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1.  INTRODUCTION 

Flying fishes (family Exocoetidae) are epipelagic, 
subtropical to tropical species found worldwide. Adults 
are of variable size (10–40 cm length) and broadly 
divided in 2 categories: ’2-wingers’ (e.g. Exocoetus 
spp.) and ’4-wingers’ (e.g. Cypsilurus spp.) (Bruun 
1935, Davenport 1994). The family is represented by 
71 species, grouped into 7 to 8 genera (Froese & Pauly 
2019), making it one of the most species-rich epipela-

gic fish lineages (Lewallen et al. 2018). Flying fishes 
are an important source of food and income for many 
countries around the world from the Caribbean to the 
South Pacific (Lewis et al. 1962, Mahon et al. 1986, 
Dalzell 1993, Oxenford et al. 1993, Huang & Ou 2012). 
Examples include coastal waters off northeast Brazil, 
where the fourwing flying fish Hirundichthys affinis is 
a major artisanal fishery resource (Oliveira et al. 
2015); Barbados, where flying fishes compose up to 
65% of the total fish catch (CRFM 2014); and the Phil-
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about their ecology, abundance and global distribution is still scant. Here we present some notes 
on the occurrence of flying fishes and flying squids in the Eastern Atlantic Ocean along a large-
scale visual transect between 31°S and 53° N. The density of airborne specimens startled by the pas-
sage of the ship was used as a proxy of their abundance. The number of flying individuals was esti-
mated using visual census, and individual densities were computed according to a fixed-width strip 
transect protocol. During the survey, 119 vessel-based transects were performed during March and 
April 2017, for a total surveyed length of 1540.8 km. Flying squids were observed only in a narrow 
latitudinal band between 17.5° and 26.1° S. Flying fish abundance, on the other hand, varied signif-
icantly along the ship’s route. Maximum densitities occurred between 3° and 15° S. Flying fish 
abundance markedly decreased around the equator and then increased again towards 8–10° N. No 
flying fishes were seen north of 19° N, with the only exception of 4 individuals sighted near the 
Strait of Gibraltar (35–36° N). No attempt was made to identify fishes or squids down to the genus 
or species level; however, the observed variations in size class distribution suggest a certain degree 
of habitat segregation between different species or life stages. Sea surface temperature was the best 
descriptive variable explaining the distribution of flying fishes in the area surveyed. Further work 
is needed to better understand the environmental factors governing the distribution of these 
important, but seldom surveyed, organisms.  
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ippines, where flying fishes compose up to 84% of the 
annual catch of small-scale gillnet fisheries (Emperua 
et al. 2017). 

Squids in the family Ommastrephidae (collectively 
known as ‘flying squids’) and some species in the fam-
ilies Onychoteuthidae and Loliginidae also exhibit 
gliding, or ‘flying’, behavior, most likely to evade 
predators (Murata 1988, Azuma 2007, Muramatsu et 
al. 2013, O’Dor et al. 2013). Reports of this behavior 
date back to 1892, and the numbers of leaping spe-
cimens can range from solitary individuals to schools 
of hundreds (Maciá et al. 2004). The ommastrephids 
comprise commercially important species such as the 
neon flying squid Ommastrephes bartramii, the Hum-
boldt flying squid Dosidicus gigas and the Japanese 
and European flying squids (Todarodes spp.), al -
though it is unclear if all these species can actually 
exhibit airborne jet-propulsion. Many of these species 
are also intensively harvested for human consump-
tion (Bower & Ichii 2005, Roper et al. 2010), with 
ommastrephids together accounting for more than 
70% of the world’s cephalopod catch (FAO 2005). 

Flying fishes and flying squids are essential compo-
nents of pelagic food webs, serving both as predators 
(Lewis et al. 1962, Gorelova 1980, Markaida & Sosa-
Nishizaki 2003, Watanabe et al. 2004, Van Noord et 
al. 2013) and prey for many large predatory fish 
(mainly Istiophoriformes, Carangiformes and several 
species of Scombriformes), pelagic seabirds and mar-
ine mammals (Parin 1960, Oxenford & Hunte 1999, 
Mori et al. 2001, Wu et al. 2006, Rudershausen et al. 
2010), thus playing a key role in the functioning of 
many tropical food webs around the world. However, 
owing to their unique predator avoidance behavior 
and mobility, the abundance and spatial distribution 
of these organisms are difficult to measure directly, 
and options for fishery-independent surveys are lim-
ited (Oxenford 1994, Churnside et al. 2017). 

The distribution of flying fishes has been studied 
using various methods, including net sampling (Kho-
kiattiwong et al. 2000, Pitman et al. 2002, Casazza 
et al. 2005, C. Chang et al. 2012, Randall et al. 2015, 
S. Chang et al. 2022), acoustic surveys (Brehmer et al. 
2007) or tagging studies (Mulloney 1961, Lewis 1964, 
Oxenford et al. 1994). Visual census techniques have 
also been successfully applied (Breder 1929, Plomley 
1968, Parin 1981, 1983, Fréon 1992). Most research, 
however, has focused on the Caribbean and the Paci-
fic; little is known about the distribution of flying 
fishes in the eastern Atlantic region. While the distri-
bution patterns of the commercially important omma -
strephid squids have been thoroughly studied (Jereb 
& Roper 2010), there have been few reports of the fly-

ing be havior of squids. Here we present the results of 
a survey on the abundance of flying fishes and flying 
squids in the Eastern Atlantic Ocean using a visual 
census technique, which is likely the most widely 
used non-invasive method for studying animal pop-
ulations in both terrestrial and aquatic ecology 
(Thresher & Gunn 1986, Yoo et al. 2003, Murphy & 
Jenkins 2010, Pierucci & Còzar 2015). This informa-
tion will increase our knowledge of the ecology and 
geographical distribution of these 2 groups of nekton 
in the Eastern Atlantic region. 

2.  MATERIALS AND METHODS 

The visual survey took place in the Eastern Atlantic 
Ocean between 31° S and 53° N during a research 
cruise from Cape Town (South Africa) to Bremer-
haven (Germany) during 23 March to 10 April 2017 
(see Fig. 2). Flying fishes and flying squids flushed by 
the passage of the RV ‘Akademik Tryoshnikov’ were 
counted during regular navigation of the ship at a 
mean ± SD speed of 13.9 ± 1.9 knots (min. 11.2 kts; 
max. 15.2 kts). The number of airborne individuals, 
i.e. the number of flying fishes and flying squids star-
tled by the passage of the ship, was used as a proxy of 
their local abundance, assuming that the proportion 
of individuals taking to the air at the approach of the 
vessel was constant throughout the survey. All obser-
vations were made in parallel by 2 observers who 
scanned the sea surface from the forecastle deck of 
the ship at about 8.5 m above sea level (Fig. 1). Due to 
the large size of the bow, visual observations were 
limited to one side of the vessel, chosen according to 
sun glare and wind direction (we preferentially chose 
the windward side as recommended by Ryan 2013). 

Observations were conducted during daylight hours 
while the ship was underway and weather conditions 
were good (Beaufort sea state <4). During each hour, 
observations were conducted for 30 min followed by a 
30 min break. No major storms were encountered 
during the survey, and during the 19 d cruise, 119 
transects were sampled (generally 6–7 per day). 

The total survey length was 1540.8 km (mean ± SD 
transect length = 12.95 ± 1.11 km). The total observa-
tion period was 59.3 h. GPS start and stop position, 
ship heading, speed and surveyed distance were 
recorded using a hand-held GPS. At the start of each 
transect, wind speed, wind direction and sea state 
were recorded from the ship’s weather station. Sea-
water environmental parameters were obtained from 
the Aqualine Ferrybox system that was connected to 
the ship’s underway seawater supply and recorded 
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environmental data at 1 min intervals (see Haumann 
et al. 2020 for more details). Data were then extracted 
and averaged across each transect. Chlorophyll a con-
centrations were recorded as μg l–1 (calculation done 
in UniLux; https://aquaticsensors.com/wp-content/
uploads/2022/02/1432_UniLux_2pp_V3_artwork_
V2.pdf); O2 concentrations as μmol kg–1; sea surface 
temperature (SST) as °C; and salinity concentrations 
as PSU. 

Flying fishes and squids were counted individually 
when numbers were small (<15), but larger groups 
(which reached up to 200 individuals) were estimated 
using photographic records. The sizes of flying fishes 
were visually estimated, and all individuals were allo-
cated to 1 of 4 length categories: small (<5 cm), 
medium (5–10 cm), large (10–20 cm) and extra-large 
(>20 cm). Flying squids were always sighted in large 
groups of individuals of the same size (around 15–
20 cm total length), so no attempt was made to clas-
sify them according to size. No attempt was made to 
identify the fishes or the squids to genus or species 
level, given the difficulty of distinguishing morpho-
logical traits during short flight times and the lack of 
evident external differences between many species 
(Parin 1981, 1983). 

The abundance of flying fishes and flying squids 
was estimated using a standard strip-transect tech-
nique, which involves counting the number of targets 
detected within a pre-determined strip, outside of 
which the observed targets are not recorded. A fixed-
width strip of 20 m was selected for this survey, as this 
width ensured optimal detection probability accord-
ing to our observing conditions (see Fig. 1 for more 
details). The results were then expressed as a simple 
index of abundance (Eberhardt 1978). Fish and squid 
counts were converted into density values (D) by 
dividing the total number of sighted individuals by 
the effective area surveyed in each transect, using the 
following equation: 

                                                                                   (1) 

where n is the number of individuals counted in tran-
sect i, L is the length of transect i, and W is the fixed 
strip width (20 m). The density of flying fishes and fly-
ing squids was computed for all transects and ex -
pressed in numbers of ind. km–2. 

Spatial and statistical analyses were performed with 
the R software v. 4.2 (R Core Team 2020) ‘leaflet’ 
(Graul 2016) and ‘tidyverse’ packages (Wickham et 
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Fig. 1. The RV ‘Akademik Tryoshnikov’. The left and right positions of the 2 observers (labeled a and b) are indicated in red 
(drawing modified by the authors). Adjusted vessel plans provided by the Arctic and Antarctic Research Institute (AARI)  
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al. 2019). Non-normal distribution of the data was 
evaluated by the Shapiro-Wilk test. Spearman’s non-
parametric correlation coefficient was used to test 
significant correlations (i.e. wind speed, salinity, tem-
perature). The significance level was set at α = 0.05. 
The data collected simultaneously by the 2 ob -
servers were compared using the Mann-Whitney test 
for equal medians, and no statistical difference was 
found (p = 0.8387). In addition, the 2 sets of data were 
highly correlated (r = 0.9255, p < 0.0001, permuta-
tion p = 0.0001, n = 119); therefore, final density 
values were computed by averaging both counts per-
formed simultaneously by the 2 observers during all 
transects. 

3.  RESULTS 

In total, 6187 flying fishes and 494 flying squids were 
counted during the survey. Flying squids were sighted 
exclusively in 12 transects located between 26° and 
17.5° S. No squids were sighted north of 17° S (Figs. 2b 
& 3). Squids were often observed taking off in schools 
of ~10–20 individuals. In the transects where squids 
were observed, the mean ± SD density was 138.6 ± 
172.4 ind. km–2. Flying squid densities ranged be-
tween 1.9 and 459.2 ind. km–2, with maximum den-
sities peaking around 20–21° S (Figs. 2b & 3). 

Flying fishes were sighted in 56.3% of the transects 
(67 of 119), with densities ranging between 1.8 and 
1741.4 ind. km–2 and a mean ± SD fish density of 
194.3 ± 381.9 ind. km–2 along the entire ship route 
(median density = 8.95 ind. km–2). Isolated flying 
individuals started to be sighted soon after departure 
from Cape Town at about 30° S (Figs. 2a, 4 & 5). Den-
sities markedly increased in tropical waters, reaching 
maximum observed densities between 15° and 3° S. 
Flying fish abundance decreased around the equator 
between 1° S and 5° N (with SST >29°C), and then 
increased again between 8° and 10° N (Figs. 2a, 4a 
& 5). No flying fishes were seen north of 19° N, except 
for 4 individuals sighted around 35–36° N near the 
Strait of Gibraltar. 

Most flying fishes (81.1%) were medium-sized (5–
10 cm), 9.7% were large, 8.8% were small, and only 
25  individuals (0.4% of the total) were extra-large 
(>20 cm). Small fishes were more common at higher 
latitudes in the southern hemisphere (Figs. 4b & 5), 
while bigger fishes were generally sighted at lower 
latitudes and most abundant between 9° and 10° N 
(Figs. 4b & 5). 

The abundance of flying fishes was positively cor -
related with SST (rs = 0.782, p = 1.58 × 1023) and 

negatively correlated with oxygen levels (rs = –0.79, 
p = 3.55 × 1024), which is unsurprising given the 
almost perfect collinearity between these 2 environ-
mental variables. The highest fish densities occurred 
at SSTs between 25 and 30°C and surface oxygen con-
centrations between 247.4 and 237.5 μmol kg–1. No 
significant correlation was found between the ob -
served fish abundance and wind speed, salinity or 
chlorophyll a concentrations. Flying squids occurred 
in a relatively narrow latitudinal band with SSTs be -
tween 21 and 24°C. 

4.  DISCUSSION 

Surveying the abundance of highly mobile epipela-
gic organisms such as flying fishes is challenging, and 
options for fishery-independent surveys are limited 
(Oxenford 1994, Churnside et al. 2017). Shipboard 
counts have been used as an index of flying-fish 
abundance since the early 1930s (e.g. Breder 1929, 
Plomley 1968), and more recently, they have been 
used to study the foraging habitats of seabirds and 
regional differences in ocean productivity (e.g. 
Jaquemet et al. 2005, Weber et al. 2021). Using the 
number of airborne individuals as an index of flying 
fish abundance, however, assumes that the propor-
tion of individuals that takes to the air as an anti-pred-
ator response at the approach of a survey vessel is 
constant for that vessel (Oxenford et al. 1995a). This 
was assumed in all previous surveys of flying fish 
abundance (e.g. Zuyev & Nikol’skiy 1981, Nesterov & 
Bazanov 1986, Khokiattiwong et al. 2000). However, 
as noted by previous authors, the proportion of flying 
fishes taking to the air can be largely influenced by 
the vessel size, type, speed and engine revolutions 
(Zuyev & Nikol’skiy 1981, Fréon 1992), as well as by 
the direction of the vessel in relation to wave and 
wind direction (Breder 1929, Hubbs 1933, Ryan 2013). 
Flying behavior is much less studied in the squids, 
and factors affecting the likelihood of flying, inter-
species differences in flying and the relation between 
number of flying squid and abundance in a given area 
are not well known. 

It is thus important to keep in mind that the number 
of organisms sighted during a ship-board visual sur-
vey is only indicative of the real density values since 
this method is based on some simplifying assump-
tions. For example, 2 fundamental assumptions are 
that (1) the detection probability within the transect 
width is 100%, and that (2) all individuals present in a 
given area will be flushed by the passage of the ship. 
Regarding the first assumption, a strip-width of 20 m 
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was selected for this survey, as this was considered to 
offer the best viewing conditions according to our 
elevation above the sea, ship speed and observation 
conditions encountered during the survey (Vighi et 
al. 2022). During the survey, we also empirically 
observed that fish/squid outside of this strip were not 
disturbed by the passage of the vessel and did not 
generally become airborne as the ship approached. 
Regarding the second assumption, several individ-
uals within the strip width were seen escaping the 
ship underwater without exhibiting flying behavior. 
Previous authors estimated that roughly 20–25% of 
the actual number of flying fishes present in a given 
area become airborne when a ship approaches (Zuyev 
& Nikol’skiy 1981, Parin 1983). Thus, our estimated 
densities are highly conservative and should be con-

sidered as an underestimation of the real density 
values. 

Morphological similarities among species and fast 
aerial gliding movements make flying fishes ex -
tremely difficult to identify in situ during visual 
observational surveys (Parin 1983). Species identifi-
cation can be further complicated if a large number of 
species co-occur, the taxonomic differences among 
species are uncertain, some species remain unde-
scribed, juveniles do not resemble the adults, and no 
reliable field identification guides are available 
(Oxenford et al. 1995a, Shakhovskoy & Parin 2019, 
2022, Gladston et al. 2020). For all of these reasons, 
we made no attempt to identify leaping specimens 
down to the genus or species level, although it could 
be assumed that most of the smallest individuals 
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Fig. 2. Eastern Atlantic Ocean, showing the density distribution of (a) flying fishes and (b) flying squids expressed as ind. km–2 
overlaid on Aqua MODIS SST 32 d (22 March to 22 April 2017) composite image (11μ daytime; 9 km spatial resolution) processed 
using SeaDAS 7.5 software. The size of the circles is proportional to the observed fish or squid density on a logarithmic scale 
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(<10 cm) were juveniles, while larger fish were adults 
belonging to various species (Davenport 1990, Oxen-
ford et al. 1995b,). In this regard, the observed differ-
ences in size-class distribution (Figs. 4b & 5) are likely 
due to inter-specific habitat differences (Shakhov -
skoy 2018) or to spatial segregation between life 
stages or developmental conditions (Oxenford et al. 
1995b, Randall et al. 2015). 

Minor morphological differences between some 
species mean that increased scrutiny or photographic 
techniques are required for accurate flying fish iden-
tification (Parin 1996, 1999, Parin & Belyanina 1998, 
2002a,b, Parin & Shakhovskoy 2000). It is therefore 
prudent to always complement visual surveys with 
other approaches such as drift net, night-lighting or 
dip-net sampling, to better assess species-specific dif-
ferences in the relative abundance and distribution 
patterns. In addition, visual census techniques are 
highly subjective, and fish counts always depend on 
a  number of factors, including visibility conditions, 
observer fatigue and experience level. Future im -
provements to reduce subjectivity in fish counts could 
consider applying camera-based systems and/or 
innovative remote sensing methods (Churnside et al. 
2017) such as those recently applied to the automated 
detection of floating litter using optical data and arti-
ficial intelligence techniques (e.g. de Vries et al. 2021). 

The distribution and abundance of epipelagic organ-
isms are partly determined by oceanographic con-
ditions (Shakhovskoy 2018), although in a smaller-
scale survey performed in the Caribbean Sea, a lack of 
correlation between flying fish abundance and sur-
face water characteristics was previously reported 
(Oxenford et al. 1995a). In contrast, Churnside et al. 
(2017) reported that in the northern Gulf of Mexico, 
flying fishes were found most often off the conti-
nental shelf in warm water with low chlorophyll con-
centrations. Our survey spanned a much larger lati -
tudinal gradient and our results are in general 
agreement with many other studies, showing that sea 
surface temperature is the best descriptive variable 
to  explain the global distribution of flying fishes 
(Khokiattiwong et al. 2000, Randall et al. 2015, 
Churnside et al. 2017, Lewallen et al. 2018, Palo et 
al. 2019) and flying squids such as Ommastrephes bar-
tramii (Chen et al. 2007, 2010, Yu et al. 2015, 2019, 
Wang et al. 2023). Our data clearly show that the 
number of flying fishes sighted in the Eastern Atlantic 
Ocean was highest where the SST was 25–30°C 
(Figs. 2a & 4a), which is consistent with their known 
habitat preferences (Shakhovskoy 2018, Weber et al. 
2021). Whether or not the projected changes in SST 
and chlorophyll patterns will have an influence on the 
habitat range and global distribution of flying fishes 
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Fig. 3. Abundance of flying squids (orange bars) as a function of latitude (°) expressed in number of sighted ind. km–2 over the 
entire dataset. Overlaid sea surface temperature values (°C) were recorded by the Aqualine Ferrybox system connected to the 
ship’s underway seawater supply which recorded environmental data at 1 min intervals, averaged across the duration of each  

transect (see Haumann et al. 2020 for more details). The horizontal dashed line corresponds to the equator 
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is currently unknown (Ko matsu et al. 2014, Lewallen 
et al. 2018). 

Flying fishes have been recently found to ingest 
substantial concentrations of microplastics in the 
eastern Pacific (Van Noord et al. 2013, Gove et al. 
2019). It has also been suggested that they can be 
used as indicators of trophic transfer of microplastics 
to higher trophic levels like tuna (e.g. Chagnon et al. 
2018, Abidin et al. 2021), especially in areas where 
their distribution overlaps with areas of high plastic 
concentration. Microplastics are now ubiquitous in 
oceanic ecosystems, including the eastern Atlantic 
Ocean (Kanhai et al. 2017, Suaria et al. 2020, 2023), 
and ingestion by pelagic species is common and 

widespread (Savoca et al. 2021). It is unclear, how -
ever, if ingested plastics or microfibers are retained 
and bioaccumulate within the food chain or if they 
can affect organism survival. In addition, flying fishes 
typically spawn on floating material such as Sar -
gassum seaweed (Breder 1938, Hall 1956, Vijayarag-
havan 1973, Kovalevskaya 1982, Lao 1989, Oxenford 
et al. 1993, Parin & Lakshminaraiana 1993, Andrianov 
& Lakshminaraina 1994). Within this context, the in -
crease in floating plastics in the world’s oceans might 
represent a potential increase in the availability of 
spawning substrata for flying fishes, whose ecologi-
cal consequences are currently unknown (Hunte et 
al. 1995). 
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Fig. 4. (a) Abundance of flying fishes (blue bars) as a function of latitude (°) expressed in number of sighted ind. km–2 over the 
entire dataset. Overlaid sea surface temperature values (°C) were recorded by the Aqualine Ferrybox system connected to the 
ship’s underway seawater supply which recorded environmental data at 1 min intervals, averaged across the duration of each 
transect (see Haumann et al. 2020 for more details). (b) Relative abundance of the 4 size classes of flying fishes (S: small; M: 
medium; L: large; XL: extra-large) as a function of latitude (°) expressed as the number of sighted ind. km–2. In both panels,  

the horizontal red dashed line corresponds to the equator
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Flying fishes are a central mid-trophic component 
of tropical epipelagic food webs. They also represent 
a major fishery resource for many countries around 
the world. Wild populations are exploited not only 
for  local consumption but also as bait for long-line 
fishing and for their eggs, which are marketed as a 
local delicacy in many Asian markets (S. Chang et al. 
2012). Nevertheless, flying fish stocks are still data 

deficient, and clear knowledge about their ecology 
and global distribution is currently missing. Some 
examples of stock depletion have been recently doc-
umented in Indonesia, where flying fish landings 
dropped dramatically in recent years (Syahailatua 
2006, Najamuddin et al. 2020). This indicates an 
urgent need for further investigations and proper sus-
tainable management actions. Eco-label companies 
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Fig. 5. Eastern Atlantic Ocean showing the observed density and distribution of (a) small (<5 cm), (b) medium (5–10 cm), (c) 
large (10–20 cm) and (d) extra-large (>20 cm) flying fishes expressed as the number of sighted ind. km–2. The sizes and the  

colors of the circles are proportional to the observed fish density on a logarithmic scale
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such as the Marine Stewardship Council (MSC) could 
have an interest in these species, potentially playing a 
role in the future sustainable exploitation of these re -
sources (Pierucci et al. 2022). 

To our knowledge, very few studies have reported 
on flying fish distributions in the Eastern Atlantic 
Ocean and even fewer data are available about the oc-
currence of flying squids in this area (Maciá et al. 
2004). Ommastrephids are relatively well-studied due 
to their economic importance as a fishery resource. 
For example, Roper et al. (2010) reported the occur-
rence of several species of ommastrephid squids in our 
study area; however, since we could not identify 
squids down to species or genus level, it is currently 
unclear which squid species can actually exhibit the 
flying behavior we observed during our survey. In ad-
dition, the flying behavior has been much less studied 
in squids than in flying fishes, and the factors affecting 
the likelihood of a flying squid taking off, and how this 
is related to the actual squid abundance in a given 
area, are basically unknown. 

Although many factors can influence the number of 
flying organisms counted from a research vessel 
(Parin 1983), shipboard observations of flying individ-
uals flushed by a ship’s passage remain one of the 
best non-invasive and low-cost methods to assess the 
abundance and distribution of these elusive species. 
In this paper, we provided novel information about 
the occurrence of flying fishes and flying squids in 
the Eastern Atlantic region. However, ecological 
components that may be relevant to explain the dis-
tribution of these organisms were not investigated in 
our manuscript and will need to be addressed by 
future studies. Expanding our baseline with larger 
and more detailed data sets on the spatiotemporal 
variability in flying fish distribution will provide criti-
cal information that can be used to further improve 
our understanding of population dynamics and food 
web interactions in the high seas. 
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