limited number of security functions, defines

common controls and configuration parameters for each class,

and maps them to existing tools.

VII. CONCLUSION

Our analysis has pointed out the different posture in the

design of I2NSF and OpenC2, which largely reflects the main

interests and objectives of the corresponding communities. In

our opinion, the imperative approach of OpenC2 is winning,

because it perfectly fits existing gaps in SOAR frameworks;

instead, I2NSF suffers from the pronounced network bias. The

narrower scope of OpenC2 has quickly led to a few stable

documents, whereas I2NSF is still striving to conclude and

give coherence to many working drafts.

Our recent experience in the design of flexible and adaptable

frameworks for the detection of cyber-attacks has demon-

strated that standard interfaces are really necessary to effec-

tively cope with a large and heterogeneous set of monitor-

ing and enforcement functions, without getting lost in the

implementation of an overwhelming number of plugins and

adaptation mechanisms. Future work will include contributions

to OpenC2 in terms of additional profiles and experimentation

of its usage in a concrete use case.
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