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This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It iz shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

 Above a certain amount of disorder no fransport is
possible ,Anderson localization®

 The reason: localized states due 1o disorder
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The simplest model
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The statistical distribution of
eigenvalues

* There is a ftail of negative energies
corresponding to

exponentially highly localized states

Distribution of negative eigenvalues
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The localization length decreases as the E) _ '
4 2 0

Inverse square root of the |energy|, hence
the localization length decreases with the amount of disorder Energy E

(as observed experimentally)



Including nonlinearity



Nonlinearity : theory

« Effect of nonlinearity and disorder

Scattering theory (Gredeskul, Kivshar & others)

Chaos (Flach & others)

Perturbation theory on Lyapunov exponents (Fishman & others)
Spin glass theory (Leuzzi, Conti & others)

Self-consistent approaches (Tureci & others)

Scaling laws (Skipetrov & others)

FDTD (Sebbah, Conti & others)

Many others ...

COMPARISON WITH EXPERIMENTAL DATA IS LIMITED

The simplest thing to do:

- Measure the locdalization length Versus nonlinearity



Question:

e Disorder induced states are un-coupled
(absence of transport, Anderson regime)

* What happens in the presence of a ,long
range” interaction”?

* Hypothesis: localized states inferact

« We want an experimental evidence |



Transverse localization in 2D fibers

Our experiments on
transverse localization
in two dimensional
fibers




Mixture of PS and PPMA
Index contrast 0.1
Propagation >7 cm

40000 pieces of PMMA and 40000 pieces of PS randomly mixed and fused together
n(PS)=1.59
n(PMMA)=1.49
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Calculated mode
Observed mode
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Multicolor transverse
Anderson-localization

- we excite several
localizations at different
wavelengths simultaneously



Ti:Sappihere
Laser

We measure the
localization
profile at any

spectral peak
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At any spatial location
there are several

localized modes at
different frequencies
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Comparison with ordered fibers
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Action at a distance between
Anderson localizations In
nonlinear nonlocal media

- thermal nonlinearity is
nonlocal!



MODIFIED SETUP

Ti-Shapphire Laser
ND:Yag Laser




Probe Anderson mode (532nm)

\

Pump Anderson Mode (800nm)

/

20 microns



D (m)

The size of the probe

changes with the pump power !

Probe Anderson mode (532nm)
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THEORY



(transverse) Anderson localization
in nonlocal media

e Link between locdalization length and

= 00
W+ W = V() - sy / 7 =) |y (-'i‘r)‘gd.}‘r. (1)
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Comparison with experiments

« At low power : linear frend (pP) = 1(0)(1 — -2)

2 P
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Modelling the action at a distance

Using collective coordinates in the highly

nonlocal approximation
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Equation for the positions

 Ehrenfest theorem (CC, PRE 72, 066620)

P d=rp = [ L(r—r,)V Anpnr i The position of the localization p
P 152 P SUTES : varies because of nonlinearity
N N |
— P,Ans 5 o .
Anyy = E Anng.q = E > (r —r,)°. The localizations are incoherent
g=1 q=1
?\.IT
d?r, — |Anz|P, P, 5 L | |
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az 1no
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Leonetti et al, Phys. Rev. Lett., 112: 193902 (2014)



Comparison with experiments

* Pump and probe Anderson stafes

- We consider two states Py >> Do
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Leonetti et al, Phys. Rev. Lett., 112: 193902 (2014)



Conclusions

Nonlinearity and nonlocality in 2D disorder fibers

Action at a distance

Transport in the Anderson regime

fiber ti
Incoherent Anderson states 14 I{j\
Variational theoretical approaches | A

after optimization

THANKS !

www.complexlight.org

Leonetti et al, Phys. Rev. Lett., 112: 193902 (2014) ; Nature Communications 5, 5534 (2014)



Intensity (Arb. Units)




(transverse) Anderson localization
in nonlocal media

e Link between locdalization length and
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A non-perturbative
theoretical analysis

iVt = Ve + V(X)) — XYM
1
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~SOLITONIZATION“ of the ANDERSON LOCALIZATION

Conti, PRA 86, 061801 (2012)

FOCUSING CASE

~pa +V(@)o - 0" = Ep.

N
H Swartz

- et al
i Nature 08




Variational average

L2
—abm—(vQ V)ww By

Conti, PRA 86, 061801 (2012)

localization length |

EFFECTIVE NLS FOR

THE NONLINEAR ANDERSON
STATE (FOCUSING CASE)
»+AVERAGE SOLITON EQ*

— phase space approach

numerical

bright soliton (strong)

linear (weak)
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Comparison with Schwartz et al

Loc length versus strength of disorder (analytical)
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FOCUSING CASE (2D)
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Theory from
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Light focusing through disordered media



The experiment of Vellekov et al

CCD

Figure 2 | Measured intensity distribution in the focal plane at
200+ 3 mm from the glass lens. a, Clean system with an unmodified
incident wavefront. The focal width is of the order of the diffraction limit
{62 wm, white bar). b, Intensity transmission of a &-pum layer of airbrush
paint for the unmodified incident wavefront. Mo focus is discernible.

¢, Systermn with the sample present, and the wave shaped to achieve
constructive interference in the target. A high-contrast, extremely sharp

e focus is visible. d, Pattern on the spatial phase modulator for the set-up in .
LETTERS nawre D = . S
e e —— photomcs The intensity plots are normalized to the brightest paint in the image.

Exploiting disorder for perfect focusing

I. M. Vellekoop'i, A. Lagendijk? and A. P. Mosk'*



Focusing in the Anderson regime




Focucina multi-mode fibhers

homogeneous fiber disordered fiber
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Some numerical simulations
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Measures from the top

fiber tip

B

before optimization after optimization



Conclusions

* Nonlinearity, nonlocality and fransistor/switching
iNn random lasers and 2D disorder optical fibers

e Action at a distfance between Anderson
localizations

* Non-perturbbative variational approach to
nonlinear Anderson states

THANKS !

www.complexlight.org

II» www.openscholar.org.uk




More sophisticated ideas

* The landscape

* The link with spin-glass theory
« Conti, Leuzzi, PRB 2011

e Predicts

* The existence of several competing states
(Bose/Glass)

« Out-of-equilibrium regimes

* A Phase-Diagram for nonlinear waves and
lasers



A brief mention to
the defocusing case

The variational approach predicts that above a

critical nower thera Aarea nn mMmarea lnecnlized stgtes

LV2
—wm(l 2 )ww Ey

At a cerfain power the nonlinear coefficient
changes sign (no more bright solifon)

This corresponds to the albsence of a single
mMinimum of the phase space

There exist several minima

A landscape of localized states with not vanishing

I " \\
N % B B B M LS EEEe PR - o . — e P N o



Stability of nonlinear Anderson
states in the focusing case

 Vakhitov — Kolokolov formulation (19/3)
Y = (p+0v) exp(—i L)

0 = [u(x) + iv(x)] exp(£2t)

—-Q2 u = L1 Lo u

Lo=—-0*~E+V(r)—p(x)?and L1 = —0*—E+V (x)—3p(x)?



Numerical calculated eigenvalues
and eigenstates

e The nonlinear Anderson states are stable

0 10 20 FOCUSING
power P

evolution t

-2 0 2
position x position x

Rose and Weinstein, 1988
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