
GranoScan: an AI-powered
mobile app for in-field
identification of biotic
threats of wheat
Riccardo Dainelli 1*, Antonio Bruno2, Massimo Martinelli2*,
Davide Moroni2, Leandro Rocchi1, Silvia Morelli3, Emilio Ferrari3,
Marco Silvestri3, Simone Agostinelli 3, Paolo La Cava3

and Piero Toscano1

1Institute of BioEconomy (IBE), National Research Council (CNR), Firenze, Italy, 2Institute of
Information Science and Technologies (ISTI), National Research Council (CNR), Pisa, Italy, 3Barilla G. e
R. Fratelli S.p.A., Parma, Italy

Capitalizing on the widespread adoption of smartphones among farmers and the

application of artificial intelligence in computer vision, a variety of mobile

applications have recently emerged in the agricultural domain. This paper

introduces GranoScan, a freely available mobile app accessible on major online

platforms, specifically designed for the real-time detection and identification of

over 80 threats affecting wheat in the Mediterranean region. Developed through

a co-design methodology involving direct collaboration with Italian farmers, this

participatory approach resulted in an app featuring: (i) a graphical interface

optimized for diverse in-field lighting conditions, (ii) a user-friendly interface

allowing swift selection from a predefinedmenu, (iii) operability even in low or no

connectivity, (iv) a straightforward operational guide, and (v) the ability to specify

an area of interest in the photo for targeted threat identification. Underpinning

GranoScan is a deep learning architecture named efficient minimal adaptive

ensembling that was used to obtain accurate and robust artificial intelligence

models. The method is based on an ensembling strategy that uses as core

models two instances of the EfficientNet-b0 architecture, selected through the

weighted F1-score. In this phase a very good precision is reached with peaks of

100% for pests, as well as in leaf damage and root disease tasks, and in some

classes of spike and stem disease tasks. For weeds in the post-germination phase,

the precision values range between 80% and 100%, while 100% is reached in all

the classes for pre-flowering weeds, except one. Regarding recognition

accuracy towards end-users in-field photos, GranoScan achieved good

performances, with a mean accuracy of 77% and 95% for leaf diseases and for

spike, stem and root diseases, respectively. Pests gained an accuracy of up to

94%, while for weeds the app shows a great ability (100% accuracy) in

recognizing whether the target weed is a dicot or monocot and 60% accuracy

for distinguishing species in both the post-germination and pre-flowering stage.

Our precision and accuracy results conform to or outperform those of other

studies deploying artificial intelligence models on mobile devices, confirming

that GranoScan is a valuable tool also in challenging outdoor conditions.
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1 Introduction

From cell to farm level, scientific advances have always led to a

better understanding of how various components of the agricultural

system interact (Jung et al., 2021). This is particularly true in the

current challenging period, including the global pandemic, supply

chain breakdowns, drought-driven by climate change, and war,

where precision agriculture needs to face increasing pressure for

resource availability in combination with the projected increase in

food demand by more than 70% by 2050 (World Bank Group,

2023). For agricultural optimization, emerging technologies, such as

big data analysis, the internet of things (IoT), geospatial

technologies and artificial intelligence (AI), are promising tools

aimed at enhancing crop production and reducing inputs (Sishodia

et al., 2020). AI proposes important contributions to knowledge

pattern classification as well as model identification that might solve

issues in the agricultural domain (Lezoche et al., 2020). Computer

vision has been utilized to provide accurate, site-specific

information about crops and their environments (Lu and

Young, 2020).

The history of computer vision applied to the agri-food chain

started in the mid-1980s, mainly with seed and fruit sorting (Berlage

et al., 1984; Rehkugler and Throop, 1986) and plant identification

(Guyer et al., 1986). However, the explosion of agricultural

computer vision took place at the beginning of the 2010s, with

more than 2000 research papers published per year (Web of

Science, 2023), thanks to reduced equipment costs and increased

computational power (Patrıćio and Rieder, 2018). In the 2010s,

highly cited papers reported several applications of computer vision

for in-field plant identification (Grinblat et al., 2016; Hamuda et al.,

2016; Jin et al., 2017; Tenhunen et al., 2019), plant phenotyping

(Fahlgren et al., 2015; Ubbens and Stavness, 2017; Virlet et al., 2017;

Ghosal et al., 2018), fruit counting and quantity and quality

evaluation (Cubero et al., 2011; Rahnemoonfar and Sheppard,

2017; Ponce et al., 2019; Yu et al., 2019). Since 2020, the previous

agricultural themes have been developed through many herbaceous

and tree crops considering robotics (Fu et al., 2020; Wu et al., 2020),

advanced deep learning (DL) techniques (da Costa et al., 2020;

Santos et al., 2020; Miragaia et al., 2021), and various real

environments (Fonteijn et al., 2021; Borraz-Martıńez et al., 2022).

Other new aspects are addressed such as crop type mapping

(Nowakowski et al., 2021), soil organic matter prediction (Taneja

et al., 2021), nutrient content/demand determination (Iatrou et al.,

2021; Ahsan et al., 2022) or abiotic stress monitoring (Azimi et al.,

2021; Zermas et al., 2021; Kumar et al., 2022). In addition,

researchers paid particular attention to the pivotal and

challenging issue of in-field localization and recognition of pests

(Høye et al., 2021; Wang et al., 2021), diseases (Su et al., 2020;

Nagaraju et al., 2022) and weeds (de Castro et al., 2018; Gallo et al.,

2023). Regarding wheat crop, the most recent scientific works deal

with spike segmentation and counting (David et al., 2020; Ma et al.,

2020; Misra et al., 2022), leaf (Bao et al., 2021) and spike (Su et al.,

2020) disease identification and post-harvest grain quality

monitoring (AgaAzizi et al., 2021; He et al., 2021; Zhao et al., 2022).

Applications of the computer vision system in agriculture are

promising in unraveling different problems (Patrıćio and Rieder, 2018).

They raise productivity, by automating laborious tasks in a non-

destructive way, improve quality and ultimately increase the

profitability of farmers and other stakeholders (Meshram et al.,

2021). Nevertheless, open issues still remain to be solved.

Considering that computer vision systems leverage AI and especially

machine learning (ML), the availability of high-quality data for training

these architectures plays a crucial role. In this sense, the preparation of

agricultural image datasets is strenuous because of the efforts and costs

required for image acquisition, categorization and annotation. Most of

the currently published datasets have several limitations, such as the

small number of samples and image collection in a non-field

environment, without addressing the complexity of open fields

(Wang et al., 2021). In addition, although sharing saves significant

resources and enables benchmarking of image analysis and machine

learning algorithms (Lobet, 2017), the datasets publicly available are

few (Orka et al., 2023). As a case study, Lu and Young (Lu and Young,

2020) in their survey retrieved 5870 search records, but only 34 datasets

complied with the inclusion criteria of public availability (no need for a

request to the authors) and image collection in field or quasi-field

conditions. Besides, despite there being many general and open-source

software libraries and toolkits, such as OpenCV (OpenCV, 2023),

TensorFlow (TensorFlow, 2023), PyTorch (PyTorch, 2023), scikit-learn

(Scikit-learn, 2023), open-source and end-to-end platforms that

develop computer vision systems for the agricultural domain are not

so numerous. In brief, we report three examples: AirSurf, an automated

and open-source analytic platform tomeasure yield-related phenotypes

from ultra-large aerial imagery (Bauer et al., 2019); CoFly, a modular

platform incorporating custom-developed AI and information and

communication technologies (ICT) for unmanned aerial vehicle

(UAV) applications in precision agriculture (Raptis et al., 2023); and

Fiware, a general framework of open-source platform components for

developing and integrating also smart farming solutions (Fiware, 2023).

Mobile devices and especially smartphones are an extremely

popular source of communication for farmers (Raj et al., 2021). In

the last decade, a variety of applications (mobile apps) have been

developed according to farmers’ needs (Mendes et al., 2020). Their

added value consists of locating all the different information in one

place that farmers can directly and intuitively access (Patel and Patel,

2016). The photographic record through the embedded smartphone

camera and the interpretation or processing of images is the focus of

most of the currently existing applications (Mendes et al., 2020). In

particular, agricultural apps deploy computer vision systems to support

decision-making at the crop system level, for protection and diagnosis,

nutrition and irrigation, canopy management and harvest.

Analyzing technical gaps associated with the development of

accurate, reliable and easy-to-use mobile apps for crop diagnosis,

the availability of high-quality data for training deep learning

architectures remains an actual bottleneck. This is mainly due

both to the lack of in-field data and the efforts (time and labor)

required to acquire and pre-process images, i.e. reshaping, resizing,

categorization, annotation. In addition, due to legal restrictions,

data transfer speeds and network issues, the app’s functioning

sometimes may be slowed down (Kirk et al., 2011). Regarding

issues in using the apps, poor lighting when reading information on

small screens, especially in bright field conditions and apps

providing too many recommendations with a lack of site-specific
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information were reported (Thar et al., 2021). Free mobile apps

available in digital stores are poorly documented, as the vast

majority of apps do not have a supporting peer-reviewed

publication. The lack of a solid scientific basis could undermine

the reliability of the app, mainly in terms of performance. Other

issues in agricultural mobile app development concern social gaps,

mostly represented by trust, comfort and affordances in adopting

this technology by end users (farmers). The development of a digital

tool requires early and ongoing interactions with targeted users to

clarify app goals and features, ensure the reliability of scientific

input and optimize farmer experience (Inwood and Dale, 2019).

Also, training would be beneficial to effectively understand and

properly use this type of app. As stated by Thar et al. (Thar et al.,

2021), farmers are optimistic about agricultural mobile apps with

over 70% of the respondents in their survey willing to use them. The

gap arises between the positive attitude toward agricultural mobile

apps and the negative usage level of most farmers: this is the real

challenge to be tackled.

Regarding crop abiotic and biotic stress recognition and

diagnosis, many mobile tools have been implemented so far. They

are dedicated both to a set of crops - Leaf Analysis (Petrellis, 2019);

E-agree (Reddy et al., 2015); the smart system proposed by Chen

et al. (Chen et al., 2020) - and a specific crop. For example, e-RICE

categorizes the symptoms to make an accurate diagnosis of

common rice diseases and problems (Morco et al., 2017); the

TobaccoApp detects any damage on tobacco leaf caused by fungi

(Valdez-Morones et al., 2019); AuToDiDAC detects, separates and

assesses the diseases in cacao black pod rot (Tan et al., 2018).

Nevertheless, free apps available in online stores and supported by a

research paper are quite rare. Among those, it is worth mentioning:

ApeX−Vigne, which monitors vine water status using

crowdsourcing data (Pichon et al., 2021); Plantix, which detects,

through deep learning algorithms, diseases, pests, and nutritional

deficiencies in 30 crop types (Tibbetts, 2018); BioLeaf, which

measures in situ foliar damage caused by insects (MaChado et al.,

2016); PlantifyAI, for diagnosing 26 diseases across 14 crop species

by offering also control methods (Shrimali, 2021); and PlantVillage

Nuru, which leverages a crowdsensing platform for plant disease

diagnosis in developing countries (Coletta et al., 2022). Within this

group, no mobile applications are specifically dedicated to

wheat crop.

Within this framework, the current paper presents GranoScan, a

free mobile app dedicated to field users. The most common diseases,

pests and weeds affecting wheat both in pre and post-tillering were

selected. An automatic system based on open AI architectures and fed

with images from various sources was then developed to localize and

recognize the biotic agents. After cloud processing, the results are

instantly visualized and categorized on the smartphone screen,

allowing farmers and technicians to manage wheat rightly and

timely. In addition, the mobile app provides a disease risk

assessment tool and an alert system for the user community. The

design and implementation of GranoScan aim to ensure a foolproof

detection system and, at the same time, a user-friendly experience.

The main contributions of the current study are highlighted

hereafter:

• develop a deep learning architecture for recognizing threats

affecting wheat, which leverages images directly acquired in

the field with the smartphone camera;

• release a simple-to-use and free smart tool dedicated to

farmers and field technicians, implemented through a co-

design process together with these stakeholders;

• create a user community capable of promoting good

agricultural practices through the use of the GranoScan app.

The paper is structured as follows: Section 2 showcases the app

co-design workflow, the selection of threats and the underpinning

deep learning architecture. Section 3 and Section 4 describe and

discuss, respectively, the results of the co-design process, the app

graphic features and the app performances in recognizing wheat

abiotic and biotic stresses, also towards users’ real use. Finally,

Section 5 summarizes the usefulness of GranoScan, underlining

farmer engagement, and gives previews of the app’s future

developments.

2 Materials and methods

2.1 Mobile application co-design (workflow
and app design)

Involving potential users in the design of a digital solution is a

necessity (Kenny and Regan, 2021). Co-designing activities with

farmers for the implementation of a mobile app in agriculture can

help ensure that the app meets the needs of its intended users and is

effective in providing the expected solutions. Despite restrictions

due to the COVID-19 pandemic preventing live meetings, we were

able to identify over 40 farmers from different Italian regions who

were interested in our project and willing to participate in the

design process. Once the group of interested farmers had been

identified, we planned monthly online meetings to discuss the app’s

purpose and functionality. During these meetings, farmers provided

feedback on the features they would like to see in the app and how

they would like to use it. This feedback was used to create the first

prototype of the app, which was tested and refined through ongoing

discussions and feedback from the farmers. This group of farmers

was further involved in the app’s prototype promotion, which

ensured that a group of over 100 beta testers consisted of farmers.

The participatory approach allowed farmers to contribute their

knowledge and skills to ensure that the app meets their needs and is

user-friendly. Several topics and needs emerged from the

discussions: the graphics of the app in terms of colors, icons, and

text size to ensure simple use in the field with different light

conditions; the request for an easy user-application iteration with

a quick selection from a pre-set menu; the possibility of using it even

in conditions of poor connectivity or total absence of connection;

the ability to handle unknown cases; a quick and simple guide to

operating correctly; the option to indicate an area of interest on the

photo for which to request recognition; a dedicated section where

the results can be consulted at any time; to be informed of any plant

diseases found in fields close to their own. Additionally, the 40
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farmers, together with technicians, researchers and project partners,

were involved in the selection of diseases, pests and weeds.

2.2 Disease, pest and weed selection and
image retrieval

As for the app functions and graphics, the stakeholders were

requested to contribute to the list of the main biotic agents affecting

wheat in the Mediterranean environment. Starting from a scientific

literature survey, an intense consultation activity involving farmers,

technicians and researchers was carried out, allowing the selection

of the target diseases, pests and weeds.

Diseases are represented by those caused by a single fungus or a

species complex (Supplementary Table S1). The detected diseases affect

all the organs of wheat (root, leaf, stem, spike). Regarding pests

(Supplementary Table S2), the focus is mainly on insects but slugs

and mites are also included. Insects are recognized in different life cycle

stages (egg, larvae, adult). Weeds encompass both monocot and dicot

and a species belonging to Tracheophytes, i.e. the common horsetail

(Equisetum arvense) (Supplementary Table S3). Weeds are recognized

both in the seedling stage (“Biologische Bundesanstalt,

Bundessortenamt und CHemische Industrie” (BBCH) scale, stages

10–19) (Meier, 2018) and from nine true leaves onwards. For seven

of the most widespread and hard-to-control species, a phenotyping

activity was conducted to create an in-house imagery dataset. The

selection was made by considering (i) bottom-up information and

specific requests by farmers and technicians, (ii) weeds susceptibility

<50% to commercial formulations for chemical control as reported at

least twice by field technicians, and (iii) hard to control species

considering other methods (agronomical, mechanical, etc.). This way,

the training of the developed AI architecture can be boosted with low-

cost and high-resolution images (see section 2.2.1). In addition to those

biotic agents, frost damage on spikes and cereal leaf beetle (Oulema

melanopus) damage on leaves are also encompassed.

Raw images for training the implemented AI architecture were

retrieved from different sources, that is stakeholders of the wheat

supply chain and research activities. In the first case, farmers and

technicians engaged during co-design anonymously shared raw

images taken in the field through a dedicated web application

(even during the COVID-19 pandemic). In the second case,

researchers carried out field scouting and phenotyping activity.

2.2.1 Weed phenotyping
Phenotyping was conducted both on monocots and dicots

(Supplementary Table S3), selected through the overall list of

weeds recognized by GranoScan. Considering the agronomic

relevance of these seven weeds, the phenotyping activity was

necessary to enhance the number of images, completing those

retrieved from the in-field acquisition. Weed seeds were sown in

April and November 2021 in 36 black plastic pots for each species

and placed in a growth chamber with optimal microclimatic and

agronomic conditions. For image shooting into the open air, a

Canon EOS 700D hand-held camera was used. The acquisition was

facilitated by using a white panel as a background and performed

with homogeneous light conditions (full sunlight/full shade),

avoiding mixed situations that could hinder the automatic

recognition system. As also suggested by other studies (Wang

et al., 2021), photo capture timing, target distances and light

conditions did not have a fixed pattern but were deliberately

programmed to vary in such a way as to mimic field conditions

that a user may experience. The images were acquired until the pre-

flowering stage but focus was placed especially on the post-

emergence targets (BBCH 10–19) because early identification of

weeds allows the control to be more effective. The final phenotyping

dataset includes 10810 images and is publicly shared in an open-

access repository (Dainelli et al., 2023).

2.3 Image dataset processing

The dataset has been divided into nine parts, as in Table 1. Each

part contains images suited for a specific identification and

classification task. For instance, the “Leaf disease” task refers to

identifying in the image possible areas interested by disease, e.g.

parts of the leaves on which the signs of Septoria are visible. The

total number of images is 67302. This number is given by the

number of original images retrieved from different sources (31335,

number of real images, Table 1) supplemented by additional images

obtained by a data augmentation procedure for leaf disease, leaf

damage, spike disease, spike damage, stem disease and root disease

tasks (Table 1). In this procedure, random rotations, and changes in

tone and intensity were applied to obtain variants of the original

images, increasing the size of the dataset, excluding pests and weeds

tasks, by approximately a factor of 6. Indeed, note that the number

is not divisible by 6, since augmented images were used only in the

training and validation phases and not in the testing one. Moreover,

the augmented images were re-checked manually and visually

inspected to remove those in which the transformation had led to

underexposed and overexposed images or produced a crop

excluding the area of interest.

The datasets were then annotated and conditioned in a task-

specific fashion. In particular, in tasks related to pests, weeds and

root diseases, for which a deep learning model based on image

classification is used, all the images have been cropped to produce

square images and then resized to 512x512 pixels. Images were then

divided into subfolders corresponding to the classes reported

in Table 1.

In all the other tasks, where an object detection model is used,

the images were first annotated by manually drawing a set of

rectangular areas in which particular diseases or damages are

visible (Figure 1). Each rectangle is labeled with the classes

reported in Table 1 for a total of 58101 annotations before data

augmentation. To this end, the annotation tool LabelImg (Tzutalin,

2015) was used. Afterward, all the images were resized to 256x256

pixels for leaf, spike and stem diseases.
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2.4 Deep learning architecture

To obtain a classification system for the images we collected, we

opted to use an original method that we studied and implemented.

More in detail, to get accurate and robust AI models, we used a deep

learning architecture named efficient minimal adaptive ensembling

that we already tested (Bruno et al., 2022) by setting the new state-

of-the-art with an accuracy of 100% on the Plantvillage public

dataset. The method is based on an ensembling strategy that uses as

core models two instances of the EfficientNet-b0 architecture. More

precisely, the EfficientNet family (Tan and Le, 2019) consists of 8

instances, numbered from EfficientNet-b0 to EfficientNet-b7, that

have an increasing complexity and number of parameters. All the

members of the EfficientNet family have been designed to have

efficiency as a target and have been obtained by using a structured

method to generate a compound scaling of the network’s depth,

width and resolution. According to previous works and

experimental evidence (Bruno et al., 2023), the b0 variant of the

EfficientNet family fits better with the need for the GranoScan app

to provide results with high accuracy and low latency. In addition,

instead of using one single instance of trained EfficientNet-b0, we

have adopted the ensembling technique, which aims to transform a

number of weak models (in the present case, each one represented

by a single EfficinetNet-b0) into a strong classifier named

“ensemble” model. Ensembling is performed by an innovative

strategy of performing bagging at the deep feature level. Namely,

only the convolutional layers of each trained weak model are kept,

while the final decisional layers are neglected; in this way, each weak

model is turned into an extractor of deep features. The deep features

of each weak model are then concatenated and fed to a trainable

final decision layer (Bruno et al., 2023), to which we refer for more

details on the ensembling construction).

The proposed method encompasses eight main design choices:

(i) first, data stratification was introduced to cope with unbalanced

data and allow improved performances; (ii) transfer learning was

used for providing a faster convergence, specifically instances of

EfficientNet-b0 networks pre-trained on the ImageNet task were

used as initial models; (iii) cross-entropy loss was employed, given

the multiclass nature of all the addressed problems and class-

imbalance issues; such loss is a natural choice since it

exponentially penalizes differences between predicted and true

values, expressed as the probability of the class to which they

belong; (iv) Adabelief optimizer was selected for faster

convergence and better generalization, also (v) making use of

regularization to improve robustness to noises; (vi) the weighted

F1-score, which takes into account misclassification and

unbalanced data, was employed; (vii) ensembling was performed

using the minimum number of weak classifiers (that is, two) in a

such a way as to improve overall classification performances (as

demonstrated experimentally) while limiting complexity; (viii) the

TABLE 1 The GranoScan dataset.

Task Classes

Number
of
real

images

Number of
images
after

augmentation

Leaf disease 6: healthy, Blumeria graminis f. sp. tritici, Puccinia recondita f. sp. tritici, Puccinia striiformis f. sp. tritici, Puccinia
graminis f. sp. tritici, Septoria tritici

5345 12259

Leaf damage 2: healthy, damaged by Oulema melanopus 910 11027

Spike
disease

5: healthy, Fusarium graminearum, Blumeria graminis f. sp. tritici, Puccinia graminis f. sp. tritici,
Stagonospora nodorum

831 9009

Spike
damage

2: healthy, damaged by frost 326 4651

Stem disease 3: healthy, Blumeria graminis f. sp. tritici, Puccinia graminis f.sp.tritici, 468 6475

Root disease 2: healthy, root rot (Gaeumannomyces graminis, Fusarium spp., Bipolaris sorokiniana) 32 458

Pests 36: Oulema melanopus (larvae, adult), Haplodiplosis marginata (larvae, adult), Mayetiola destructor (larvae,
adult), Contarina tritici (larvae, adult), Sitodiplosis mosellana (larvae, adult), Eurygaster maura (egg, adult), Aelia
rostrata (egg, adult), Sitobion avenae (larvae, adult), Rhopalosiphum padi (larvae, adult), Agriotes (larvae, adult),
Chlorops pumilionis (larvae, adult), Oscinella frit (larvae, adult), Delia coarctata (larvae, adult), Dermaptera
(adult), Myriapoda (adult), Carabidae-Chrysomelidae-Curculionidae (adult), Noctua (adult), Arachnida (adult),
Arion-Deroceras-Limax (adult), Coccinella (egg, larvae, pupa and adult)

3622 3622

Post-
germination
weeds

36: Alopecurus myosuroides, Anthemis arvensis, Apera spica-venti, Avena sterilis, Bifora radians, Brassica rapa
subs. oleifera, Capsella bursa-pastoris, Centaurea cyanus, Cerastium holosteoides, Cirsium arvense, Convolvulus
arvensis, Convolvulus sepium, Equisetum arvense, Fallopia convolvulus, Fumaria officinalis, Galeopsis tetrahit,
Galium aparine, Geranium molle, Lamium purpureum, Lolium spp., Matricaria chamomilla, Oxalis spp., Papaver
rhoeas, Phalaris spp., Poa annua, Poa trivialis, Polygonum aviculare, Polygonum persicaria, Ranunculus arvensis,
Raphanus raphanistrum, Sinapis arvensis, Stellaria media, Veronica hederifolia, Veronica persica, Vicia spp.,
Viola spp.

15010 15010

Pre-
flowering
weeds

36: same species as post-germination weeds 4791 4791
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resulting ensemble was fine-tuned only, reducing the ensemble

training complexity.

The training and validation process for the ensemble model

involved dividing each dataset into training, testing, and validation

sets with an 80–10-10 ratio. Specifically, we began with end-to-end

training of multiple models, using EfficientNet-b0 as the base

architecture and leveraging transfer learning. Each model was

produced from a training run with various combinations of

hyperparameters, such as seed, regularization, interpolation, and

learning rate. From the models generated in this way, we selected

the two with the highest F1 scores across the test, validation, and

training sets to act as the weak models for the ensemble. The

original decision layers of these weak models were removed, and a

new decision layer was added, using the concatenated outputs of the

two weak models as input. This new decision layer was trained and

validated on the same training, validation, and test sets while

keeping the convolutional layers from the original weak models

frozen. Lastly, a fine-tuning process was applied to the entire

ensemble model to achieve optimal results.

The ensembling is performed using a linear combination layer

that takes as input the concatenation of the features processed by

the weak models and returns the linear mapping into the output

space. During the fine-tuning, the parameters of the weak models

are frozen and the linear layer only is trained. In this way, the

resulting ensemble is efficient because the computational costs are

very close to the cost of a single model (because only a small fraction

of the parameters are updated and, since the weak models are

independent, it is possible to parallelize their training) and adaptive

(because the layer performing the ensemble is trained on the real

data and it is not a mere aggregation function, as commonly used).

For the sake of the reproducibility of the results, further

considerations about the architecture and its training are

collected. The kernel sizes of the weak models are the standard

blocks in the EfficientNet-b0 as reported in the original paper (Tan

and Le, 2019). As a rule of thumb, Stride 2 was used for depth

convolutional blocks, while Stride 1 was selected for all the other

ones. As an activation function borrowed from the EfficientNet

family, SiLU (i.e. Sigmoid Linear Unit) was preferred over ReLU

(i.e. Rectified Linear Unit). This activation function is a particular

case obtained by setting b = 1 in the Swish activation function

(Hendrycks and Gimpel, 2016). SiLU inherits two good properties

from its more general variant: it is smooth and less sensitive to the

vanishing gradients problem with respect to ReLU. In the training

procedures, the maximum number of epochs was set to 100. An

early stopping mechanism was used and assigned to 10 epochs

without improvements (i.e. in technical jargon, the patience was set

to 10). Generally, after 18–20 epochs, the models reached their best

performance. The learning rate was set to 0.0005 and was not

changed during training.

2.5 App security and interaction with the
deep learning model

Security-related issues are of pivotal importance to guarantee

data protection and user privacy. In GranoScan, the authorization

filter has been implemented following OAuth2.0-like specifications

to guarantee a high-level security standard. All data are transmitted

and received in an encrypted way and the resources accessibility is

managed by a temporary access token generated by the system and

B C

D E F

A

FIGURE 1

Examples of images manually annotated for object detection tasks: leaf disease – (A) septoria; (B) powdery mildew; (C) yellow rust; leaf damage –

(D) damage from cereal leaf beetle; spike disease - (E) Fusarium head blight; and stem disease – (F) black rust.
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it can be regenerated through a refresh token. To minimize the

throughput of requests for tokens management, refresh and access

tokens are stored in a specific private area of the mobile app until

the time expires.

Regarding the development and deployment of the app,

GranoScan follows AgroSat (AgroSat, 2023) APIs specifications

and implements Flutter technologies to ease GranoScan porting on

Android and iOS devices. The GranoScan app is released and

maintained on Google and Apple app stores.

The deep learning model runs on a dedicated server that is not

reachable by the mobile app directly. Interactions between the mobile

app and deep learning server are managed by AgroSat APIs that

receive data and requests by the mobile app, apply pre-processing

activities, send data to the deep learning server, wait for results, store

and send them back to GranoScan. Figure 2 shows the internal

architecture of the proposed solution, highlighting data flows among

the GranoScan mobile app, AgroSat server and AI server.

3 Results

3.1 GranoScan co-design

The co-development process began in December 2019, with an

initial exploration of the information needs and challenges faced by

farmers in identifying insects, weeds and diseases, as well as

evaluating farmers’ readiness to use phone-based digital tools.

Among 40 participants, 80% identified the experience constraint

(lack of references/knowledge) as the major constraint in the wheat

threats recognition and reporting as clear examples of what usually

happens in the recognition of weeds in post-germination and the

experience that took place in previous years when the spikelets were

damaged by late frost. The remaining 20% identified the major

constraint in the timeliness of recognition and then receiving

technical support. Among the 40 participants, a mismatch

between the expected skills in using smartphone-based tools and

the real ones clearly emerged, even just in the use of the camera and

its settings. That said, the application was designed considering the

following requests:

- to have a simple layout in terms of color, text and icons with

the adoption of colors that can make use of the app simple

in the disparate light conditions that can be encountered in

the field (Figures 3–6) to provide, step-by-step, a brief guide

to how the app works, which can be viewed or skipped;

- to provide a simplified menu to select the target (disease,

weed, insect, damage, plant stage and plant organ) to

photograph and make available the possibility of choosing

the “I am not sure “ case where the user is not able to select

the target to photograph (Figure 3);

- to optimize the use of the camera automatically and make

camera parameter adjustment options available;

- after taking the photo, give the possibility to draw or not an

area of interest to pay attention to for recognition

(Figure 4A); otherwise, the central area of the image is

selected (Figure 4B);

- to provide a summary of what was selected, and the photo

taken before sending it for recognition (Figure 4C);

- to receive notification of the result as soon as it is available

(Figure 5A), as well as always have all the results available in

a dedicated tab (Figure 5B);

- to show the recognition results in decreasing order of

accuracy (with a minimum threshold of 40%) for the

FIGURE 2

GranoScan internal architecture and data flows.
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image classification models and up to a maximum of 3

results (top 3);

- to show all the recognition results in decreasing order of

accuracy (with a minimum threshold of 30%) for the image

object detection models;

- to turn recognition results on the photo on or off (Figure 5C);

- to have the possibility to delete images from the results tab.

Furthermore, the exact previous percentages also emerged in

indicating as fundamental: (i) the application must always be ready

and running while working in the field (80% of the farmers), (ii) be

informed in advance of the risk of disease to schedule field visit

(20% of the farmers). In this regard, the application was designed

with the possibility of working offline (without network coverage),

enabling all menus, taking a photo (max 5 offline) and leaving

everything in the buffer until the smartphone is hooked up to the

net again to send the photo and receive the model output. At the

same time, both to meet secondary needs and to create a

community always updated, the possibility of receiving an

anonymous notification relating to disease recognitions near one’s

field (within 5 km) has been implemented (Figures 6A, B).

3.2 Deep learning results

In this section, the results regarding the performances of the

deep learning architecture are reported. Figure 7 shows confusion

matrices for leaf disease, spike disease, stem disease, root disease,

spike damage and leaf damage, respectively (panels A-F). Overall, a

very good precision is reached in this phase, with peaks of 100% in

leaf damage and root disease tasks and in some classes of spike and

stem disease tasks. A precision of 99% is gained in the leaf disease

task in every class excluding Puccinia g. (95%) and Septoria (94%).

In the first case, the algorithm wrongly identifies as Puccinia g.

leaves affected by Puccinia r. and Septoria; in the latter, Blumeria g.,

Puccinia r. and Puccinia g. are confused with Septoria. The spike

disease task presents the most inhomogeneous results among the

object detection models. Indeed, alongside precision percentages

that nearly achieve (99% and 98% for Blumeria and Puccinia g.,

respectively) or reach the maximum (100% Stagonospora), there is a

small portion of diseased spikes (5%) misrecognized as healthy.

Fusarium head blight class has a weak performance, with a

precision of 40%. The algorithm misclassifies as Fusarium all the

other classes of the task: 20% of the analyzed regions of interest are

actually healthy spikes, 20% are Blumeria, 10% Puccinia and 10%

Stagonospora. For spike damages, a precision of 96% is reached in

recognizing the negative impact of frost on wheat spikes, while the

algorithm mistook mostly Puccinia g. for Blumeria g. (81%

precision) in the stem disease tasks.

As for disease and damage tasks, pests and weeds, for the latter

in both the post-germination and the pre-flowering stages, show

very high precision values of the models (Figures 8–10). In

particular, most of the classes in the pest task report a precision

of 100% and only three a slightly lower value (99%) (Figures 8A, B).

For weeds in the post-germination phase, the trend in the precision

B CA

FIGURE 3

User-side walkthrough menu for wheat threat selection. In the example, a weed in the pre-flowering stage is selected through the following steps;
(A) type of threat; (B) weed growth stage; and (C) summary of the selection choices before photo acquisition. Panel A: Seleziona stress = Select
threat; Malattie = Disease; Danni = Damage; Insetti = Pests; Infestante = Weeds; Non sono sicuro = I am not sure. Panel (B):Seleziona l’Età della
Pianta = Select plant stage; Post Germinazione = Post-germination; Pianta Sviluppata = Developed plant; Panel (C): Imposta i dati per il
riconoscimento = Set the data for recognition; Infestante = Weeds; Pianta Sviluppata = Developed plant; Scatta una foto = Take a picture. For all
panels: Foto = Photo; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk.
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B CA

FIGURE 5

GranoScan recognition results: (A) notification of successful threat recognition; (B) list of all results; (C) detailed results (species and probability) of
the target threat (in the example, weed in the pre-flowering stage). Panel (A): Foto Inviata = Phot Sent; Aggiungi Foto = Add Photo; Torna all’inzio =
Go back to the menu; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk. Panel (B): Risultati = Results; Elaborazione completata senza
problemi = Photo analyzed without any issues; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk. Panel (C): Risultati = Results; Foglia
larga = Dicot; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk.

B CA

FIGURE 4

Mobile app photo acquisition steps: (A) brief guide for acquiring photos through users’ smartphone; (B) possibility of drawing an area of interest; (C)
summary data – GPS coordinates, type of threat, plant organ – before sending the photo to the recognition system. Panel (A): Seleziona Area =
Select Area; Inserisci un’area di interesse opzionale = Select an optional area of interest; Trascina gli angoli per definire l’area di interesse = Drag the
corners to define the area of interest; Inizia = Start; Non mostrare più questo tutorial = Don’t show this tutorial again. Panel (B): Foto = Photo;
Elimina Hot Area = Delete Hot Area; Riepilogo Dati = Data summary; Invia Foto = Send Photo; Risultati = Results; SPAD = SPAD; Allerte = Alerts;
Rischio = Risk. Panel (C): Stress = Threat; Malattie = Disease; Organo Pianta = Plant organ; Invia Foto = Send Photo; Risultati = Results; SPAD =
SPAD; Allerte = Alerts; Rischio = Risk.
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values is similar to that observed for pests but there are two classes

not reaching the top value. Sinapis arvensis is misclassified as

Brassica rapa (96%). In addition, Raphanus raphanistrum is

wrongly recognized by the models as Lamium purpureum (80%)

(Figures 9A, B). Instead, a precision value of 100% in all the classes

for pre-flowering weeds is gained, except in one case (96%

precision) (Figures 10A, B).

3.3 GranoScan performances towards
users’ real use

This section reports the performance of the mobile app in

detecting and recognizing wheat threats directly in the field. Images

were acquired by GranoScan users in the 2022 growing season

(photos fromMarch to July). In Figure 11A, classification results for

leaf diseases are shown. Blumeria, Puccinia s. and Septoria are

perfectly recognized by the system (100% precision and recall). This

is due both to the high number of images used in the deep learning

architecture development phase for these diseases and the good

amount of target objects provided by the users (equal to 114).

Regarding Puccinia r., on one side the system shows a precision of

40%, inasmuch as it recognizes Puccinia g. and other threats as

Puccinia r.; on the other, in some cases, Puccinia r. is not detected

and is confused with other threats affecting wheat (recall 44.4%).

Among leaf diseases, Puccinia g. has the worst performance: the

system is not able to recognize it when actually present on the wheat

leaf. Indeed, it is misclassified as Puccinia r. and other threats; in

addition, other threats are wrongly classified as Puccinia g.

Considering the lower occurrence of this disease with respect to

other wheat rusts and the unfavorable climatic conditions for the

fungus growth in spring 2022 in the Italian area, a limited number

of users’ photos (9) were collected with initial disease symptoms.

This could explain such a result in recognizing Puccinia g. In some

cases, the AI tool classifies small, flat and non-dusty dark spots

caused by other fungi or physiological deficiencies (e.g. micro-

nutrients), which are not encompassed in the GranoScan wheat

threat list, as brown (Puccinia r.) or black rust (Puccinia g.). Overall,

for the leaf disease classification task, the macro-average precision is

0.574 while the macro-average recall is 0.567; the mean accuracy of

the system results of about 77%.

Spike, stem and root diseases have been grouped and

classification results are reported in Figure 11B. For these three

tasks, the images acquired by GranoScan thanks to the users’ field

activity make it possible to obtain a fairly limited number of

recognition responses (44). Nevertheless, the overall accuracy of

BA

FIGURE 6

GranoScan alert tabs: (A) frequency setting of incoming notifications; (B) anonymous notifications of disease recognition in nearby fields (< 5 km),
reporting date and time, type of threat and distance. Panel (A): Allerte = Alerts; Imposta la modalità di ricezione delle notifiche = Set notification
mode; Modalità Ricezione Notifiche = Notification receiving mode; Personalizzate = Customized; Numero notifiche = Notification number; Salva =
Save; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk. Panel (B): Allerte = Alerts; Impostazioni = Settings; Ruggine gialla = Puccinia
s.; Oidio = Blumeria; Septoria = Septoria; Risultati = Results; Foglia larga = Dicot; Risultati = Results; SPAD = SPAD; Allerte = Alerts; Rischio = Risk.
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the AI tool is high, yielding a value of 95%. Root rot, Fusarium head

blight and stem powdery mildew are correctly classified by the

system. Only Puccinia g. on the stem doesn’t reach the top accuracy

but still reports a good precision value (75%). In particular, in two

cases, other threats affecting wheat are misclassified as stem black

rust. For spike-stem-root classification, the macro-average precision

is 0.8 while the macro-average recall is 0.75.

Regarding the pest classification task, the app returns the top 3

results (see section 3.1). The top 1 classification result has an overall

accuracy of 80% while the top 3 reaches a value of 94%, i.e. the first

response of the system is always correct in 80% of cases and the

right recognition result is provided by the top 3 in 94% of cases,

respectively (data not shown).

For weeds, GranoScan shows a great ability (100% accuracy) in

recognizing whether the target weed is a dicot or monocot in both

the post-germination and pre-flowering stages while it gains an

accuracy of 60% for distinguishing species. The latter performance

is negatively affected by some users’ photos capturing weeds which

are not encompassed in the GranoScan wheat threat list and

therefore not classified by the proposed models (data not shown).

4 Discussion

GranoScan (GranoScan, 2023) is the first free mobile app

dedicated to the in-field detection and recognition of over 80

threats (diseases, pests, weeds, biotic/abiotic damages) affecting

wheat. GranoScan, available in the main online stores, is aimed at

all users of the wheat supply chain to provide support in the

localization and recognition of the main threats directly in the

field. Potential users are represented by agronomists, consultants

and elevators, but the app is mainly addressed to farmers.

Embracing the idea that there is a need to involve the potential

users of the tool under design in the design processes (Barcellini

et al., 2022), we adopted a co-design approach involving a group of

farmers. Co-design is a process to rapidly develop technologies

better matched to user needs (McCampbell et al., 2022) and seeks to

build and maintain a shared conception of the design problem to

allow collaboration (Gardien et al., 2014). By involving

heterogeneous stakeholders in the collective exploration of

solutions to a common problem, we sought to overcome the

linear model reported by Berthet et al (Berthet et al., 2018).

B
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FIGURE 7

Confusion matrices of the deep learning architecture results for object detection models: (A) leaf disease, (B) spike disease, (C) stem disease, (D)
root disease, (E) spike damage and (F) leaf damage.
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consisting of scientific and technical knowledge produced in

research organizations, further development of technologies

carried out through public and private technical institutes that

disseminate innovation to farmers, being the end-users. As

recommended by Eastwood et al. (Eastwood et al., 2022), we

engaged with farmers early in the problem definition stage and

the development of the app’s initial prototype. Then, we evolved the

co-design process into a second phase involving ICT experts to

further develop prototype concepts; finally, we re-engaged farmers

in testing. This workflow allows to tackle some of the main barriers

constraining ICT adoption by farmers, such as inadequate

computer skills, unawareness of the potential of ICT solutions to

contribute to the farm business and access to broadband in rural

areas (Wims and Byrne, 2015).

In the first phase, we held monthly meetings to discuss the app’s

purpose and functionality and to gather feedback on the app’s

features and use. Farmers expressed ideas on what a profitable

mobile app would look like and mentioned design features such as

simplicity, user-friendliness, offline options, tutorial boxes and data

security measures (e.g. log-in procedure). Careful development of

the application interface in terms of visual aesthetics is important

(Mendes et al., 2020), as it is usually the first characteristic that a

user notices when downloading an application and in turn could

affect the functionality and usability of the app (Siddiqua et al.,

2022). We discussed with farmers app graphic features, such as

colors, icons and text size, also evaluating their appropriateness to

the different light conditions that can occur in the field. Also

buttons, icons and menus on the screen were designed to ensure

an easy user navigation between components and an intuitive

interaction between components, with a quick selection from a

pre-set menu. To ensure the usability of GranoScan also with poor

connectivity or no connection conditions affecting rural areas in

some cases, the app allows up to 5 photos to be taken, which are

automatically transmitted as soon as the network is available again.

Once the photo upload is complete, the implemented

synchronization system allows new shots both online and offline.

Farmers also expressed the need to be informed of any plant

diseases found in fields close to their own. For this purpose, an

alert system was developed exploiting the smartphone push

notifications that remind users of the app feature and improve

the app’s usage frequency. Finally, farmers were involved in the

early stages of GranoScan implementation starting from the

aesthetics and functionality to the technical content regarding

crop protection. In this sense, they represented a source of advice

and a term of comparison for selecting the most widespread and

threatening diseases, pests and weeds affecting wheat in the

Italian area.

In the second phase of the co-design process, after the first

prototype release, the farmers involved were asked to test the app

respecting their real working conditions (early prototype testing)

B

A

FIGURE 8

Confusion matrices of the deep learning architecture results for image classification models: (A, B) pests. The figure is split into two different panels
to increase readability.
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(Prost, 2021) and provide further feedback to adjust and refine the

design. When the final prototype was completed, the first group of

farmers was involved in the prototype promotion towards a bigger

group of farmers (peer-to-peer activity). The task was designed this

way since farmers represent a category of practitioners who prefer

peer-to-peer learning and are experiential learners (Sewell et al.,

2017). We followed and embraced this co-design approach because

it is crucial to design new technologies jointly with farmers in a

participatory manner rather than imposing them and expecting end

users to adopt and adapt (Kenny and Regan, 2021).

Regarding the performances of AI tool model development, the

results show a very positive trend with high levels of precision. The

proposed AI models are, therefore, certainly a key component and a

central contribution of the paper; yet, their innovative points rely

not only on the introduction of an innovative deep learning

approach capable of addressing plant science problems but

mainly on the effective training of such models and their

integration in an operative service thanks to the proposed mobile

app for in-field identification of wheat threats. It should be noted

that a few classification tasks could be improved, as for Blumeria g.

among the stem diseases. In this case, the dimmed light conditions

of images acquired in the lower part of the stem and the similarity of

symptoms (black spot) between Puccinia g. and Blumeria g. in the

later growth stages could represent the main reasons for this

misclassification. In addition, Fusarium head blight in the spike

disease task shows the lower precision of the dataset. This could be

mainly due to many dataset images with the co-occurrence of a high

number of spikes and varied coloring of spike and fungal bodies

shifting from wheat flowering, post-flowering till harvest stage. For

the weed classification task, only two species (Brassica rapa and

Lamium purpureum) don’t reach the top value of precision in the

post-emergence stage. The misclassification could be explained by

the similarity of the seedlings (in the case of Brassica rapa vs.

Sinapis arvensis both species belong to the Brassicaceae family), and

above all by the small dimensions (often < 2 cm) of the target

objects in the images, where plant details are hard to distinguish.

Regarding recognition accuracy towards end-users’ in-field

photos, GranoScan achieved very good performances, overall. Our

results conform to or outperform those of other studies deploying

AI models on mobile devices. It is worth noting that there is a lack

of scientific works dealing with this topic that validate their results

through an external image dataset, as is done in this study (see

section 3.3). So, the comparison of the results is somewhat hindered.

For leaf diseases, recognition performances are excellent (100%

accuracy for powdery mildew, Septoria and yellow rust), except for

brown rust (44.4% accuracy). Johannes et al. (Johannes et al., 2017).

reported accuracy values for septoria and rusts (calculated for

yellow and brown rust together) of 79% and 81%, respectively

while Picon et al. (Picon et al., 2019). (which extended the previous

work) improved model performance by gaining an accuracy of 96%
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FIGURE 9

Confusion matrices of the deep learning architecture results for image classification models: (A, B) post-germination weeds. The figure is split into
two different panels to increase readability.

Dainelli et al. 10.3389/fpls.2024.1298791

Frontiers in Plant Science frontiersin.org13

https://doi.org/10.3389/fpls.2024.1298791
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


for Septoria and 98% for rusts. In both studies, the results were

validated under real conditions, in different study sites. Performing

a disease and non-disease classification for wheat yellow rust, Tang

et al. (Tang et al., 2023). achieved accuracies ranging from 79% to

86% by independently validating the system on a published dataset

from Germany. Therefore, considering the mean accuracy for the

two classes of yellow and brown rust (76%), our results are in line

with the cited papers, outperforming Septoria while gaining slightly

lower results for rusts. On the other hand, the system is not able to

correctly classify images from users framing black rust. This could

be due to the limited amount of original training images (120 for

leaf black rust). As for other classes, data augmentation, which

provides a promising means to address the insufficiency of collected

images, is used here to algorithmically expand the scale of the

dataset. However, it seems that the main reason for such a

performance could also be the limited number of images from

users (only 9) during 2022. In this sense, a new deep learning

approach dealing with small sample-size datasets, such as that

presented by Liu and Zhang (Liu and Zhang, 2023), is

demonstrating effectiveness and feasibility in disease classification

tasks. Diseases affecting other wheat organs have excellent

classification performances; only black rust on the stem presents a

slightly lower value.

The system gains very good performances also in recognizing

pests (80 and 94% top 1 and top 3 accuracies, respectively), with

slightly lower results with respect to Karar et al. (Karar et al., 2021).

This study presents a classification accuracy of 98.9% on five groups

of pests (aphids, Cicadellidae, flax budworm, flea beetles and red

spider) but without validating the AI model through an external

dataset. Regarding weed recognition, GranoScan obtains excellent

results (100% accuracy) in distinguishing if a weed is a monocot or a

dicot, while it reaches an accuracy of 60% in species classification. In

the first case, our results outperform other studies (Teimouri et al.,

2022) while in the second present a slightly lower value (e.g. 77% for

Madsen et al. (Madsen et al., 2020) gained by processing the images

with a workstation and without evaluating the AI tool through an

external dataset). These performances in weed recognition are

mainly due to the high number of training images for target

species. It is worth noting that the most essential building block

for an AI model is the underlying data used to train it (Sharma et al.,

2020). In addition, enabling computer vision for precision

agriculture requires vast (e.g. tens of thousands of images) and

specialized datasets, especially collected under a realistic

environment, to account for a wide range of field conditions (Lu

and Young, 2020). In this sense, the AI model for weed classification

task in GranoScan benefits from an in-house image dataset built

through a long phenotyping activity. In the framework of precision

agriculture, interest in the early management of weeds, knowing if

they are dicots or monocots, makes our results very valuable for

final users. Identifying whether the target plant is a grass or

B

A

FIGURE 10

Confusion matrices of the deep learning architecture results for image classification models: (A, B) pre-flowering weeds. The figure is split into two
different panels to increase readability.
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broadleaf weed provides crucial information for management

strategies, such as active ingredients for chemical control. Thus,

pushing the recognition down to the species detail may not be so

determining (Dainelli et al., 2023).

Looking at the few unsatisfactory performances of GranoScan,

we are conscious that troubleshooting is not straightforward.

Indeed, most AI models for automatic diseases, pests and weeds

recognition suffer from reduced performance when applied to real

environment images previously unseen (Sharma et al., 2020). The

main reasons are: (i) many discriminative details and features of

crop threats are small, blurred, hidden and lacking in details,

making the targets hard to distinguish from the background; (ii)

the diversity and complexity of scenes in the field cause a variety of

challenges, including dense or sparse distribution, illumination

variations and occlusion (Patrı ́cio and Rieder, 2018; Wang

et al., 2021).

Briefly comparing GranoScan on recognition features towards

other diagnostic apps, which are supported by scientific articles and

listed in the Introduction section, these are the main outcomes.

ApeX−Vigne (Pichon et al., 2021) monitors water status using

crowdsourcing data but is dedicated to grapevine and hence is

not suitable for a proper comparison. BioLeaf (MaChado et al.,

2016) measures only foliar damage caused by insects, estimating the

percentage of foliar surface disrupted (% defoliation); it

encompasses neither insect species recognition nor other

categories of threats. PlantVillage Nuru (Coletta et al., 2022),

leveraging a crowdsensing platform, performs disease diagnosis in

developing countries for several plant species; in the crop list, there

is wheat but currently diseases affecting this crop are not recognized

and the app works only in survey mode for images acquisition.

PlantifyAI (Shrimali, 2021) is developed for diagnosing diseases

across several crop species, including wheat, and offers also control

methods; unfortunately, the diagnosis tool for disease recognition is

available only by paying a weekly/annual fee. Plantix (Tibbetts,

2018) detects diseases, pests, and nutritional deficiencies in 30

crops, including wheat; the app is well organized and the graphic

interface is user-friendly. The app has also an alert tool for pests and

diseases. However, by testing the app on wheat diseases, the

recognition results are not always in accordance with the target

and, in complex images (i.e. occluded and with dense vegetation),

often the output results as “unknown disease detected”. Besides, no

weed recognition is provided. In this framework, to continuously

optimize the proposed app, future work will be dedicated to

comparing GranoScan with other agricultural apps not included

in the current research.

GranoScan was officially released in spring 2022, so our results

take into account only one growing season (image data from users

of the 2023 wheat growing season are not included in this study).

We are confident in better future performances since AI model

updates are scheduled and a growing amount of in-field images is

B

A

FIGURE 11

Confusion matrices of GranoScan in-field performances: (A) leaf disease and (B) spike, stem and root disease. For leaf disease classification the
macro-average precision is 0.574 while the macro-average recall is 0.567. For spike-stem-root classification, the macro-average precision is 0.8
while the macro-average recall is 0.75.
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expected. In this sense, after a supervision process conducted by

crop science researchers for all the incoming images, the new

photos will enrich the training dataset. This way, the expanding

dataset thanks to user activity and the self-learning techniques on

which the app is based will allow GranoScan to gain continuously

improving results.

GranoScan is an evolving tool and future improvements will

include the AI model update (also switching from label to pixel

classification to optimize the recognition of critical diseases, such as

Puccinia r.), the enrichment of training image dataset drawing also

from external sources, translating the app interface into other languages

to allow its use in the entire Mediterranean area and, following the co-

design approach, the extension of the recognition task to new wheat

threats thanks to user feedback. Besides, the already ongoing data

trade-off services, such as the geolocation of acquired images, between

the web platform AgroSat (AgroSat, 2023) and GranoScan will

be boosted.

5 Conclusions

This research presents the development and first results of

GranoScan, a mobile app for localization and in-field recognition

of the main threats affecting wheat based on an ensembling strategy

that uses two instances of the EfficientNet-b0 architecture as core

models. It is one of the first mobile apps available for free in the

main online stores created within a research project. GranoScan is

addressed to field users, particularly farmers, which contributed to

the app implementation through a co-design approach.

The idea and the development of GranoScan stand from the

necessity to give to the wheat chain stakeholders (mainly farmers

and technicians) a digital tool free, easy to use and always accessible.

To the best of our knowledge, a mobile app specifically dedicated to

the recognition of wheat abiotic and biotic stresses, supported by a

public scientific activity and co-designed together with end users, is

lacking. GranoScan is based on a large dataset (almost 70000

images) due to the need for robust training and validation of AI

models, especially when the tool is dedicated to outdoor recognition

activity. In this sense, every time threat identification is a challenge

considering changes in light, climate conditions and phenotypic

expressions of wheat varieties that can affect how a threat arises.

Tackling these issues, the study contributes to generating a new

deep learning architecture gaining recognition performances equal

to or better than other similar mobile applications. To fill the gap

between the positive attitude toward a new agricultural app and the

negative usage level as experienced by other studies, an original co-

design approach was used throughout the implementation process

of the app, from the collection of user needs to the choice of

operative solutions and system debugging. As one of the major

contributions of the study, the research activity managed to

establish successfully a trained user community, able to promote

and spread the GranoScan app among other farmers.

Within this framework, the usefulness of GranoScan can be

summarized as follows:

- to improve user skills in recognizing uncommon threats

affecting wheat;

- to facilitate the user in requesting technical advice in the field,

through support on threat recognition;

- to allow the in-field geolocation of threats, to facilitate new

inspections and/or verify the effectiveness of phytosanitary

treatments;

- to promote tools (risk model and early warning) that allow a

timely management plan to ensure economic and

environmental sustainability;

- to create a community of farmers always updated about the

threat pressure near their fields.

Two crucial factors emerge from this study that can support

future development of agricultural apps: (i) the importance of

adopting a user-centered design to enhance the capacity of all

farmers to participate in, contribute to, and benefit from

agricultural innovation development; (ii) the engagement of

farmers from the initial stages of tool implementation turns out

to be a win-win solution. The first element proved to be a guarantee

of achievement of an app that is simple and effortless to use,

accessible to and understood by all farmers; the second one

unleashed farmers in involving other farmers and this increased

the source of information (photos) used for training our AI models.

Indeed, one of the biggest challenges in solving agricultural

problems using artificial intelligence approaches is the lack of

available large datasets from field conditions. As potential

expansions, more wheat threats will be included in GranoScan

functionalities as well as the translation of the app in multilanguage

to assist farmers in the whole Mediterranean area further.
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Valdez-Morones, T., Pérez-Espinosa, H., Avila-George, H., Oblitas, J., and Castro,
W. (2019). “An Android App for detecting damage on tobacco (Nicotiana tabacum L.)
leaves caused by blue mold (Penospora tabacina Adam),” in Appl. Softw. Eng. - Proc.
Guadalajara, Mexico: 7th International Conference On Software Process Improvement
(CIMPS), 2018, 125–129. doi: 10.1109/CIMPS.2018.8625628

Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., and Hawkesford, M. J. (2017). Field
Scanalyzer: An automated robotic field phenotyping platform for detailed crop
monitoring. Funct. Plant Biol. 44, 143–153. doi: 10.1071/FP16163

Wang, R., Liu, L., Xie, C., Yang, P., Li, R., and Zhou, M. (2021). Agripest: A large-
scale domain-specific benchmark dataset for practical agricultural pest detection in the
wild. Sensors 21, 1–15. doi: 10.3390/s21051601

Web of Science (2023). Available at: https://clarivate.com/products/scientific-and-
academic-research/research-discovery-and-workflow-solutions/webofscience-
platform/ (Accessed September 1, 2023).

Wims, P., and Byrne, C. (2015). Irish farmers’ use of ICTs and their preferences for
engagement with extension. J. Ext. Syst. 31. doi: 10.18765/jes.v31i1.5626

World Bank Group (2023). Available at: https://www.worldbank.org (Accessed
September 1, 2023).

Wu, X., Aravecchia, S., Lottes, P., Stachniss, C., and Pradalier, C. (2020). Robotic
weed control using automated weed and crop classification. J. F. Robot. 37, 322–340.
doi: 10.1002/rob.21938

Yu, Y., Zhang, K., Yang, L., and Zhang, D. (2019). Fruit detection for strawberry
harvesting robot in non-structural environment based on Mask-RCNN. Comput.
Electron. Agric. 163. doi: 10.1016/j.compag.2019.06.001

Zermas, D., Nelson, H. J., Stanitsas, P., Morellas, V., Mulla, D. J., and
Papanikolopoulos, N. (2021). A methodology for the detection of nitrogen deficiency
in corn fields using high-resolution RGB imagery. IEEE Trans. Autom. Sci. Eng. 18,
1879–1891. doi: 10.1109/TASE.2020.3022868

Zhao, W., Liu, S., Li, X., Han, X., and Yang, H. (2022). Fast and accurate wheat grain
quality detection based on improved YOLOv5. Comput. Electron. Agric. 202, 107426.
doi: 10.1016/j.compag.2022.107426

Dainelli et al. 10.3389/fpls.2024.1298791

Frontiers in Plant Science frontiersin.org19

https://doi.org/10.1016/j.compag.2023.107709
https://doi.org/10.3390/agronomy12051167
https://doi.org/10.1016/j.compag.2019.05.002
https://www.tensorflow.org
https://doi.org/10.1002/isd2.12159
https://doi.org/10.1093/biosci/bix136
https://github.com/tzutalin/labelImg
https://doi.org/10.3389/fpls.2017.01190
https://doi.org/10.3389/fpls.2017.01190
https://doi.org/10.1109/CIMPS.2018.8625628
https://doi.org/10.1071/FP16163
https://doi.org/10.3390/s21051601
https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/
https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/
https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/
https://doi.org/10.18765/jes.v31i1.5626
https://www.worldbank.org
https://doi.org/10.1002/rob.21938
https://doi.org/10.1016/j.compag.2019.06.001
https://doi.org/10.1109/TASE.2020.3022868
https://doi.org/10.1016/j.compag.2022.107426
https://doi.org/10.3389/fpls.2024.1298791
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	GranoScan: an AI-powered mobile app for in-field identification of biotic threats of wheat
	1 Introduction
	2 Materials and methods
	2.1 Mobile application co-design (workflow and app design)
	2.2 Disease, pest and weed selection and image retrieval
	2.2.1 Weed phenotyping

	2.3 Image dataset processing
	2.4 Deep learning architecture
	2.5 App security and interaction with the deep learning model

	3 Results
	3.1 GranoScan co-design
	3.2 Deep learning results
	3.3 GranoScan performances towards users’ real use

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


