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We present a mapping between a Schrödinger equation with a shifted non-linear potential and the
Navier-Stokes equation. Following a generalization of the Madelung transformations, we show that
the inclusion of the Bohm quantum potential plus the laplacian of the phase field in the non-linear
term leads to continuity and momentum equations for a dissipative incompressible Navier-Stokes
fluid. An alternative solution, built using a complex quantum diffusion, is also discussed. The
present models may capture dissipative effects in quantum fluids, such as Bose-Einstein condensates,
as well as facilitate the formulation of quantum algorithms for classical dissipative fluids.

I. INTRODUCTION

Formal analogies between quantum and fluid mechan-
ics have been noticed since the early days of quantum
physics. Particularly, Madelung first showed that by
expressing the complex wavefunction in eikonal form
Ψ = ReiS/ℏ (where R is the amplitude and S is the
action), the real and imaginary part of the Schrödinger
equation turn into the equations (continuity plus mo-
mentum) of a perfect (non-dissipative) compressible fluid
whose quantum nature is revealed by the presence of the
so-called quantum potential Q, which has no classical
counterpart [1, 2]. The Madelung approach is useful in
many respects: from the theoretical standpoint it is con-
ducive to de Broglie’s pilot wave formulation [3, 4] and
lately to Bohm’s theory of hidden variables [5–7]. Al-
though both formulations were largely overshadowed by
the Copenhagen interpretation, modern developments in
quantum physics, particularly the experimental demon-
stration of non-locality as first postulated by John Bell
[8], are somewhat vindicating their merits.

Besides fundamentals, the quantum fluid formalism
is often useful for the interpretation of hydrodynamic
quantum analogs, which explore the capability of clas-
sical systems (such as walking droplets [9, 10]) to display
behaviors akin to those arising in quantum mechanics,
for the study of cosmic fluids [11] and, more recently, to
map certain models of active matter through a nonlin-
ear extension of the Schrödinger equation [12]. No less
intriguing is the perspective offered by Bose-Einstein con-
densates (BECs), whose dynamics can be captured the
Gross-Pitaevskii equation (GPE) known to describe the
ground state of a quantum system of identical bosons
using a single-particle wavefunction approximation [13–
16]. In this respect, of particular relevance are polari-
tons, i.e. quasi-particles observed in semiconductors and
operating in the strong-coupling regime between bound
electron-hole pairs and photons [17, 18]. These bosonic

particles can spontaneously condense in a phase whose
microscopic dynamics has been shown to map onto the
Kardar-Parisi-Zhang (KPZ) equation [19, 20].

In this contribution we develop a related yet differ-
ent analogy, namely a “Navier-Stokes-Schrödinger” equa-
tion, meaning by this an inverse-Madelung formulation
of the Navier-Stokes equation leading to a dissipative
Schrödinger equation strictly equivalent to a Navier-
Stokes fluid (see Fig.1). This quantum wave represen-
tation of a dissipative fluid is built via a shift of the
non-linear potential, which includes the quantum Bohm
term, removing the quantum pressure, and the laplacian
of the phase field, leading to the viscous contribution
proportional to the laplacian of the fluid velocity. The
interest towards this description is twofold: On the one
hand, the quantum wave formulation may hold interest
for describing the dynamics of dissipative quantum flu-
ids; on the other hand the classical analogy could be
relevant for quantum computers, for this may permit to
simulate fluids using a quantum-mechanical formalism.
[21, 22]. Finally, drawing inspiration from the studies
on GPE and polaritons, we also show that a dissipa-
tive momentum equation, akin to the Navier-Stokes one,
can be obtained by considering an imaginary diffusivity
alongside a suitable imaginary potential. We note that
our formulations differs from previous ones, such as the
Schrödinger-Langevin equation [23], where the dissipa-
tion stems from a suitable operator proportional to the
logarithm of the wavefunction and enters via the typi-
cal drag term of the Langevin equation, with no scale
selectivity in space, a crucial feature of dissipative fluids.

The paper is organized as follows. We initially sum-
marize the calculations showing how the Madelung equa-
tions are obtained from the Schrödinger one. In the
next section we illustrate how this formalism can be ex-
tended to include the correct dissipation contribution via
a shifted non-linear potential, while a separate section
is dedicated to discussing an alternative solution built
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upon a complex quantum diffusivity, whose formalism is
of relevance for polariton condensates. After shortly de-
scribing the effects of vorticity, we conclude the paper
with some remarks on the potential perspectives of our
results for the quantum simulation of classical fluids.

II. THE MADELUNG FLUID: A RECAP

Let us begin by writing the Schrödinger equation:

iℏ∂tψ = − ℏ2

2m∇2ψ + V ψ, (1)

where ψ(x⃗, t) is the wavefunction at position x⃗ and time t,
i is the imaginary unit, ℏ is the reduced Planck constant,
m is the mass, ∂t is the time derivative operator, and
∇2 is the Laplacian operator. Here the potential V is
assumed to be the sum of two contributions:

V = U +W (|ψ|2), (2)

where U(x⃗, t) is an external potential and W (|ψ(x⃗, t)|2)
is a nonlinear self-interaction, such as, for instance, in
the Gross-Pitaevskii equation. Upon dividing Eq. (1) by
ℏ one gets:

i∂tψ = −D

2 ∇2ψ + Ωψ, (3)

where

D = ℏ
m

(4)

is the quantum diffusivity and

Ω = V

ℏ
(5)

has dimensions of a frequency. Next we represent the
complex wavefunction in eikonal form

ψ = Reis, (6)

where R(x⃗, t) is the real amplitude and s(x⃗, t) is the phase
field, which can be also written as s(x⃗, t) = S(x⃗, t)/ℏ
with S(x⃗, t) an action field. Madelung [1, 2] suggested
to interpret the Schrödinger field as the complex field of
fluid with local number density

ρ = R2 (7)

and local velocity

u⃗ = D∇⃗s. (8)

By inserting Eqs. (6), (7), and (8) into Eq. (1) it is
straightforward to obtain two coupled equations associ-
ated to the real and imaginary part of Eq. (1). These
equations are the continuity equation

∂tρ+ ∇⃗ · (ρu⃗) = 0 (9)

and the Euler-like equation

∂tu⃗+ ∇⃗(u
2

2 + q2

2 +DΩ) = 0⃗, (10)

where we have defined

q2

2 ≡ Q

m
= − ℏ2

2m2
∇2R

R
= −D2

2
∇2R

R
= −D2

2
∇2√

ρ
√
ρ
.

(11)
Note that since the quantum potential Q is signed,
namely positive in regions of negative R curvature and
vice-versa, q2 is also signed. We use this notation to em-
phasize that q, be it real or imaginary, has the dimension
of a velocity, like u⃗.

The above relation can be further elaborated by recall-
ing the vector identity

1
2∇⃗(u2) = (u⃗ · ∇⃗)u⃗− u⃗× ω⃗,

where ω⃗ = ∇⃗ × u⃗ is the fluid vorticity. Since the flow
derives from a gradient, we have ω⃗ = 0, so that we are
left with

(∂t + u⃗ · ∇⃗)u⃗ = F⃗

m
− ∇⃗

(
Q

m
+ W

m

)
, (12)

where F⃗ (x⃗) = −∇U(x⃗) is the force acting on the sys-
tem and (∂t + u⃗ · ∇⃗) is the material derivative. These
are the equations of a compressible, inviscid, irrotational
flow subject to the nonlinear self-interaction potential
W (ρ) and the nonlinear self-interaction quantum poten-
tial Q(ρ).

III. MADELUNG FLUID WITH A SHIFTED
NONLINEAR POTENTIAL

Here, we consider the case of a dissipative Schrödinger
equation in which the dissipation is introduced via a shift
of the nonlinear potential W . The shift is

W → W −W ′, (13)

where W ′ = Q + γℏD∇2s, where γ is a dimensionless
dissipative coefficient which could depend on the density
ρ. Here, Q removes the quantum potential from Eq. (12)
while γℏD∇2s introduces a viscous term in Eq. (12) (see
also Fig.1). Thus, Eq.(12) becomes

(∂t + u⃗ · ∇⃗)u⃗ = F⃗

m
− ∇⃗P

ρ
− µ

ρ
∇2u⃗, (14)

taking into account that ∇⃗(∇2s) = ∇2(∇⃗s), introducing
the pressure P (ρ), such that ∇⃗P = (ρ/m)∇⃗W , and the
shear viscosity

µ = γDρ. (15)
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Quite remarkably, Eqs. (9) and (14) are nothing but the
Navier-Stokes equations of an incompressible and irrota-
tional fluid.

Applying the shift of Eq. (13) into Eq. (1) we get
instead

iℏ∂tψ =
[
− ℏ2

2m∇2 + U +W (|ψ|2) + κ
ℏ2

2m
∇2|ψ|

|ψ|

+iγ(|ψ|2)ℏ
2

m
∇2 ln

(
ψ

|ψ|

)]
ψ, (16)

where the last term on the right hand side stems from the
viscous contribution. Note that we have introduced a free
parameter κ which controls the transition from quantum
(κ = 0) to classical (κ = 1) regimes. Thus, the standard
Madelung picture is recovered in the limit κ = γ = 0.

This is the main equation of our paper. We call it
Navier-Stokes-Schrödinger equation. Indeed, it is not dif-
ficult to prove that by inserting Eqs. (6), (7), and (8) into
Eq. (16) one obtains the Navier-Stokes Eqs. (9) and (14).

  

Madelung
pictureψ=Re

i S
ℏ ρ=R2

u⃗=
ℏ

m
∇⃗ sD=

ℏ

m

V=U+W (|ψ|
2
) Compressible, inviscid, 

irrotational fluid

NavierStokes
Schrodinger 
picture

ψ=Re
i S
ℏ ρ=R2

u⃗=
ℏ

m
∇⃗ s

Incompressible viscous 
fluid

W→W−W '

W '=Q+γ ℏ D ∇
2 s

Figure 1. Top row: The two quadrants provide a sketch of the
Madelung mapping linking the Schrödinger equation to con-
tinuity plus momentum equations for a compressible, invis-
cid, irrotational fluid. Bottom row: The quadrants show the
Navier-Stokes-Schrödinger mapping proposed in the present
paper.

It is worth emphasizing that the Navier-Stokes-
Schrödinger equation introduced in this work is quasi
completely “dequantized”, i.e. devoid of quantum
physics effects, as it describes a classical dissipative fluid
in quantum mechanical vests. The only quantum memoir
is the quantization of the circulation, namely∮

C
u⃗ · dx⃗ = ℏ

m

∮
C

∇⃗s · dx⃗ = ℏ
m

2π n, (17)

due to the fact that the wave function ψ(x⃗, t) is single
valued and the phase angle s(x⃗, t) must be an integer
multiple of 2π along any closed contour C. If the integer

number n is different from zero the fluid displays quan-
tized vortices. Eq. (16) could nonetheless be useful in
two respects: first, solve the fluid equations in quantum
form on classical computers may prove computationally
advantageous as compared to existing numerical meth-
ods [24]. Second, the Navier-Stokes-Schrödinger equation
may form the basis for a new class of quantum algorithms
to simulate classical fluids on quantum computers.

IV. AN ALTERNATIVE FORMULATION

Drawing from the recent literature on the Gross-
Pitaevskii equation [19, 20], a dissipative Schrödinger
equation can be obtained by making both the quan-
tum diffusivity and the potential complex, namely Dγ =
D(1 + iγ) and Ω = Ω1 + iΩ2, where Ω1 and Ω2 are real-
valued functions. The former contribution (extensively
studied to develop an analogy between polariton systems
and the KPZ equation [25]) generates a dissipative term
in the Navier-Stokes equation while the latter one is nec-
essary to restore unitarity, which would otherwise be in-
evitably lost in the presence of a complex diffusion.

Indeed, taking the imaginary part of Eq.(3) with the
extra terms due to imaginary diffusion and potential, one
gets

∂tρ+ ∇⃗ · (ρu⃗) = γρ

D
(u2 + q2) + 2ρΩ2, (18)

which shows that the sole imaginary diffusion would con-
tribute a source term leading to loss of unitarity. This
issue is overcome by setting Ω2 = − γ

2D (u2 + q2), so that
the continuity equation is recovered. Note that Ω2 is
not a potential in any conventional sense, as it depends
on the fluid velocity, as well as on the gradients of the
density. Hence, it is rather to be interpreted as an adap-
tive pseudo-potential, explicitly tailored to absorb non-
unitary effects.

Next we consider the real part, which gives

(∂t + u⃗ · ∇⃗)u⃗ = −∇⃗(Q
m

+ V

m
)− γD

2 ∇2u⃗−γ∇⃗(v⃗ · u⃗), (19)

where we have set v⃗ = D∇⃗ρ/ρ and Ω1 = V/ℏ.
The above expression recovers the Navier-Stokes equa-

tions, provided the following conditions are met:

i) ∇⃗P
ρ = ∇⃗V

m ;

ii) Q = 0;

iii) ∇⃗(v⃗ · u⃗) = 0⃗
In particular, conditions ii) and iii) are both satisfied

by letting ρ = const, corresponding to a uniform, in-
compressible flow. A softer version of the above could
be conceived by requiring that |q2| ≪ u2 and v⃗ · u⃗ = 0.
The former is tantamount to stating that the “kinetic en-
ergy” of the quantum fluctuations is much smaller than
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the fluid kinetic energy, a statement of weak inhomo-
geneity akin to the quasi-incompressible limit of classical
fluids. The latter is a statement of orthogonality between
v⃗ and u⃗. Recalling that v⃗ = D∇⃗ρ/ρ, the above condition
is fulfilled whenever the density gradient is orthogonal to
the fluid velocity, a condition typical of two-dimensional
incompressible turbulence [26].

V. VORTICITY AND GRADIENT FLOWS

Given that Navier-Stokes fluids are generally not
vorticity-free, a brief comment on vorticity is in order.
Vorticity can actually be supported by gradient flows in
the form of singular vortices acting as point-like defects
causing discrete jumps in the phase field. This can be
appreciated by computing the circulation C of the veloc-
ity on a closed contour, C =

∮
C u⃗ · dx⃗ = 2πurC = const,

with u = ωrC and rC radius of the contour. If C is
conserved, in the limit rC → 0 one has u ∼ 1/rC and
ω ∼ 1/r2

C , both singular. Since u⃗ = D∇⃗s, the circula-
tion is C = rC

h
m |∇s|. This is basically a classical fluid

in which the only quantum feature is that the angular
momentum per unit mass is quantized in units of h/m.

However, a non-vanishing classical vorticity necessarily
requires an extension of the Madelung formulation where
the fluid velocity is the gradient of the phase (see Eq.(8)).
In Ref.[27] it is demonstrated that, by introducing a sup-
plementary vector field stemming from the Helmholtz de-
composition of the fluid velocity and effectively acting
as a magnetic field in a plasma, a mapping between a
Scrödinger equation of a charged particle moving in this
field and a Navier-Stokes equation of a dissipative rota-
tional fluid can be actually built. It is finally worth men-
tioning that the vorticity can be also introduced in the
realm of quantum mechanics by invoking a quaternion
form of the two-component Schrödinger-Pauli equation,
which also includes a source term that can eventually
mimic dissipation via a spin-dependent forcing contribu-
tion [28, 29]. However, this term is signed and does not
take the form of the Navier-Stokes dissipation.

VI. CONCLUSIONS

In this paper we have shown that shifting the non-
linear potential of a term proportional to the sum of
the quantum potential plus the laplacian of the phase
leads to a generalized Schrödinger equation which maps
a Navier-Stokes equation of an incompressible dissipative
fluid. Furthermore, higher order dissipative terms could
be readily included by shifting the non-linear potential
with even powers of the laplacian. Although formally ir-
rotational, this Navier-Stokes equation can support vor-
tices emerging from phase singularities, while a classi-
cal vorticity would necessarily require an additional vec-
tor field modifying the structure of the Madelung fluid

velocity. Making the quantum diffusivity complex rep-
resents an alternative route to account for the dissipa-
tion. Although this is known to basically destroy the
quantumness of the system [30], the unitarity can be for-
mally circumvented by introducing an ad hoc imaginary
pseudo-potential. This is not going to restore quantum-
ness in any physical sense, but serves the purpose of cast-
ing a classical problem, Navier-Stokes fluid dynamics, in
quantum mechanical form. Unlike the previous one, this
formulation is however restricted to the case where den-
sity is i) constant in space and time and ii) orthogonal to
the fluid velocity.

It is important to stress that, at finite temperature
and below the critical temperature of the superfluid-to-
normal phase transition, quantum fluids are character-
ized by both quantized vortices and viscosity. In the
two-fluid model of Landau [31], the viscousless and ir-
rotational superfluid component is responsible of quan-
tized vortices while the normal component takes into ac-
count the viscosity. Here we are proposing a quite general
single-fluid model which can be also used for quantum flu-
ids. Our formulation has some similarities with the dissi-
pative nonlinear Schrödinger equation adopted by some
authors (see, for instance, [32–34]) to study numerically
the formation and dynamics of quantized vortices in su-
perfluid liquid 4He or in Bose-condensed atomic quantum
gases. This peculiar nonlinear Schrödinger equation con-
tains an imaginary dissipative term but also a chemical
potential that fixes the total number of particles when the
fluid eventually approaches a stationary configuration.

Besides an interest as a formal connection between
quantum physics and dissipative fluid dynamics, both ap-
proaches discussed in the present paper open intriguing
perspectives for simulating incompressible Navier-Stokes
equations on modern quantum computers. While the
first method proposes a surprising simple solution based
on a shifted non-linear potential, the second one builds
the analogy at the price of loss of unitarity in the ab-
sence of the imaginary pseudo-potential. Lack of unitar-
ity would affect the GPE-KPZ analogy as well, but since
this analogy has received experimental confirmation over
the last few years, we are led to speculate that there must
be a region of experimental parameters such that the vi-
olation of unitarity can be neglected. This may open the
intriguing perspective of using polaritons for the quan-
tum simulation of the incompressible fluids [35].
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