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Abstract	 Stochastic	 model-based	 approaches	 are	 widely	 used	 for	 obtaining	
quantitative	 non	 functional	 indicators	 of	 the	 analysed	 systems,	 as	 for	 example	
reliability,	performance	and	energy	consumption.	However,	a	critical	issue	with	models	
is	 their	 validation,	 in	 order	 to	 justifiably	 put	 reliance	 on	 the	 analysis	 results	 they	
provide.	 In	this	paper,	we	address	cross-validation	on	a	case	study	from	the	railway	
domain,	by	modelling	and	evaluating	it	with	different	formalisms	and	tools.	Stochastic	
Activity	Networks	models	and	Stochastic	Hybrid	Automata	models	of	rail	road	switch	
heaters,	developed	for	the	purpose	of	evaluating	energy	consumption	and	reliability	
indicators,	 will	 be	 evaluated	 with	 Mobius	 and	 Uppaal	 SMC.	 We	 will	 compare	 the	
obtained	 results,	 to	 improve	 their	 trusthworthiness	 and	 to	 provide	 insights	 on	 the	
design	and	analysis	of	energy-saving	cyber-physical	systems.	
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1	Introduction	

Recently,	 studies	 dedicated	 to	 reduce	 the	 energy	 consumption	 in	 cyber-physical	
systems	(CPS)	[41]	are	gaining	increasing	attention	[37,	36,	35,	25,	28,	12],	aiming	at	
saving	in	economic	terms	and	reducing	environmental	impact.	In	CPS,	digital	control	
units	 interact	 with	 phenomena	 belonging	 to	 the	 system	 itself	 or	 the	 surrounding	
environment,	whose	nature	is	typically	continuous	(e.g.,	failure	events,	power	energy	
flow).	Examples	of	CPS	can	be	found	in	disparate	application	domains,	 including	the	
transportation	 sector.	 The	 continuous	 dynamic	 nature	 of	 CPS	 is	 difficult	 to	 be	
expressed	 through	 discrete	 approaches,	 with	 proper	 control	 on	 the	 required	
approximations.	Extensions	of	finite	state	automata	[3,	31,	38],	 (extensions	of)	Petri	
Nets	[7,	48,	23],	have	been	adopted	as	formalisms	for	modelling	them,	where	the	
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evolution	 of	 the	 continuous	 variables	 can	 be	 described	 uniformly	 or	 by	 ordinary	
differential	equations.	

Dependability	evaluations	and	formal	verification	are	two	separate	research	fields	
that	in	the	last	decade	have	been	integrated	to	analyse	critical	CPS,	where	(i)	measures	
as	dependability,	performance,	reliability,	energy	consumption	are	formally	assessed	
through	rigorous	approaches,	and	(ii)	the	correctness	of	the	models	is	ascertained	by	
proving	that	relevant	properties	hold	in	a	suitable	abstraction	of	the	analysed	system.	
These	two	aspects	are	complementary,	and	to	cope	with	potential	defects	introduced	
in	the	modelling	phase,	validation	of	the	developed	models	is	paramount	and	highly	
recommended.	Indeed,	the	introduced	errors	might	compromise	the	accuracy	of	the	
results	 obtained	 through	 the	 analysis,	 which	 may	 lead	 to	 the	 delivery	 of	 flawed	
components,	with	both	potential	serious	consequences	for	the	components	users	and	
loss	of	time	and	money	for	industries,	to	recover	from	the	late	revealed	deficiencies.	

In	 this	 paper,	 we	 compare	 these	 two	 approaches	 for	 	 the	 analysis	 of	 CPS	with	
reference	to	a	case	study	from	the	railway	domain.	The	aim	of	the	investigation	is	to	
(i)	 emphasise	 their	 differences	 and	 provide	 considerations	 for	 modelling	 and	
evaluating	 CPS,	 and	 (ii)	 to	 verify	 that	 the	 results	 obtained	 through	 two	 separate	
formalisations	of	the	case	study	are	indeed	in	accordance.	

Specifically,	we	consider	rail	road	switch	heaters,	which	are	essential	components	
for	the	correct	functioning	of	railway	stations,	in	absence	of	which	possible	disasters	
can	occur	(i.e.	derailments,	trains	collision).	In	particularly	cold	regions,	ice	and	snow	
can	prevent	the	switches	to	work	properly,	hence	heaters	are	used	for	guaranteeing	
their	correct	functioning.	In	particular,	a	central	control	unit	is	in	charge	of	managing	
policies	 of	 energy	 consumption	 while	 satisfying	 reliability	 constraints,	 by	
communicating	with	the	network	of	switches	to	manage	the	energy	supply.	

We	will	 exploit	 two	different	methodologies	 to	model	 and	evaluate	 the	 system	
under	analysis,	chosen	among	popular	ones	in	the	research	communities	interested	in	
verification	 and	 evaluation	 of	 complex	 critical	 systems.	 The	 first	 is	 based	 on	 the	
adoption	of	Stochastic	Activity	Networks	(SAN)	[48]	to	model	rail	road	switch	heaters	
for	assessing	the	energy	consumption	and	the	probability	of	failure	of	these	devices	
[11,10,9].	 The	 quantitative	 properties	 (or	 measures	 of	 interest)	 are	 defined	 using	
Markov	Reward	Models	[30]	and	evaluated	in	Mӧbius	[18]	through	simulation.	
The	second	adopted	methodology	is	based	on	Statistical	Model	Checking	(SMC)	[42,	

39].	The	system	is	modelled	as	a	network	of	Stochastic	Hybrid	Automata	(SHA)	[31,38,	
22]	 to	 uniformly	 deal	 with	 both	 continuous,	 discrete	 and	 stochastic	 aspects.	 The	
quantitative	properties	are	defined	in	the	Metric	Interval	Temporal	Logic	(MITL)	[22]	
and	evaluated	with	Statistical	Model	Checking	[14].	The	Uppaal	SMC	toolkit	[22]	is	used	
for	evaluating	these	measures.	Moreover,	the	absence	of	deadlocks	has	been	proved	
through	 standard	 model	 checking	 techniques	 and	 through	 refinement[13].	 Those	
models	are	here	extended	to	deal	with	different	classes	of	priorities	in	the	network	of	
switches.		
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The	main	contributions	of	this	paper	are:	

• modelling	 frameworks	 of	 rail	 road	 switch	 heaters	 through	 both	 SAN	 and	 SHA	
formalisms,	 in	 order	 to	 compare	 different	 strategies	 of	 energy	 consumption,	
considering	failure	events	and	different	weather	profiles;	

• identification	of	indicators	representative	of	energy	consumption	and	reliability	of	
the	analysed	system	and	their	quantification	through	the	developed	frameworks	
in	a	variety	of	scenarios.	The	obtained	results	allow	to	gain	 insights	on	suitable	
tradeoffs	between	energy	consumption	and	reliability	of	the	analysed	system,	to	
properly	tune	the	parameters	of	the	considered	energy	consumption	strategies;	

• comparing	the	results	obtained	through	the	two	separate	formalisations	provides	
a	further	guarantee	on	the	reliability	of	the	obtained	results.	

Structure	 of	 the	 paper	 The	 paper	 is	 structured	 as	 follows.	 We	 will	 introduce	
dependability	analysis	and	the	two	methodologies	that	we	will	adopt	in	Section	2.	In	
Section	3	we	will	describe	the	system	that	we	intend	to	model	and	analyse,	with	the	
goal	of	reducing	the	energy	consumption	and	augmenting	the	reliability	of	the	system.	
Generic	guidelines	for	modelling	energy-saving	CPS	are	discussed	in	Section	4.	The	two	
different	 formalisations	 of	 the	 system	 are	 in	 Section	 5,	 while	 the	 evaluation	 and	
validation	of	these	models	are	in	Section	6.	Finally,	related	work	and	conclusions	are	
respectively	in	Section	8	and	Section	9.	

2	 Dependability	Analysis	

Dependability	 analysis	 of	 complex,	 critical	 systems	 is	 the	 topic	 of	 many	 research	
studies,	since	assurance	on	proper	operation	is	typically	among	the	requirements	of	
the	applications	such	systems	are	employed	in.	Depending	on	the	specific	aspects	of	
interest	 in	 the	 dependability	 field,	 different	 approaches	 have	 been	 developed	 to	
accomplish	 analyses.	 The	most	 active	 communities	 in	 dependability	 analyses	 have	
been	and	are:	(i)	the	one	focusing	on	fault	tolerance	and	dependability,	and	(ii)	the	one	
focusing	 on	 formal	 methods.	 Although	 moving	 from	 rather	 different	 perspectives,	
both	are	progressively	converging	towards	solution	of	common	problems	and	in	the	
last	decade	they	influenced	each	other	[6].	

In	particular,	due	to	the	emerging	complexity	and	dependencies	shown	by	modern	
systems,	like	many	critical	CPS	around	our	everyday	life,	there	is	a	need	for	expressing	
more	complex	system	behaviours	and	measures	of	interest.	This	motivated	growing	
relevance	 of	 quantitative	 measures	 in	 the	 field	 of	 verification,	 while	 in	 the	 past	
qualitative	 aspects	were	mainly	 tackled.	Quantitative	 assessment	 of	 non-functional	
properties,	 especially	 dependability	 and	 performance	 related	 ones,	 consists	 in	
probabilistically	estimate	the	occurrence	of	faults	and	their	impact	on	the	ability	of	the	
system	to	operate	correctly.	
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To	provide	the	context	necessary	to	better	understand	the	motivation	of	our	study,	
in	this	section	we	briefly	overview	two	main	approaches	to	quantitative	dependability	
analyses	 developed	 by	 the	 traditional	 dependability	 and	 the	 formal	 methods	
communities.	 Namely,	 quantitative	 model-based	 analysis	 and	 Statistical	 Model	
Checking	are	introduced	in	the	following,	together	with	the	formalisms	and	tools	that	
we	will	adopt	in	this	paper.	

2.1	 Model-based	Dependability	and	Performance	Analysis	

Several	 approaches	 are	 available	 in	 the	 literature	 to	 perform	 assessment	 of	
dependable	systems	[5],	mainly	testing,	fault	injection	and	model-based	evaluation.	A	
wide	range	of	modelling	techniques	has	been	developed	for	both	dependability	and	
security	 analysis,	 each	 focusing	 on	 particular	 levels	 of	 abstraction	 and/or	 system	
characteristics,	as	surveyed	in	[49].	

For	 quantitative	 evaluation	 of	 dependability	 indicators,	 stochastic	 model-based	
analysis	[51]	has	been	proven	to	be	particularly	useful,	versatile	and	cost-effective	for	
manufacturers	 [16,24].	 The	 system	 under	 analysis	 is	 often	 described	 through	
stochastic	 processes,	 whilst	 measures	 of	 interest	 are	 generally	 obtained	 through	
mathematical	 analysis	 (closed-form	 expressions),	 numerical	 evaluation	 (linear	
programming	 techniques)	 and	 discrete-event	 simulation	 (statistical	 methods).	 This	
analysis	approach	is	useful	for	expressing	the	stochastic	nature	of	physical	phenomena	
involved	in	CPS	[41].	

To	keep	the	model	manageable,	the	system	needs	to	be	represented	at	a	properly	
identified	abstraction	level.	Indeed,	depending	on	the	properties	to	be	analysed	the	
emphasis	on	the	system	representation	is	focused	on	those	aspects	that	are	relevant	
for	analysis	purposes,	while	irrelevant	aspects	are	neglected.	Therefore,	a	wide	variety	
of	models	are	used	in	practice,	to	tailor	the	right	abstraction	level	for	the	system	under	
analysis,	 in	 accordance	 with	 the	 properties	 to	 be	 assessed,	 the	 desired	 degree	 of	
accuracy	 and	 available	 resources	 to	 manage	 models	 development	 and	 solution.	
Formalisms	 such	 as	 (extensions	 of)	 Petri	 Nets	 [7,48,23]	 and	 (Non)	 Markov	 based	
models	[48,15]	are	used	for	modelling	and	evaluating	CPS,	where	reward	structures	
[47]	are	defined	in	order	to	evaluate	measures	of	interest	(e.g.	reliability,	performance,	
energy	 consumption)	 at	 the	 variation	 of	 relevant	 parameters,	 either	 analytically	 or	
through	 simulation.	 Stochastic	 Activity	 Networks	 [48]	 and	 Mӧbius	 [18]	 which	 we	
adopted	 in	 our	 study,	 are	 well-established	 formalism	 and	 tool,	 respectively,	 for	
modelling	and	evaluating	these	systems.	

Stochastic	Activity	Network	 Stochastic	 Activity	Networks	 (SAN)	 [48]	 is	 a	 formalism	
widely	used	for	performance,	dependability	and	performability	evaluation	of	complex	
systems,	 given	 its	 high	 expressiveness	 and	 the	 powerful	 tools	 for	 modelling	 and	
evaluating	them	[18].	The	SAN	formalism	is	a	variant	of	Stochastic	Petri	Nets	[15],	and	
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has	similarities	with	Generalised	Stochastic	Petri	Nets	[7].	A	SAN	is	composed	of	the	
following	 primitives:	 places,	 activities,	 input	 gates	 and	 output	 gates.	 Places	 and	
activities	have	the	same	interpretation	as	places	and	transitions	of	Petri	Nets.	 Input	
gates	control	the	enabling	conditions	of	an	activity	and	define	the	change	of	marking	
when	 an	 activity	 completes.	 Output	 gates	 define	 the	 change	 of	 marking	 upon	
completion	 of	 the	 activity.	 Activities	 are	 of	 two	 types:	 instantaneous	 and	 timed.	
Instantaneous	activities	complete	once	 the	enabling	conditions	are	 satisfied.	Timed	
activities	 take	 an	 amount	 of	 time	 to	 complete	 following	 a	 temporal	 stochastic	
distribution	function,	which	can	be	for	example	exponential	or	deterministic.	When	an	
activity	completes,	the	following	steps	are	executed:	(1)	one	of	the	cases	of	the	activity	
is	chosen	according	to	its	markingdepending	probability;	(2)	the	function	of	each	input	
gate	of	the	activity	is	executed;	(3)	the	function	of	each	output	gate	linked	to	the	case	
selected	at	first	step	is	executed.	An	enabled	activity	is	aborted,	i.e.	it	cannot	complete,	
when	 the	 SAN	moves	 into	 a	 new	marking	 in	which	 the	 enabling	 conditions	 of	 the	
activity	no	longer	hold.	Cases	are	associated	to	activities,	and	are	used	to	represent	
probabilistic	uncertainty	about	the	action	taken	upon	completion	of	the	activity.	
The	primitives	of	the	SAN	models	are	defined	using	C++	code.	

Mӧbius	Mӧbius	[18]	is	a	multi-formalism	multi-solver	tool	that	can	be	used	for	defin-
ing	and	solving	SAN	models.	Mӧbius	supports	various	formalisms	and	different	ana-	
lytical	and	simulative	solvers,	and	can	be	used	for	studying	the	reliability,	availability,	
and	performability	of	systems.	It	follows	a	modular	modelling	approach,	where	atomic	
models	are	building	blocks	that	can	be	composed	with	proper	operators	Rep	and	Join	
to	generate	a	composed	model.	

Notably,	atomic	models	specified	in	different	formalisms	can	be	composed	in	this	
way.	This	allows	to	specify	different	aspects	of	a	system	under	evaluation	in	the	most	
suitable	 formalism.	Along	with	 an	 atomic	 or	 composed	model,	 the	 user	 specifies	 a	
reward	model,	which	defines	a	reward	structure	on	the	overall	model.	Rewards	are	
the	vehicle	to	define	the	measures	for	our	case	study.	On	top	of	a	reward	model,	the	
tool	provides	support	 to	define	experiment	series,	called	Studies,	 in	which	the	user	
defines	 the	 set	 of	 input	 parameters	 for	 which	 the	 composed	 model	 should	 be	
evaluated.	 Each	 combination	 of	 input	 parameters	 defines	 a	 so-called	 experiment.	
Before	 analysing	 the	 model	 experiments,	 a	 solution	 method	 has	 to	 be	 selected:	
Mӧbius	offers	a	powerful	 (distributed)	discrete-event	simulator,	and,	for	Markovian	
models,	 explicit	 state-space	 generators	 and	 numerical	 solution	 algorithms.	 It	 is	
possible	to	analyze	transient	and	steady-state	reward	models.	The	solver	solves	each	
experiment	 with	 parameters	 instantiation	 specified	 in	 the	 Study.	 Results	 can	 be	
managed	by	means	of	a	database.	

2.2	 Formal	Methods	and	Statistical	Model	Checking	

Recent	developments	in	probabilistic	analysis	using	formal	methods	have	improved	
the	 accuracy	 and	 reliability	 of	 dependability	 analysis,	 which	 was	 traditionally	
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performed	through	proof	methods	not	 fully	automatised	and	computer	simulations	
[2].	 In	 the	 literature,	 several	 approaches	 for	 the	 verification	 and	 validation	 of	
stochastic	 models	 have	 been	 proposed,	 as	 for	 example	 testing,	 theorem	 proving,	
model	 checking.	 In	 particular,	 model	 checking	 [19]	 is	 a	 widely-used	 and	 powerful	
approach	 for	 the	 verification	 of	 finite	 state	 systems,	 where	 a	 property	 ϕ,	 usually	
specified	in	a	temporal	logic,	is	automatically	checked	against	a	model	of	a	system	M,	
by	performing	an	exhaustive	exploration	of	the	state-space	of	M,	i.e.	M	|=	ϕ,	obtaining	
a	counter-example	in	case	M	|=	ϕ	does	not	hold.	

The	 recently	 introduced	 Statistical	 Model	 Checking	 [42,39]	 uses	 results	 from	
statistics	 on	 top	 of	 simulations	 of	 a	 system	 to	 decide	 whether	 a	 given	 property	
specified	 in	 a	 temporal	 logic	 is	 satisfied	 with	 some	 degree	 of	 confidence,	 and	 it	
represents	 a	 valid	 alternative	 to	 classical	 model	 checking	 and	 dependability	
evaluation,	especially	in	the	case	of	undecidability.	PRISM	[33]	and	Uppaal	SMC	[22]	
have	been	proposed	as	tools	that	implement	the	above	techniques.	An	advantage	is	
that	 quantitative	 properties	 are	 uniformly	 described	 through	 temporal	 logics,	 and	
hence	have	a	well-defined	semantics.	Moreover,	it	is	possible	to	assess	qualitative	as	
well	as	quantitative	properties	to	evaluate	and	validate	the	proposed	models.	

Stochastic	 Hybrid	 Automata,	 analysed	 with	 Uppaal	 SMC	 is	 the	 specific	 model	
checking	approach	adopted	in	this	paper	to	address	the	modelling	and	analysis	of	our	
case	study.	

	
Hybrid	 Automata	 Stochastic	 Hybrid	 Automata	 (SHA)	 [31,38,22]	 are	 a	 suitable	
formalism	for	describing	cyber-physical	systems,	where	both	discrete	and	continuous	
dynamics	 and	 stochastic	 phenomena	 are	 involved.	 Timed	 automata	 [3]	 combine	
discrete	 systems	 with	 real-valued	 variables	 that	 evolve	 during	 the	 time	 a	 system	
spends	in	a	state.	These	variables,	called	clocks,	evolve	with	a	uniform	rate	and	they	
can	 be	 used	 for	 guarding	 transitions.	 Reachability	 and	 other	 key	 problems	 are	
decidable	for	timed	automata,	with	algorithms	supporting	them	implemented	in	tools	
such	as	Uppaal	[40].	

Hybrid	 automata	 [31,38]	 generalise	 timed	 automata	 by	 including	 arbitrary	
dynamics	 for	 the	 real-valued	 variables	 (i.e.	 clocks),	 expressed	 through	 ordinary	
differential	 equations	 (ODEs).	 Stochastic	Hybrid	Automata	 include	also	probabilistic	
transitions	and	are	used	in	tools	such	as	Uppaal	SMC	[22].	A	number	of	case-studies	
demonstrate	their	applications	[20]	[22].	

For	 simplifying	 the	 presentation,	 we	 slightly	 elaborate	 the	 formal	 definition	 of	
hybrid	automata	in	[31,38].	We	start	by	introducing	some	useful	notation.	In	a	hybrid	
automaton	the	states	progress	according	to	both	continuous	and	discrete	clocks,	 in	
the	first	case	this	behaviour	is	called	continuous	flow,	while	in	the	second	jump.	A	flow	
function	R|X|→	R|X|	characterises	the	flow	(i.e.	the	dynamic)	of	the	continuous	variables	
in	the	set	X	through	a	system	of	ODEs	X˙	=	F(X),	where	X˙	is	the	first	order	derivatives	
of	the	variables	in	X,	and	as	usual	R	is	the	set	of	real	numbers.	Moreover,	let	ν	:	X	→	R	
be	a	valuation	of	the	variables	in	X,	π	∈	pred(X)	be	a	predicate	over	X	and	[[π]]	∈	R|X|	
be	the	set	of	valuations	of	X	that	satisfies	the	predicate	π.	Predicates	are	used	to	(i)	
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guard	 transitions,	 (ii)	 specify	 the	 jumps	 of	 a	 system	 (i.e.	 how	 variables	 evolve	 in	 a	
discrete-time	step)	and	(iii)	define	the	invariants	for	each	state	of	the	automaton.	A	
hybrid	automaton	H	is	defined	as	a	tuple	H	=	<Q,	Q0,	Σ,	X,	T,	I,	F,	V0>	where:	

– Q	is	a	finite	set	of	states	including	a	distinguished	initial	singleton	set	Q0	⊆	Q,	
– Σ	is	a	finite	set	of	actions,	
– X	is	a	finite	set	of	real-valued	variables,	called	clocks,	
– T	⊆	Q×pred(X)×Σ×pred(X	∪X0)×Q	is	the	transition	relation,	
– I	:	Q	→	pred(X)	that	assigns	an	invariant	function	to	each	state,	
– F	:	Q	→	(R|X|	→	R|X|)	that	assigns	a	flow	function	to	each	state	q	∈	Q	as	the	set	of	
ODEs	X	=	F(q)(X)	,	and		

–	V0	∈	pred(X)	is	the	set	of	initial	valuations.	

It	is	assumed	that	for	each	state	q	∈	Q	the	flow	function	F(q)	has	unique	solution.	
We	now	briefly	describe	the	semantics	of	hybrid	automata.	A	configuration	of	a	hybrid	
automaton	is	a	tuple	(q,ν)	where	q	∈	Q	is	a	state	and	ν	∈	R|X|	is	a	variable	valuation.	

The	initial	configuration	of	a	hybrid	automaton	is	(q0,ν0),	where	q0	∈	Q0,	ν0	=	[[π]]	
such	that	π	∈	V0	and	ν0	∈	[[I(q0)]]	(the	invariant	constraints	are	satisfied).	During	the

	

time	t	a	system	spends	in	a	state	q,	the	clocks	in	X	are	updated	according	to	the	flow	
function	 of	 q,	 and	 at	 each	 step	 the	 new	 valuation	 must	 respect	 the	 invariant	
constraints	in	q.	A	transition	δ	=	(q,g,a,	j,q1)	is	enabled	after	t	time	when	the	guard	g	∈	
pred(X)	is	satisfied.	When	δ	is	executed,	the	automaton	jumps	to	a	new	configuration	
(q1,ν1)	such	that	q1	is	the	target	state	of	δ,	ν1	is	the	valuation	of	the	jump	constraints	j	
∈	pred(X	∪X0),	and	ν1	∈	[[I(q1)]]	.	

Composing	 Hybrid	 Automata	 For	 modelling	 complex	 hybrid	 systems	 it	 is	
convenient	to	adopt	a	modular	approach	where	systems	are	described	by	interacting	
entities.	This	allows	to	separately	verify	different	smaller	components	more	efficiently	
than	verifying	a	bigger	monolithic	model.	Hybrid	automata	can	be	composed	through	
a	 synchronous	 product	 operator,	 and	 they	 interact	 through	 actions	 and	 shared	
variables.	Let	I	=	{1,...,n}	be	a	set	of	indexes,	the	product	of	hybrid	automata	is	denoted	

as	 	⨂Hi∈C	Hi,	where	C	=	{Hi	|	 i	∈	 I}.	The	states	of	the	product	are	composed	by	the	
product	of	the	states	of	its	components.	Similarly,	the	alphabet	and	the	variables	are	
the	 union	 of	 those	 of	 its	 components.	 The	 invariants,	 flow	 function	 and	 initial	
valuations	are	defined	homomorphically	on	their	elements.	Finally,	the	transitions	are	
synchronous,	i.e.	all	the	components	(satisfying	the	constraints	on	the	corresponding	
transition)	synchronise	on	an	action	a	while	the	others	stay	idle	(in	the	following	we	
will	also	distinguish	between	input	and	output	actions	through	broadcast	channels).	

Uppaal	SMC	Uppaal	is	a	toolbox	that	has	been	adopted	for	verifying	real-time	systems,	
represented	by	(extended)	timed	automata,	that	interact	through	broadcast	channels	
and	shared	variables.	Uppaal	SMC	is	an	extension	of	Uppaal	that	allows	to	express	both	
stochastic	 and	 non-linear	 dynamic	 features,	 by	 adopting	 a	 stochastic	 extension	 of	
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hybrid	automata.	The	stochastic	interpretation	replaces	the	non-deterministic	choices	
for	 multiple	 enabled	 transitions	 and	 time	 delays	 with,	 respectively,	 probabilistic	
choices	and	probability	distributions	(uniform	for	bounded	time	and	exponential	for	
unbounded	 time).	 By	 composing	 different	 automata	 through	 the	 product	 of	 SHA,	
arbitrary	 complex	 behaviours	 can	 be	 obtained,	 where	 it	 is	 possible	 to	 statically	 or	
dynamically	generate	new	instances	of	automata,	that	are	uniquely	identified.	

Uppaal	SMC	uses	Statistical	Model	Checking	to	evaluate	probabilistic	properties	of	
interest.	SMC	uses	results	from	statistic	area	to	decide,	based	on	a	given	number	of	
monitored	simulations,	whether	 the	system	under	analysis	 satisfies	 the	property	of	
interest	within	a	given	degree	of	confidence.	An	advantage	of	SMC	is	that	it	avoids	the	
exploration	of	the	whole	state-space	of	a	model,	which	is	a	main	drawback	of	standard	
model	checking	techniques.	

Temporal	 Logic	 formulae.	 In	 addition	 to	 standard	 model	 checking	 techniques	 of	
properties	as	reachability,	deadlock-freedom,	in	Uppaal	SMC	it	is	possible	to	evaluate	
the	probability	 that	a	 random	run	of	a	network	M	satisfies	a	property	ϕ	 in	a	given	
amount	 of	 time	 t.	 Properties	 are	 defined	 using	 the	Metric	 Interval	 Temporal	 Logic	
(MITL)	[22].	A	MITL	formula	ϕ	is	inductively	defined	by	the	following	grammar:	

	

In	the	definition	above,	ap	are	atomic	predicates	over	states	of	an	automaton,	and	the	
logical	operators	are	standard,	except	for	ϕ1	∪x

≤t	ϕ2	that	checks	whether	a	formula	ϕ1	

is	satisfied	in	a	run	until	a	formula	ϕ2	is	satisfied,	and	this	must	happen	before	the	clock	
x	exceeds	the	value	t.	As	usual,	it	is	possible	to	derive	the	operators	exists	and	forall	as	

◊x≤tϕ	=	true	∪x≤t	ϕ	and	◻x≤tϕ	=	¬◊x≤t¬ϕ,	where	both	quantifiers	are	bounded	by	the	
time	t	for	the	clock	x.	

Generally,	 checking	 if	 a	model	M	satisfies	a	property	PM(◊x≤tϕ)	≥	p,	p	∈	[0,1]	 is	
undecidable	[32].	Statistical	algorithms	are	developed	in	Uppaal	SMC	for	estimating	
the	 probability	 of	 cost-bounded	 reachability	 problems	 in	 a	 given	 interval	 of	
confidence.	 There	 are	 three	 types	 of	 queries:	 PM(◊x≤tap)	 (probability	 estimation),	
PM(◊x≤tap)	≥	p,		p	∈[0,1]	(hypothesis	testing),	PM(◊x1≤t1ap1)≥PM(◊x2≤t2ap2)	(probability	
comparison).	 In	 Section	6	we	will	 evaluate	 the	measures	of	 interest	 for	 the	energy	
consumption	 and	 the	 probability	 of	 failure	 in	 Uppaal	 SMC	 through	 probability	
estimation,	while	in	Section	7	we	will	compare	the	approaches	based	on	Mӧbius	and	
Uppaal	SMC.	In	the		next	section	we	will	describe	the	case	study.	
3	 Description	of	the	Case	Study	

We	propose	a	cyber-physical	system	from	the	railway	domain	as	case	study:	a	rail	road	
switch	heating	system.	In	this	section	we	briefly	describe	the	real-world	devices	that	
we	 want	 to	 model	 and	 the	 underlying	 logical	 system	 we	 have	 built	 for	 analysis	
purposes.	
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3.1	 Description	of	the	network	of	rail	road	switch	heaters	

We	consider	a	heating	system	composed	of	a	series	of	tubular	flat	heaters	along	the	
rail	road	track,	which	warm	up	the	rail	road	by	induction	heating.	Sensors	are	used	to	
communicate	the	temperatures	of	the	air	and	of	the	rail	road	to	the	rail	road	switch	
heating	 system	 [46],	 to	perform	decisions.	 The	central	unit	manages	 the	maximum	
amount	of	power	that	can	be	delivered	to	the	system,	 in	order	 to	prevent	possible	
blackouts.	In	case	of	extremely	cold	conditions,	the	total	amount	of	energy	available	
may	not	be	sufficient	to	heat	the	overall	system	of	switches,	hence	it	is	important	to	
duly	choose	the	heaters	that	must	be	primarily	turned	on	and	those	that	may	be	later	
on.	Indeed,	in	a	railway	station	there	are	tracks	which	are	less	important	than	others,	
for	 example	 the	 side	 tracks,	 and	 the	 heating	 phase	 can	 be	 delayed	 for	 them	 if	
necessary.	 If	 the	 temperature	 cannot	 be	 kept	 above	 the	 freezing	 thresholds,	 the	
corresponding	switch	will	experience	a	failure.	
	
3.2	 Logical	structure	of	the	system	

The	 two	 main	 logical	 components	 of	 our	 system	 are	 the	 heater	 and	 the	 central	
coordinator.	The	network	of	heaters	is	realised	by	replicating	the	heater	component,	
and	 their	 activation/deactivation	 is	 controlled	 by	 the	 central	 coordinator.	 In	 the	
following	we	discuss	the	two	main	components.	

Heater	We	 based	 the	 policy	 employed	 to	 activate/deactivate	 the	 heating	 on	 two	
threshold	temperatures:	

– warning	threshold	(Twa):	this	temperature	represents	the	lowest	temperature	that	
the	track	should	not	exceed.	If	the	temperature	is	lowest	than	Twa,	then	the	risk	
of	ice	or	snow	can	lead	to	a	failure	of	the	rail	road	switch	and	therefore	the	heating	
system	needs	to	be	activated;	

– working	threshold	(Two):	 this	 is	the	working	temperature	of	the	heating	system.	
Once	this	temperature	is	reached,	the	heating	system	can	be	safely	turned	off	in	
order	to	avoid	an	excessive	waste	of	energy.	

The	energy	consumption	of	the	overall	system	depends	on	the	value	of	Twa	and	Two.	A	
smaller	gap	between	these	thresholds	will	result	in	a	frequent	activation	of	the	heating	
system,	 but	 for	 a	 shorter	 period	 of	 time.	 Alternatively,	 a	 wider	 gap	 between	 the	
thresholds	will	result	in	a	less	frequent	activation,	but	it	will	be	for	longer	periods	of	
time.	The	 time	during	which	a	 single	heater	 is	 active	depends	also	on	 the	weather	
conditions.	

Coordinator	The	coordinator	will	collect	the	requests	of	activation	from	the	pending	
heaters,	and	 it	will	manage	the	energy	supply	according	to	a	FIFO	prioritised	order.	
Indeed,	the	first	heater	that	asks	to	be	turned	on	will	be	the	first	to	be	activated.	We	
will	 assign	 priorities	 to	 switches	 based	 on	 their	 criticality	 on	 the	 track	 and	we	will	
exploit	 the	 assigned	 priority	 in	 the	 performed	 analysis,	 so	 to	 guarantee	 higher	
reliability	to	those	switches	that	are	essential	for	the	correct	functioning	of	the	overall	
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station.	The	maximum	amount	of	energy	deliverable	by	 the	 system	 that	 cannot	be	
exceeded	 is	represented	by	NHmax,	and	 it	 is	measured	as	the	percentage	of	heaters	
that	can	be	turned	on	at	the	same	time.	If	there	is	no	energy	available,	each	request	
will	be	enqueued	in	the	queue	of	pending	heaters.	Below	we	describe	in	details	the	
behaviour	of	the	central	coordinator.	

Interactions	We	now	give	details	about	the	protocol	of	communication	between	the	
network	of	heaters	and	the	central	coordinator:	

– Heater:	at	starting	time	each	heater	hi	is	switched	off	and	its	internal	temperature	
is	set	to	Two.	Once	its	internal	temperature	goes	below	Twa,	hi	asks	the	coordinator	
to	be	turned	on	and	waits.	Upon	reception	of	the	notification,	hi	is	turned	on.	After	
that,	two	events	can	happen:	
• the	heater	hi	reaches	an	internal	temperature	above	Two,	communicates	to	the	
central	coordinator	the	termination	of	the	heating	phase	and	is	switched	off;	

• a	second	component	hj	with	a	higher	priority	asks	to	be	turned	on.	The	energy	
delivered	to	hi	is	turned	off,	even	though	it	has	not	yet	reached	an	internal	
temperature	above	Two.	 If	 the	temperature	 is	below	Twa,	hi	will	 issue	a	new	
request	of	activation	to	the	coordinator.	

– Coordinator:	at	starting	time	the	central	coordinator	is	waiting	for	a	message	from	
one	of	the	heaters	hi	in	the	network.	Two	messages	can	be	received:	
• hi	 asks	 to	 be	 activated.	 This	 request	 is	 inserted	 in	 the	 queue	 of	 pending	
requests	in	case	there	is	no	energy	available	and	the	priority	of	hi	is	not	higher	
than	 that	 of	 the	 already	 activated	 switches.	 Otherwise,	 the	 request	 is	
accepted	 and	we	 have	 two	 cases;	 (i)	 if	 there	 is	 energy	 available,	hi	will	 be	
activated	by	 issuing	 a	 notification;	 (ii)	 if	 no	 energy	 is	 available	 but	hi	has	 a	
priority	higher	than	one	of	the	activated	heaters,	firstly	the	heater	with	lowest	
priority	 will	 be	 turned	 off	 with	 a	 notification,	 and	 then	 the	 activation	 is	
notified	to	hi;	

• hi	asks	to	be	deactivated.	After	the	deactivation,	if	there	are	no	heaters	that	
are	waiting	for	being	activated	then	no	action	is	performed.	Otherwise,	one	
of	the	pending	heaters	hj	(the	first	in	the	prioritized	queue	of	pending	heaters)	
is	activated	by	issuing	a	notification	to	it.	

Before	presenting	the	different	models	of	the	system	described	above,	in	the	next	
section	we	will	discuss	the	generic	guidelines	for	modelling	energy-saving	cyber-physical	
systems,	that	we	have	followed	for	our	case	study.	
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Fig.1:	The	proposed	analysis	framework	for	energy	saving	CPS	

4	 General	Guidelines	to	Model	Energy-saving	Cyber-physical	Systems	

Guidelines	on	the	analysis	of	reliability	and	energy	consumption	indicators	of	CPS	
systems	are	now	discussed.	Following	them,	in	Section	5	the	two	analyses	approaches	
are	 concretely	 applied	 to	 a	 case	 study	 representative	 of	 an	 energy-saving	 cyber-
physical	system,	to	emphasise	pros	and	cons	of	the	two	alternatives	and	to	compare	
the	obtained	results	for	cross-validation	purposes.	

Generally,	 in	 energy-saving	 CPS	 [41]	 the	 supervision	 of	 the	 cyber-control	 is	 in	
charge	of	strategies	to	supply	energy	to	components	of	the	physical	system,	necessary	
to	keep	them	effective	and	reliable	in	the	service	they	accomplish.	Our	interest	is	in	
assessing	 measures	 that	 are	 representative	 of	 the	 energy	 consumption,	 to	 be	
combined	with	other	dependability-related	properties	dictated	by	the	critical	domain	
the	CPS	 is	employed	 in.	 It	 is	 then	possible	 to	study	the	benefits	of	different	energy	
supply	 strategies	 to	properly	 tune	 the	parameters	 of	 these	 strategies	 toward	most	
rewarding	 configurations.	A	 diagram	of	 the	 framework	 is	 depicted	 in	 Figure	 1.	 The	
proposed	analysis	framework	is	built	around	three	major	modules	[12].	
– Physical-aspects	module:	this	module	focuses	on	the	physical	components	of	the	
system	and	on	their	characterisation	in	terms	of	relevant	aspects	from	the	energy	
viewpoint.	 It	 includes	 models	 representing	 phenomena	 related	 with	 energy	
supply,	 which	 depends	 on	 the	 fabric	 of	 the	 supplied	 components	 and	
environmental	conditions	impacting	on	the	energy	consumption.	Examples	are:	i)	
internal	and	external	temperatures,	properly	modelled	taking	into	account	their	
evolution	in	time,	given	the	different	means	involved	(such	as	iron	or	copper	for	
the	 physical	 components,	 winter	 or	 summer	 days	 for	 the	 external	 air);	 ii)	 fuel	
consumption,	 represented	 by	 properly	 considering	 the	 engine	 parameters,	
aerodynamic	 drag,	weight,	 and	 other	 relevant	 parameters;	 iii)	 supplied	 power,	
represented	by	properly	considering	the	laws	regulating	the	involved	real	process;	
iv)	battery	charging	and	others.	

– Control-aspects	 module:	 this	 module	 deals	 with	 the	 policies	 that	 dynamically	
regulate	 the	 energy	 consumption	 of	 the	 physical	 components.	 To	 manage	
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potential	 complexity	 while	 assuring	 adequate	 accuracy	 of	 the	 analysis,	 the	
representation	of	such	policies	 is	abstracted	at	 the	 level	of	 their	 impact	on	the	
energy	parameters	of	the	controlled	physical	components.	As	already	mentioned,	
the	 primary	 objective	 of	 the	 proposed	 model-based	 approach	 is	 to	 assist	 the	
system	 designer	 in	 identifying	 the	 best	 policy	 to	 employ	 among	 several	
alternatives,	 in	 accordance	 with	 pre-established	 dependability	 and	 cost	
requirements.	 Trade-offs	 between	 energy	 consumption	 and	 dependability	
requirements	are	mandatory	in	critical	domains,	where,	e.g.,	the	energy	should	
not	 be	 reduced	 in	 safety	 critical	 situations.	 For	 example,	 the	 dynamic	 power	
management	can	be	of	kind	on-off,	where	energy	is	supplied	or	turned	off	on	the	
basis	of	values	assumed	by	parameters	that	depend	on	physical	conditions	of	the	
system	and	of	the	environment.	

– Evaluation	module:	Finally,	 the	 third	module	deals	with	 the	composition	of	 the	
several	 models	 from	 the	 previous	 two	 modules,	 to	 end	 up	 with	 the	 overall	
evaluation	 framework.	 Exercising	 the	 overall	 composed	 model,	 energy	 supply	
policies	trading	energy	saving	and	dependability	properties	can	be	quantitatively	
evaluated	and	compared	in	terms	of	properly	defined	indicators.	

The	 generality	 of	 the	 above	 outlined	 approach	 allows	 assessing	 a	 variety	 of	
measures	 of	 interest	 to	 final	 customers,	 service	 providers	 and	 operators,	 in	
accordance	with	the	specific	application	domain	where	the	CPS	system	under	analysis	
is	utilised.	Given	the	aim	of	 trading	energy	consumption	with	dependability,	 typical	
indicators	 are	 energy	 supplied	 to	 individual	 system	 components	 or	 to	 the	 overall	
system	 in	 a	 certain	 time	 interval,	 as	 well	 as	 failure	 probability	 of	 an	 individual	
component	or	of	the	overall	system	due	to	lack	of	supplied	energy.	

A	 benefit	 of	 the	 proposed	 approach	 in	 Figure	 1	 is	 its	 modularity	 and	
compositionality,	that	allows	to	be	applied	to	a	wide	variety	of	scenarios	relevant	to	
CPS,	 and	 it	 has	 been	 adopted	 for	 our	 case	 study.	 In	 Section	 5	 and	 Section	 6	 an	
instantiation	 of	 the	 discussed	 guidelines	 is	 presented,	 following	 two	 different	
approaches	based	on	SAN	and	SHA	models.	

5	 Description	of	the	Models	

In	this	section	we	will	describe	the	models	of	the	rail	road	switch	heating	system.	We	
will	 follow	 the	 general	 guidelines	 discussed	 in	 Section	 4.	 Firstly	we	will	 discuss	 the	
physical-aspects	 module	 of	 the	 system	 under	 analysis,	 then	 we	 will	 discuss	 the	
controlaspects	module,	that	will	be	modelled	both	with	SAN	models	and	SHA	models.	
Finally,	the	evaluation	module	will	be	discussed	in	Section	6.	

The	models	are	parameterized	based	on	the	two	temperature	thresholds	Twa,	Two	
and	NHmax	that	we	recall	 to	be	the	maximum	power	that	the	system	can	provide	at	
every	instant	of	time,	expressed	in	percentage	of	heaters	that	can	be	turned	on	at	the	
same	time.	
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5.1	 Physical-aspects	module	

The	continuous	physical	behaviour	concerning	the	 increment	and	decrement	of	the	
temperature	of	the	rail	road	track,	respectively	when	the	heater	is	turned	on	or	off,	is	
modelled	by	an	ODE	representing	the	balance	of	energy	[9].	

The	 heater	 is	 represented	 by	 a	 resistance	 that	 passes	 through	 the	 rail	 road	 in	
different	points	in	order	to	warm	up	the	iron.	The	set-up	for	the	heating	device	is	based	
on	patents	of	heating	switches	[17],	which	contain	data	about	the	power	consumed	
by	a	single	heater	and	about	the	 increment	of	the	temperature	of	the	track	 in	cold	
winter	nights.	We	assume	that	the	power	used	by	the	heater	is	constant,	in	order	to	
estimate	the	kilowatt	per	hours	consumed	during	the	time	interval	that	we	consider.	

Assuming	that	the	values	of	the	temperature	of	the	surrounding	area	Te	and	the	
previous	internal	temperature	T	are	known,	the	internal	temperature	T	after	time	t	is	
(we	adopt	the	Newton’s	notation	for	differentiation)	T’	=		(−uA(T−Te)+Q)/mc,	where	
u	is	the	coefficient	of	convective	exchange;	c,	the	heat	capacity	of	iron;	A,	the	surface	
area	exposed	to	the	external	temperature;	m,	the	mass	of	the	iron	bar;	Q,	the	power	
used	when	the	heater	is	turned	on,	if	the	heater	is	turned	off	this	value	will	be	zero.	
We	 now	 discuss	 the	 stochastic	 aspects	 that	 have	 been	 considered	 as	 part	 of	 the	
physical	module.	

Stochastic	aspects	Stochastic	aspects	concern	the	possibility	of	experiencing	a	failure	
in	 a	 switch,	 that	 will	 be	 used	 for	 measuring	 the	 reliability	 of	 the	 system,	 and	 the	
influence	of	the	weather	forecast.	

Switch	 Failures	When	 the	 temperature	 of	 the	 rail	 road	 track	 is	 below	 the	 freezing	
threshold	(i.e.	0°C	in	our	experiments),	a	switch	may	experience	a	failure.	In	this	case,	
the	time-to-failure	is	modelled	with	an	exponential	distribution	with	fixed	rate,	that	
will	be	based	on	the	temperature	of	the	rail	road	track.	

Weather	forecast	To	model	the	external	weather	conditions,	our	model	takes	in	input	
data	structures	containing	profiles	of	average	temperatures	 in	those	days	for	which	
the	analysis	is	relevant	(e.g.	winter	days),	as	depicted	in	Figure	2.	For	our	experiments,	
we	have	five	different	daily	weather	profiles	retrieved	from	the	internet	[54].	The	time	
window	 under	 analysis	 is	 divided	 into	 intervals	 to	 which	 an	 average	 reference	
temperature	is	assigned.	The	current	instance	of	the	model	concentrates	on	a	whole	
day,	divided	into	intervals	of	two	hours.	However,	the	model	can	be	easily	modified	to	
consider	 longer	 (or	 shorter)	 periods,	 as	 well	 as	 different	 number	 of	 intervals.	 A	
probability	is	assigned	to	each	weather	profile,	based	on	weather	statistics.	

5.2	 Control-aspects	module	

The	 control-aspects	 module	 has	 been	 modelled	 both	 in	 SAN	 and	 SHA	 models.	
Comparisons	between	these	two	different	approaches	will	be	derived	in	Section	7.	
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SAN	Models	We	 now	 describe	 the	 SAN	 based	model	 realising	 the	 rail	 road	 switch	
heating	 system	 logic	 and	 the	 protocol	 described	 in	 Section	 3,	 built	 through	 the	
functionalities	provided	by	Mӧbius.		

	

Fig.2:	A	weather	profile	corresponding	to	the	temperatures	for	coldest	winter	nights	
in	a	northern	city,	retrieved	from	[54].	The	simulation	starts	at	6:pm	and	terminates	
after	24	hours.	

The	overall	model	is	obtained	by	the	composition	of	the	atomic	models,	using	the	
join	and	rep	operators,	as	shown	in	Figure	3	(where	the	atomic	models	are	the	leaves	
of	 the	 tree	 while	 the	 overall	 composed	 model	 is	 the	 root).	 The	 atomic	 model	
Coordinator	represents	the	central	coordinator	and	it	will	interact	with	the	network	of	
switch	 heaters.	 The	 atomic	 SAN	 models	 LocalitySelector,	 ProfileSelector	 and	
SwitchIDSelector	 represent,	 respectively,	 the	 selector	 for	 the	 weather	 profile,	 the	
location	 of	 the	 switch	 and	 the	 unique	 identifier	 of	 each	 switch.	 The	 submodel	
HeaterModuleM	 represents	an	 instance	of	a	single	heater	module,	obtained	by	 the	
composition,	using	the	 join	operator,	of	the	four	atomic	SAN	models.	Those	atomic	
models	share	the	places	relative	to	the	locality	of	the	device,	its	weather	profile	and	
the	unique	ID.	The	submodel	HeatersNetM,	obtained	by	replicating	numRep	times	the	
model	HeaterModuleM	using	 the	Rep	operator,	 represents	 the	network	of	heaters,	
where	 the	 parameter	 numRep	 identifies	 the	 number	 of	 devices	 composing	 the	
network.	 Finally,	 the	 model	 SwitchHeatingSysM,	 obtained	 using	 the	 join	 operator,	
represents	the	overall	system.	

All	 these	SAN	models	 interact	through	shared	places,	a	 feature	available	 in	Mӧbius	
[18]	for	joining	different	SAN	models	thus	allowing	modularity.	

Note	that	in	Mӧbius	different	replicas	of	SAN	models	are	anonymous,	and	it	is	not	
possible	to	distinguish	between	them.	Hence,	the	SwitchIDSelector	SAN	model	is	used	
for	assigning	a	unique	ID	to	each	heater	module.	

The	main	SAN	model	concerning	the	rail	road	switch	heater	is	depicted	in	Figure	4.	
It	is	partitioned	into	three	logical	components:	the	init	sub-net,	the	clock	sub-net	and	
the	heater	 sub-net.	 The	 init	 subnet	 initialises	 the	 data	 structures	 used	 by	 the	 SAN	
model.	 The	 clock	 sub-net	 models	 the	 evolution	 of	 time	 (during	 one	 day	 in	 our	
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analyses),	and	it	is	used	to	update	the	environment	temperature	and	the	temperature	
of	the	rail	road	track.	In	this	paper	we	have	considered	as	unit	of	time	one	hour.	The	
activity	clock	has	a	deterministic	distribution	of	time	(non	Markovian),	and	completes	
each	hour.	When	clock	completes,	the	place	Temperature	is	updated:	if	the	heater	is	
turned	on	then	the	temperature	increases,	otherwise	the	temperature	will	be	updated	
according	to	the	temperature	of	the	environment,	as	in	the	equation	in	Section	5.1.	

	

Fig.3:	The	composed	model.	

The	heater	sub-net	represents	the	status	of	the	rail	road	switch	heater.	The	heater	
can	be	activated	(one	token	in	the	place	on),	waiting	for	being	activated	(one	token	in	
the	place	ready),	turned	off	(one	token	in	the	place	off),	or	failed	(one	token	in	the	
place	failure).	Indeed,	according	to	the	heating	policy,	once	the	system	temperature	
falls	below	a	pre-defined	warning	threshold	(Twa),	the	heating	needs	to	be	activated,	
otherwise	the	associated	switch	fails.	Then,	once	the	temperature	raises	and	reaches	
the	working	threshold	(Two),	the	heating	system	can	be	safely	turned	off.	

The	 heater	 sub-net	 interacts	 with	 the	 Coordinator	 SAN	 model	 through	 places	
shared	among	all	 the	 replicas	of	 the	heater	model	and	 the	Coordinator	model.	 For	
example,	if	the	heater	is	in	state	ready,	in	order	to	be	turned	on,	the	input	gate	i1ready2on	
checks	if	the	marking	of	the	shared	place	notifyIn	is	equal	to	the	marking	of	the	place	
SwitchID,	which	means	that	the	coordinator	has	notified	the	heater	to	be	turned	on.	

The	function	representing	the	heating	exchange	is	defined	in	C++,	and	it	is	called	
by	the	output	gate	O1clock			in	Figure	4	to	update	the	temperature	of	the	rail	road	each	
interval	of	 time	 t.	 The	activity	TAfailure	models	 the	 failure	of	 a	 component.	 It	 has	an	
exponential	distribution	of	time	based	on	the	temperature	of	the	rail	road	track:	the	
more	the	temperature	is	below	the	freezing	threshold	the	more	is	probable	that	the	
activity	will	fire	(the	activity	is	not	activated	if	the	temperature	is	positive).	

The	 SAN	 model	 Coordinator	 represents	 the	 central	 management	 unit	 and	 it	
interacts	with	all	the	heaters	in	the	network	by	activating,	deactivating	or	moving	them	
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in	a	waiting	state.	Below	we	will	describe	the	network	of	stochastic	hybrid	automaton	
used	for	modelling	the	system	of	rail	road	switch	heaters.	
SHA	Models	 The	 rail	 road	 switch	 heating	 system	 has	 also	 been	modelled	 through	
stochastic	 hybrid	 automata,	 with	 the	 purpose	 of	 cross-validating	 the	 two	 distinct	
formalisations	and	improve	the	trustworthiness	of	the	obtained	results.	

	

Fig.4:	The	SAN	model	RailRoadSwitchHeater,	logically	divided	into	three	sub-nets:	the	
init	sub-net,	the	clock	sub-net	and	the	heater	sub-net.	

Indeed,	this	formalism	allows	to	capture	both	discrete,	continuous	and	stochastic	
aspects	 in	 a	 single	 framework.	We	have	been	 able	 to	 verify	 the	 correctness	 of	 the	
interactions,	 as	 well	 as	 energy	 and	 reliability	 indicators,	 by	 using	 the	 Uppaal	 SMC	
toolkit.	We	briefly	outline	the	formalisation	of	the	system	of	(remotely	controlled)	rail	
road	switch	heaters	as	a	product	of	hybrid	automata.	

The	ODE	in	Section	5.1	is	expressed	in	the	stochastic	hybrid	model	H	in	Figure	5,	
where	the	temperature	T	is	a	continuous	clock	and	the	flow	function	F	(i.e.	the	ODE)	
is	similar	in	different	states.	Indeed,	when	H	is	in	state	on,	F	is	adding	the	term	Q	(i.e.	
the	power);	this	is	not	the	case	in	states	off	and	ready.	

The	 two	 main	 logical	 components	 describing	 the	 discrete	 cyber	 part	 of	 the	
analysed	system	are	the	heater	H	(depicted	in	Figure	5)	and	the	central	coordinator	K	
(depicted	 in	 Figure	 6).	 The	 network	 composed	 of	n	heaters	 and	 the	 coordinator	 is	
realised	 by	 making	 the	 product	 of	 K	 and	 the	 replicas	 of	 the	 stochastic	 hybrid	
automaton	 Hid,	 id	 ∈	 1,...,n,	 where	 each	 heater	 is	 uniquely	 identified	 by	 its	 id,	 i.e.	
(⊗id∈1,...,n	Hid)⊗K.	 The	heater	model	 is	 in	 Figure	 5	 and	 it	 implements	 the	 policy	 for	
activating	and	deactivating	the	heating	phase,	similarly	to	the	SAN	model	in	Figure	4.	
In	 particular,	 the	 dotted	 transitions	 are	 urgent	 (i.e.	 instantaneous)	 probabilistic	
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transitions	used	for	selecting	one	of	the	available	weather	profiles.	The	main	states	
are	 on,	 off,	 ready	 and	 fail,	 which	 correspond	 to	 the	 places	 of	 the	 SAN	 model	
RailRoadSwitchHeater.	Here	we	note	that	each	state	has	an	inner	cycle	modelling	the	
decrease	and	increase	of	the	internal	temperature	according	to	the	flow	function,	and	
that	 both	 the	 incoming	 transitions	 to	 state	 fail	 have	 an	 exponential	 distribution	 of	
time.	During	a	simulation,	the	current	time	is	stored	in	the	clock	x,	and	a	variable	hour	
stores	the	current	hour.	

	

Fig.5:	The	stochastic	hybrid	automaton	H,	modelling	an	instance	of	a	rail	road	switch	
heater	

The	 function	 Te(),	 used	 in	 the	 flow	 function	 of	 T,	 selects	 the	 actual	 external	
temperature	based	on	the	current	hour,	and	it	is	implemented	in	Uppaal.	

The	 coordinator	 is	modelled	as	 the	hybrid	 automaton	 in	 Figure	6.	 Its	 behaviour	 is	
similar	 to	 the	 one	 of	 the	 SAN	 modelCoordinator.	 The	 queue	 of	 pending	 heaters	 is	
modelled	with	the	array	queue[]	of	length	equal	to	NHmax,	and	the	functions	enqueue(id)	
and	dequeue()	are	used	for	inserting	and	removing	elements,	while	empty()	returns	true	
if	the	queue	of	pending	heaters	is	empty.	

The	coordinator	sends	messages	to	the	network	of	heaters	through	two	arrays	of	
channels	 NI[id]	 and	 NO[id]	 indexed	 by	 the	 identifiers	 of	 the	 heaters,	 to	 notify	
respectively	 the	 activation	 and	 deactivation	 of	 a	 heater	 (see	 Section	 3	 for	 the	
communication	 protocol).	 Note	 that	 Uppaal	 SMC	 only	 allows	 broadcast	 channels,	
hence	 an	 array	 of	 channels	 has	 been	 adopted	 in	 order	 to	 implement	 one-to-one	
communications.	 Following	 the	 standard	 notation,	 sending	 through	 a	 channel	 a	 is	
denoted	 as	 a!,	while	 reading	 as	 a?.	Upon	 reception	 of	 the	 notification	NI[id]?,	 the	
heater	with	identifier	id	switches	from	state	ready	to	state	on.	
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The	 heaters	 communicate	 to	 the	 coordinator	 their	 transition	 from	off	 to	 ready	
through	the	channel	ins,	so	asking	for	being	activated,	and	their	transition	from	on	to	
off	through	the	channel	rem;	both	channels	are	many-to-one.	All	channels	are	urgent,	
which	means	that	no	delays	will	occur	in	case	a	synchronisation	is	available.	

While	 the	 coordinator	 is	 in	 a	 busy	 state,	 a	 shared	 variable	 lock	 is	 used	 as	 a	
semaphore	to	prevent	a	heater	from	sending	messages	that	cannot	be	elaborated,	and	
it	is	used	by	the	heaters	for	communicating	their	identifiers	to	the	coordinator.	In	the	
next	section	we	will	describe	the	evaluation	module	for	both	SAN	and	SHA	models.	

	

Fig.6:	The	stochastic	hybrid	automaton	K,	modelling	the	coordinator	

6	 Evaluation	module	

In	the	evaluation	module	we	will	evaluate	the	energy	consumption	and	the	reliability	
of	the	system	considering	different	thresholds-based	policies	of	energy	consumption.	
Concerning	the	scenarios	and	settings	we	have	considered	for	our	analysis,	real	world	
data	are	used.	In	particular,	to	keep	the	presentation	simple,	the	layout	of	an	average	
small-size	railway	station	has	been	chosen.	The	cold	winter	days	are	considered	for	
the	 temperatures	 and	 the	 parameters	 of	 the	 physical	 model	 are	 based	 on	 data	
available	from	real	devices	[17]	[46].	

6.1	 Measures	of	Interest	

We	 consider	 two	 different	 measures	 of	 interest.	 The	 first	 concerns	 the	 energy	
consumption	while	the	second	addresses	the	reliability	of	the	system	under	analysis.	

1 CE(t,l):	the	time	(in	hours)	a	generic	heater	is	activated	in	the	time	interval	[t,t	+l].	
By	multiplying	CE(t,l)	for	the	power	consumed	(kilowatt	per	hour),	that	is	the	term	
Q	 in	 the	 heat	 exchange	 equation	 (see	 Section	 5.1),	 it	 is	 possible	 to	 derive	 the	
energy	consumed	by	the	system;	
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2 PFAIL(t,l):	the	probability	that	a	generic	switch	fails	(becomes	frozen)	at	time	t	+l,	
given	that	at	time	t	is	not	failed.	

We	remark	that	reliability	is	computed	as	the	probability	that	no	failure	occurs	in	the	
interval	of	time	under	analysis	[52],	that	is	1−PFAIL(t,l).	

Measures	of	Interest	in	the	SAN	models	Concerning	the	SAN	models,	in	Mӧbius	reward	
structures	have	been	used	for	evaluating	the	measures	of	interest.	In	particular,	CE(t,l)	
is	defined	by	accumulating	in	the	interval	[t,t	+	l]	the	time	that	each	replica	of	the	SAN	
model	 RailRoadSwitchHeater	 spends	 in	 markings	 with	 one	 token	 in	 place	 on	 (see	
Figure	 4)	 ,	 that	 is	 the	 time	 that	 each	 heater	 is	 activated.	 The	measure	PFAIL(t,l)	 is	
defined	as	the	probability	that	at	time	t	+l	there	is	one	token	in	the	place	failure	of	the	
SAN	model	RailRoadSwitchHeater.	
Measures	of	Interest	in	the	SHA	models	In	Uppaal	SMC,	the	measures	of	interest	are	
defined	as	formulae	in	MITL,	enriched	with	quantification	operators	on	the	replicated	
models	and	expected	values.	We	will	consider	a	discrete	clock	energy	that	counts	the	
hours	H	spends	in	state	on.	For	enhancing	readability,	we	have	omitted	this	clock	in	
Figure	5.	For	the	energy	consumption	we	estimate	the	number	of	hours	in	which	the	
heaters	are	active	as:	

CE(t,l)	=	E[<=	24;10000]	(max	:	∑	Hi		energy)	
i:idt	

where	E	stands	for	the	expected	value,	24	is	the	considered	interval	of	time	(24h)	and	
10000	are	the	simulations	executed	by	the	tool.	The	overall	energy	consumption	is	the	
sum	for	all	Hi	of	all	the	clocks	energy.	
The	probability	of	failure	is	estimated	by	Uppaal	SMC	with	the	formula:	

PFAIL(t,l)	=	P(◊	h≤24	∃(i	:	idt)(Hifail))	

The	above	formula	evaluates	the	probability	that	 in	the	 interval	[t,t	+	 l]	(24h)	there	
exists	at	least	a	switch	Hi	in	the	network	which	has	failed,	i.e.	Hi	is	in	state	fail.	

6.2	 Evaluation	

We	now	discuss	the	evaluation	of	CE(t,l)	and	PFAIL(t,l)	on	the	two	adopted	tools.	In	
our	experiments	we	assume	to	have	a	network	with	10	switches,	partitioned	into	4	
switches	with	high	priority,	3	with	medium	priority	and	3	with	low	priority.	We	report	
the	results	of	the	experiments	performed	with	9	pairs	of	Twa	and	Two,	that	are	those	
with	a	better	trade-off	between	energy	consumption	and	probability	of	 failure.	The	
amount	of	energy	available	to	the	system	is	set	to	NHmax=	50%,	the	values	for	Twa	are	
respectively	6°C,	7°C	and	8°C,	and	the	values	 for	Two	are	1°C	or	2°C	higher	than	the	
corresponding	 value	 of	 Twa.	 We	 have	 considered	 cumulative	 values	 of	 CE(t,l)	 and	
PFAIL(t,l)	 for	both	heaters	with	high,	medium	and	 low	priorities	 in	 the	network.	 In	
Figure	7	and	Figure	8	the	results	of	the	experiments	are	reported.	
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The	measures	of	interest	have	been	evaluated	in	Mӧbius	through	simulation,	with	
minimum	and	maximum	batches	per	experiment	set	to	respectively	1000	and	10000	
and	 minimum	 interval	 of	 confidence	 level	 of	 0.95.	 Concerning	 Uppaal	 SMC,	 the	
number	of	simulations	used	for	evaluating	CE(t,l)	has	been	fixed	to	10000,	while	for	
PFAIL(t,l)	 from	 a	minimum	 of	 800	 to	 a	maximum	 of	 10000	 simulations	 have	 been	
performed,	that	are	those	necessary	for	reaching	a	confidence	interval	of	0.995.	

The	estimated	values	of	CE(t,l)	are	displayed	 in	Figure	7a	and	Figure	8a,	and	as	
expected	both	tools	report	similar	results.	 In	particular,	by	augmenting	the	value	of	
Twa	 the	 system	 consumes	more	 energy	 for	 reaching	 a	 higher	 temperature.	 On	 the	
converse,	we	note	 that	by	augmenting	 the	difference	Two-	Twa,	 the	values	of	CE(t,l)	
slightly	decrease	(with	the	only	exception	of	Twa=6°C).	Indeed,	when	augmenting	Two-	
Twa,	the	probability	of	failure	increases,	and	the	failed	switches	will	no	longer	consume	
energy,	resulting	in	an	overall	decrease	of	CE(t,l).	
In	Figure	7b	and	Figure	8b	the	values	of	PFAIL(t,l)	are	reported.	Note	that	in	this	case	
Uppaal	SMC	only	reports	the	intervals	of	the	probability	estimation.	Also	in	this	case	
the	tools	report	similar	results,	with	the	main	difference	being	the	case	Twa=8°C	and	
Two=10°C,	which	is	the	worst	(i.e.	highest)	probability	of	failure.	In	particular,	both	tools	
identify	as	optimal	pair	of	thresholds	the	values	Twa=7°C	and	Two=8°C.	Indeed	in	this	
case	we	have	the	lowest	probability	of	failure,	that	is	a	better	distribution	of	energy	
among	all	 the	heaters	with	different	priorities.	This	 is	because	with	a	tighter	gap	of	
TwoTwa=1°C	the	time	needed	for	reaching	Two	is	less	than	for	the	case	of	Two-	Twa=2°C.	
Concerning	the	performance	of	the	experiments,	it	has	been	used	a	machine	with	CPU	
Intel	Core	i5-4570	at	3.20	GHZ	with	8	GB	of	RAM,	running	64-bit	Windows	10,	Uppaal	
SMC	academic	version	4.1.19	(rev.	5649)	and	Mӧbius	2.5.0.	The	elapsed	running	time	
is	reported	in	Table	1.	The	longest	running	time	in	Mӧbius	has	been	of	11.049	sec.	for	
computing	both	measures	of	 interest	with	parameters	Twa=6°C	and	Two=7°C.	On	the	
converse,	 Uppaal	 SMC	 has	 shown	 worst	 performances.	 Indeed,	 with	 parameters	
Twa=6°C	and	Two=7°C,	we	had	a	running	time	295.922	sec.	for	CE(t,l)	and	30.39	sec.	for	
PFAIL(t,l).		
	
Table	1:	The	elapsed	running	time	of	the	experiments	for	different	settings	of	(Twa,Two):	
for	Mӧbius	the	total	running	time	of	each	experiment	is	reported	(i.e.	both	measures),	
while	for	Uppaal	SMC	the	time	needed	for	computing	each	measure	is	reported	
	

	 Uppaal	(PFAIL(t,l))	 Uppaal	(CE(t,l))	 Mӧbius	Total	Running	Time	

(6°C,7°C)	 30.39s	 295.922s	 9.657s	
(7°C,8°C)	 24.922s	 313.968s	 9.405s	
(8°C,9°C)	 18.422s	 316.344s	 3.868s	
(6°C,8°C)	 233.516s	 293.875s	 5.387s	
(7°C,9°C)	 25.015s	 294.797s	 2.093s	
(8°C,10°C)	 259.219s	 290.704s	 1.775s	
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However,	we	note	that	for	evaluating	CE(t,l)	Uppaal	SMC	is	forced	to	perform	10000	
simulations,	 and	 for	 PFAIL(t,l)	 we	 have	 a	 tight	 confidence	 level,	 i.e.	 0.995.	
Nevertheless,	 in	 this	 case	 study	 the	 performances	 of	Mӧbius	 overwhelm	 those	 of	
Uppaal	SMC.	

Finally,	with	both	approaches	it	has	been	possible	to	model	and	evaluate	the	case	
study,	and	to	cross-validate	the	obtained	results.	

(a) The	energy	consumption																									(b)	The	probability	of	failure	

Fig.7:	The	measures	of	interests	with	Twa-	Two=	1°C	and	NHmax=	50%	

(a) The	energy	consumption																		(b)	The	probability	of	failure	

Fig.8:	The	measures	of	interests	with	Twa-	Two=	2°C	and	NHmax=	50%	

8	 Related	Work	

There	is	a	wide	literature	concerning	the	analysis	and	optimisation	of	energy-saving	
systems	in	several	application	domains	using	formal	approaches;	in	the	following	we	
discuss	some	of	these	recent	efforts.		
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An	 example	 of	 combining	 stochastic	 simulation	 and	 model	 checking	 is	 in	 [44],	
where	a	tool	chain	comprising	Uppaal	and	Mӧbius	is	used	for	the	proactive	schedule	
generation	 for	 manufacturing	 scenarios	 with	 resource	 competition,	 stochastic	
resources	breakdowns,	and	earliness/tardiness	penalties.	The	system	is	modelled	with	
Modest	 [29],	 the	optimal	schedule	 is	synthesised	with	the	tool	Uppaal	Cora	 [40,22]	
and	simulations	carried	on	with	Mӧbius.		Optimising	energy	consumption	for	energy	
aware	buildings,	represented	as	stochastic	hybrid	automata,	is	the	selected	case	study	
in	[20].	Statistical	Model	Checking	and	analysis	of	variance	has	been	used	to	identify	
Pareto-optimal	configurations	in	terms	of	both	discomfort	and	energy	consumption.	
In	 our	 analysis,	 we	 identify	 the	 best	 trade-off	 between	 energy	 consumption	 and	
reliability	through	simulations.		An	approach	for	estimating	the	energy	consumption	
of	mobile	apps	is	proposed	in	[43].	Similarly,	we	build	an	abstract	model	to	predict	the	
energy	 consumption	 of	 the	 rail	 road	 switch	 heating	 system	 at	 the	 variation	 of	
temperature	 thresholds	 and	 available	 energy,	 to	 find	 the	 optimal	 setup	 of	 the	
parameters.	Dynamic	Power	Management	(DPV)	and	Dynamic	Voltage	and	Frequency	
Scaling	(DVFS)	are	adopted	in	[1]		by	using	Statistical	Model	Checking.		The	system	is	
modelled	 as	 Stochastic	 Hybrid	 Games.	 The	 tool	 Uppaal	 Stratego	 [21]	 is	 used	 to	
synthesise	the	safe	and	near	optimal	strategy.	Similarly,	we	adopted	Statistical	Model	
Checking	 and	 DPM,	 to	 turn	 off	 the	 energy	 consumption	 of	 heaters	 when	 a	 given	
temperature	is	reached.	Hybrid	automata	have	been	used	in	[26]	to	study	the	dynamic	
power	 management	 control	 problem.	 We	 do	 not	 consider	 a	 power	 adjustment	
mechanism	 in	 the	 rail	 road	 switch	 heating	 system.	 A	 prediction	 mechanism	 for	
minimising	the	power	supplied	could	be	added	for	example	in	case	of	warmer	nights.	

The	 applicability	 of	 self-organizing	 systems	 for	 different	 fields	 of	 power	 system	
control	is	discussed	in	[45].	In	our	case	we	consider	a	central	unit	which	manages	the	
different	heaters.	The	demand	of	energy	is	adjusted	according	to	the	maximum	energy	
that	can	be	delivered	by	the	central	unit.	In	case	of	failure	of	a	heater,	the	energy	is	
automatically	shared	among	the	remaining	active	heaters.	We	show	that	by	managing	
the	 temperature	 thresholds	 it	 is	 possible	 to	 improve	 reliability	 even	 in	 case	of	 low	
energy	demand.	The	survivability	of	a	smart	house	is	analysed	in	[27].	Hybrid	Petri	Nets	
[23]	 are	used	 for	modelling	 this	 scenario.	 The	authors	 consider	 a	 randomly	 chosen	
probability	of	failure	and	fixed	thresholds,	while	in	our	case	the	probability	of	failure	
is	derived	from	the	model	and	we	instantiate	the	thresholds	to	 improve	the	energy	
consumption	 and	 reliability.	 The	 trade-off	 between	 energy	 saving	 and	 reliability	 is	
studied	in	[55],	by	managing	frequencies	and	voltage	of	the	delivered	energy.	In	our	
approach	 different	 policies	 of	 energy	 consumption	 are	 based	 on	 thresholds	
temperatures,	 and	 we	 do	 not	 deal	 with	 frequencies	 and	 voltage	 of	 the	 delivered	
energy	 and	 assume	 a	 fixed	 amount	 of	 power.	 Services	 negotiation	 of	 energy	 and	
reliability	 requirements	 is	 the	 selected	 case	 study	 in	 [53].	 The	 entities	 and	 their	
protocol	of	communication	have	been	modelled	with	Remes	Hdcl	language	[50]	and	
rendered	as	 timed	automata	 [3],	 through	which	 the	absence	of	deadlock	has	been	
certified	with	Uppaal.	Their	reliability	and	energy	requirements	are	given	parameters	
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that	are	negotiated	between	the	parties;	instead	in	our	approach	we	estimate	those	
values	based	on	policies	of	energy	consumption.	

9	 Conclusion	

We	have	addressed	cross-validation	of	reliability	and	energy	consumption	of	a	critical	
cyber-physical	 system	 belonging	 to	 the	 railway	 domain	 (a	 rail	 road	 switch	 heating	
system),	by	comparing	the	approach	based	on	Stochastic	Activity	Network	and	Mӧbius		
and	the	approach	based	on	Stochastic	Hybrid	Automata	and	Uppaal	SMC.	

We	 address	 some	 lines	 of	 future	 research	 concerning	 energy	 saving	 CPS.	 The	
behaviour	of	CPS	 is	 in	 general	unpredictable,	because	of	physic	 and	environmental	
aspects	 that	 are	 involved	 in	 their	 design.	 A	 future	 line	 of	 research	 concerns	 the	
introduction	of	control	techniques	for	restricting	their	possible	behaviours	in	order	to	
predict	and	avoid	possible	failures,	improve	and	verify	their	dependability	[4].	It	is	also	
interesting	 to	study	 the	 formal	 specification	of	 the	energy	 requirements	 that	a	CPS	
must	 satisfy,	 verifying	 that	 the	proposed	model	 satisfies	 them	or	proving	 that	 such	
requirements	are	not	satisfiable	[8].	
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