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Abstract

After normalization, the distribution of gene expressions for very different organisms have a
similar shape, usually exhibit heavier tails than a Gaussian distribution, and have a certain degree
of asymmetry. Therefore, this distribution has been modeled in the literature using different para-
metric families of distributions, such the Asymmetric Laplace or the Cauchy distribution. More-
over, it is known that the tails of spot-intensity distributions are described by a power law and the
variance of a given array increases with the number of genes. These features of the distribution of
gene expression strongly suggest that the alpha-stable distribution is suitable to model it.

In this work, we model the error distribution for gene expression data using the alpha-stable dis-
tribution. This distribution is tested successfully for four different datasets. The Kullback-Leibler,
Chi-square and Hellinger tests are performed to compare how alpha-stable, Asymmetric Laplace
and Gaussian fit the spot intensity distribution. The alpha-stable is proved to perform much better
for every array in every dataset considered.

Furthermore, using an alpha-stable mixture model, a Bayesian log-posterior odds is calculated
allowing us to decide whether a gene is differently expressed or not. This statistic is based on the
Scale Mixture of Normals and other well known properties of the alpha-stable distribution. The
proposed methodology is illustrated using simulated data and the results are compared with the
other existing statistical approach.
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1 Introduction

DNA microarray has been established as a powerful tool to study the RNA ex-
pression levels of thousands of genes simultaneously under different conditions.
Namely, these experiments compare two different samples of cDNA dyed with
different colours (red and green) by the means of the fluorescence intensity
measured in the microarray after hybridization. This methodology allows us
to compare a large amount of information simultaneously in order to identify
and quantify the genes which are differentially expressed.

It is well known that the independence assumption between genes is not
true, but many works that identify differential expression in microarray are
based on this assumption Lonnstedt & Speed (2002); Gottardo et al. (2003);
Bhowmick et al. (2006). Most of the approaches based on Bayesian statistical
methods assume independence between genes and Gaussian distribution as
a device to obtain an analytic formula. However, the distribution of gene
expression, also known as the error distribution for gene expression data, has
also been modelled under different approaches.

In Kuznetsov (2001), this distribution is modelled using different classes of
skewed probability functions such Poisson, exponential, logarithmic series and
Pareto-like distribution. The results are shown only for the Pareto-like distri-
bution and it is claimed that this distribution fits the empirical gene expression
distribution better than do the other distributions. In Hoyle et al. (2002), a
wide range of datasets are analyzed empirically and the error distribution is
approximated by two distributions: a log-normal in the bulk of microarray
spot intensities and a power law in the tails. Furthermore, in this article it is
pointed out that the variance of log spot intensity shows a positive correlation
with the number of genes considered. Namely, the variance increases with the
length of the arrays. In Purdom & Holmes (2005), the gene expression distri-
bution is fitted using the Asymmetric Laplace distribution. The improvement
upon the Gaussian distribution is notable. The Asymmetric Laplace presents
asymmetry and heavy tails. One justification for the use of this distribution is
based on the fact that it can be represented as the log-ratio of two independent
random variables with Pareto distribution. Bhowmick et al. (2006) presents a
statistical model for estimating gene expression using data from multiple laser
scans is presented. These authors also point out that the distribution of gene
expression exhibits heavy tails. A Cauchy distribution is adopted to model it.

In this work, we propose to model the gene expression distribution with an
α-stable distribution. This distribution has been applied before to biology and
physiology Zolotarev (1986); West & Deering (1994). However, as far as we
know, this distribution has not been used before in cDNA dual dye microarray
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data. We demonstrate that this distribution can very accurately fit the error
distribution for gene expression. Furthermore, the α-stable distribution has
many advantages when compared to other existing approaches in the literature,
as will be emphasized in the paper.

A statistic to assess differential expression using an α-stable mixture model
is presented. This statistic is based on the Scale Mixture of Normals property.
The performance of the proposed method is compared to that of Lonnstedt &
Speed (2002).

This paper is organized as follows: In Section 2, the α-stable distribution
and its main properties are presented. In Section 3, we model the arrays
from four different datasets with an α-stable distribution. In Section 4, the
motivation and comparison of the proposed methodology to other existing
approaches in the literature is discussed. Section 5 presents a statistic to
assess differential expression using the properties of the α-stable distribution.
In Section 6, the performance of the statistic proposed in this paper is tested.
In Section 7, a possible application of the α-stable in the normalization of gene
expression is proposed. Lastly, in Section 8, we summarize the conclusions of
this work.

2 An overview of the α-stable distribution

The α-stable distribution is a family of distributions that presents heavy tails
and is also capable of exhibiting a certain degree of asymmetry. This distribu-
tion has been used in the literature successfully to model skewed and impulsive
phenomena. Furthermore, the α-stable distribution is a generalisation of the
Gaussian distribution and allows us to describe impulsive processes by means
of a small number of parameters.

This distribution has been widely studied in the literature and its proper-
ties are very well understood. It satisfies the Generalized Central Limit the-
orem which states that the limit distribution of infinitely many i.i.d. random
variables, possibly with infinite variance distribution, is a stable distribution
Feller (1966). The α-stable distribution also satisfies the stability property
which states that any linear combination of random variables with α-stable
distribution is also α-stable. More information on the main properties of this
distribution can be found in Samorodnitsky & Taqqu (1994).

The α-stable distribution has four parameters, the shape parameter α ∈
(0, 2] is the characteristic exponent which sets the level of impulsiveness. β ∈
[−1,+1] is a skewness parameter, (β = 0, for symmetric distributions and
β = ±1 for the positive/negative stable family respectively). γ > 0 is the
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dispersion, a scale parameter and µ ∈ [−∞,+∞] is a shift parameter called
location parameter.

There is no general closed expression for the α-stable probability density
function (pdf); so that it is usually defined by its characteristic function, which
is given by:

ϕ(ω) =

{
e−|γω|

α[1−isign(ω)β tan(πα
2

)]+iµω, (α 6= 1)

e−|γω|[1+i 2
π

sign(ω)β log(|ω|)]+iµω, (α = 1)
(1)

Only for three particular cases is it possible to write the α-stable pdf. A
distribution with characteristic exponent α = 2 corresponds to a Gaussian
distribution with γ = σ/

√
2 where σ is the standard deviation. The α = 1

and β = 0 case corresponds to a Cauchy distribution and for α = 1/2 and
β = 1 to a Pearson distribution. Thus, the α-stable distribution can be seen
as a generalization of the Normal distribution, and some features of linear
system theory developed for Gaussian distribution can be applied directly to
the α-stable distribution.

The α-stable density, except for the three particular cases mentioned above,
must be calculated numerically. Moreover, it exhibits heavier tails than does
a Gaussian distribution. In other words, it is more likely to obtain samples
far from the mean for i.i.d. as an α-stable distribution with characteristic
exponent α < 2 than for the Gaussian case. This impulsive behaviour is a
very well-known feature of the distribution of gene expressions.

When α < 2, the tails probability {P < −λ} and {P > λ} as λ → ∞,
behave like the power law λ−α. This is also a known property of the distribution
of gene expressions: the tails of the error distribution for gene expression data
is well described by a power law (Paretian tail behaviour).

Let X be a vector with α-stable distribution and 0 < α < 2. Then,

E|X|p <∞ for any 0 < p < α, (2)

E|X|p =∞ for any p ≥ α. (3)

Thus, α-stable random variables with α < 2 have an infinite second-order
moment. The standard deviation for a given random variable with an α-stable
distribution does not converge to a meaningful value and an increase in the
standard deviation is observed as the α-stable random vector lengthens.

As a means of showing the behaviour of the α-stable pdf, the stable density
for varying α with β = 0 and varying β with α = 1.5 are plotted in Figure 1.
On the one hand, Figure 1a shows how the α parameter governs the degree of
impulsiveness. Lower values of this parameter means heavier tails and higher
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Figure 1: Density plot of α-stable distribution with location parameter µ = 0
and γ = 1. (a) β = 0. Solid line: α = 0.5. Dotted line: α = 1. Dash-dotted
line: α = 1.5. Dashed line: α = 2. (b) α = 1.5. Solid line: β = −1. Dotted
line: β = 0. Dash-dotted line: β = 0.5. Dashed line: β = 1.

peak of the α-stable distribution. On the other hand, Figure 1b shows an
α-stable distribution with α = 1.5 and varying β.

We fit data generated from an α-stable distribution with 5 different charac-
teristic exponents using both Gaussian and α-stable distributions to show the
performance difference between the two distributions. The characteristic ex-
ponents have been chosen to be possible values in real microarray experiments,
as it will be shown in Section 3. The distribution is depicted in Figure 2. The
shape of the Gaussian distribution (in dotted line) can change markedly with
the number of samples because the variance is not defined for α-stable random
variables.

3 Microarray data analysis

We model the distribution of gene expressions using the α-stable distribution
for 4 different cDNA dual dye microarray datasets. The first dataset (labelled
as ‘self-self’) consists of self-self hybridization of 19 different human cancer
cell lines, the Stratagene universal reference RNA and RNA isolated from a
tumor specimen Yang et al. (2002a). The second dataset (‘zebrafish’) are two
sets of dye-swap experiments for a total of four replicate hybridizations. For
each of these hybridizations, target cDNA from the swirl mutant was labelled
using one of the Cy3 or Cy5 dyes, and the target cDNA wildtype mutant was
labelled using the other dye. This experiment was carried out using zebrafish
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Figure 2: Continuous line: α-stable distribution. Dotted line: Gaussian fit.

as a model organism to study early development in vertebrates. Swirl is a
point mutant in the BMP2 gene that affects the dorsal/ventral body axis1.
The third dataset (‘lymphoma’) consists of tumor samples from diffuse large
B-cell lymphoma patients Alizadeh et al. (2000). The last dataset (‘yeast’)
is an analysis of regulatory variation in a cross between laboratory and wild
strains of Saccharomyces Cerevisiae Yvert et al. (2003). These four datasets
were chosen because they were also analyzed in Purdom & Holmes (2005),
therefore it is possible to compare their results with our proposed method-
ology. Every dataset was normalized using locally weighted linear regression
(LOWESS) Cleveland & Delvin (1988). This method is capable of removing
intensity dependence in log2(Ri/Gi) values and it has been successfully applied
to microarray data Yang et al. (2002b). After normalization, each distribution
of the gene expression has a similar shape: it exhibits heavier tails compared
to Gaussian distribution and a certain degree of asymmetry.

There are different approaches to estimate the α-stable parameters Ku-

1This data is available as a dataset with the R package marrayClasses.
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ruoglu (2001); Kogon & Williams (1998). For every array in the dataset, we
estimate them using the maximum likelihood approach Nolan (2001). The
parameter estimates are shown in Figure 3. It can be seen that the differ-
ence between the location (µ) and dispersion (γ) parameters estimated for
the ‘self-self’ data is very low. For this dataset, the same RNA sample is la-
belled separately with green and red fluorescent dyes and hybridized to the
same microarray; therefore, the gene expression distribution is expected to be
symmetric. We find values of the skewness parameter β very close to zero in
almost every case. There are only three cases in which β parameters are not
near zero. They are the arrays 8, 18 and 24, (note that they are plotted with
large circles in the figure). These three values are {α8 = 1.83, β8 = −0.48},
{α18 = 1.94, β18 = −0.65} and {α24 = 1.86, β24 = −0.77}, so that the α pa-
rameter for each of them is very close to 2. A well-known property of the
α-stable distribution is that as the exponent α tends to the limiting value 2,
more symmetric the α-stable distribution becomes and the less β parameter
affects the shape. Therefore, these values of β are consistent with the expected
symmetry of the distribution.

Figure 4 shows the distribution of the gene expression for an example array
of each dataset. It can be seen that α-stable distribution fits the discrete
distribution of the gene expression very accurately and better than does the
Asymmetric Laplace or Gaussian. It is also seen that, despite the heavy tails
and skewness of the Asymmetric Laplace distribution, this distribution has a
very thin peak which is not always fit in gene expression data. Note how in
the figure, the fit of the ‘self-self’ array considered is worse than the ‘yeast’
array using the Asymmetric Laplace distribution. The α-stable distribution,
however, presents a smoother behaviour in the peak, which allows a better fit
of the data. It can also be seen that the Gaussian distribution is not able to fit
the gene expression data as the discrete histograms present heavier tails than
the Normal distribution.

To compare numerically how α-stable, Asymmetric Laplace and the Normal
distribution fit the gene expression distributions, we calculated the Kullback-
Leibler, χ2 and Hellinger distance Borovkov (1998). The χ2 distance penalizes
possible outliers in the fitting. Namely, a small amount of samples affects
the measured χ2 distance more than the Hellinger and K-L distance. The
former is the most robust to outliers among the three distances considered.
These tests were applied to each array and better performance for the α-stable
distribution was obtained for all of them. Table 1 shows the corresponding
mean and standard deviation of these tests for each dataset. It is shown
that the α-stable distribution fits the empirical gene expression distribution
much better than does the Asymmetric Laplace or Gaussian. Furthermore,
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Figure 3: Estimated parameters for each dataset. First row: characteristic
exponent α. Second row: skewness parameter β. Third row: dispersion γ.
Fourth row: location parameter µ.
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Figure 4: empirical gene expression histogram and predicted density for one
array of each dataset. From the ‘self-self’ dataset we choose the array 9
(NT2.2(testis)). From the ‘zebrafish’ and ‘lymphoma’ dataset, the 2 array
and DLCL-0024 are chosen respectively. From the ‘yeast’ dataset, we used 14-
4-aCy3. Solid line: α-stable distribution. Dashed line: Asymmetric Laplace
distribution. Dotted line: Gaussian distribution.
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Table 1: Kullback Leibler, χ2 and Hellinger distance between the empirical
gene expression distribution and the predicted stable, Asymmetric Laplace
and Gaussian density for each dataset. The number denotes the mean of
the distance calculated for each dataset. In brackets, the error (standard
deviation). In bold, the lowest distance and standard deviation.

self-self zebrafish lymphoma yeast
KL(Stable) 0.013 (0.005) 0.0171 (0.0020) 0.021 (0.003) 0.018 (0.005)
KL(ALaplace) 0.022 (0.019) 0.066 (0.021) 0.022 (0.003) 0.047 (0.017)
KL(Gauss) 0.10 (0.04) 0.35(0.10) 0.07 (0.03) 0.25 (0.09)
χ2(Stable) 0.015 (0.008) 0.015 (0.003) 0.022 (0.004) 0.016 (0.005)
χ2(ALaplace) 0.04 (0.06) 0.074 (0.019) 0.038 (0.008) 0.058 (0.022)
χ2(Gauss) 0.12 (0.05) 0.6 (0.3) 0.09(0.05) 0.39 (0.21)
Hell.(Stable) 0.0036 (0.0021) 0.0043 (0.0007) 0.0061 (0.0011) 0.0044 (0.0014)
Hell.(ALaplace) 0.009 (0.009) 0.020 (0.005) 0.0087 (0.0015) 0.015 (0.005)
Hell.(Gauss) 0.030 (0.012) 0.11 (0.04) 0.025 (0.012) 0.07 (0.03)

the standard deviation is considerably lower for the α-stable case. This means
that the Asymmetric Laplace and Gaussian, contrary to α-stable, fits the gene
expression distribution accurately or poorly depending on the array. This fact
was remarked in the last paragraph and illustrated in Figure 4. The lower mean
and standard deviation calculated for the K-L, χ2 and Hellinger distance for
the α-stable distribution, shows that this distribution accurately fits for each
array.

4 Comparison with previous work

• Kuznetsov (2001) noted that the gene expression distribution follows a
Pareto-like distribution. He modelled the gene expression distribution
using several classes of skewed probability functions and found better
performance using the Pareto-like distribution. He introduced an artifi-
cial location parameter to generalize the Pareto distribution. However,
we would like to point out that α-stable distribution already accounts
for this parameter and provides a good fit in both the main lobe and the
tails of the distribution. The above author demonstrated that the em-
pirical histograms of gene expression levels are well fitted by a power-law
distribution. The α-stable distribution also has a Paretian tail behaviour
when α < 2. Specifically, if X is a random variable with α-stable distri-
bution with α < 2, then Samorodnitsky & Taqqu (1994):

lim
λ→−∞

λα{P < λ} = Cα
1 + β

2
γα (4)
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lim
λ→−∞

λα{P < −λ} = Cα
1− β

2
γα (5)

where

Cα =
1− α

Γ(2− α) cos(πα/2)
if α 6= 1 (6)

Cα =
2

π
if α = 1 (7)

Furthermore, Mandelbrot remarked the fact that the use of the Stable
distribution for describing empirical principles was preferable to the use
of Zipf-Pareto distribution for both, theoretical and practical reasons.
(See Zolotarev (1986) for a deeper explanation regarding Stable laws in
biology).

• In Hoyle et al. (2002), a wide range of datasets are analyzed. The error
distribution is approximated by a log-normal in the bulk of microarray
spot intensities which is claimed to be a good approximation for the
distribution of most of the spot-intensity values. It is also pointed out
that the tails of the distribution agree well with Zipf’s law, a special
case of Pareto behaviour (or power law) Newman (2005). Therefore,
two different distributions are used to model the distribution of gene
expression, log-normal in the bulk and power law in the tails. Two
possible, and heuristic, explanations for this different behaviour are given
in Hoyle et al. (2002). Contrary to this, the α-stable distribution enables
us to model the gene expression distribution with only one distribution,
modelling very accurately both the centre and the tails.

Furthermore, in Hoyle et al. (2002), it is pointed out that the variance
σ2 of log spot intensity increases as the number of genes considered in-
creases. This result agrees well with the properties of the α-stable dis-
tribution, as stated in Section 2. The variance is not defined for stable
processes with α < 2, therefore the second-order statistics cannot help
us to gain an insight into stable random variables. Due to this fact,
the standard deviation of a random variable with α-stable distribution
increases as the length of the random vector increases and it does not
converge to a given value.

• In Purdom & Holmes (2005), an Asymmetric Laplace distribution is used
to fit the gene expression distribution and its performance is compared
to the Gaussian distribution. In the previous section, our methodology
was compared experimentally to the Asymmetric Laplace distribution
and it was shown that this distribution does not always properly fit the
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gene expression distribution. The histogram of gene expression levels
often presents a smoother behaviour in the maximum. Furthermore, al-
though the Asymmetric Laplace distribution presents heavier tails than
the Gaussian distribution, the tails of this distribution are exponential,
not algebraic, and do not exhibit Paretian behaviour. A Laplace and
Asymmetric Laplace distribution for identification of differential expres-
sion in microarray experiments have been assumed recently in Bhowmick
et al. (2006). We believe that an α-stable assumption for the gene ex-
pression distribution could help in building new statistical methods to
assess whether a gene is differentially expressed or not.

• In Khondoker et al. (2006), the distribution of gene expression is mod-
elled using a Cauchy distribution as a part of a statistical model for
estimating gene expression using data from multiple-laser scans. The
Cauchy distribution is chosen rather than assuming a Normal distribu-
tion in order to take into account the outliers. In our work, we assume
neither Gaussian nor Cauchy, but both are particular cases of the α-
stable family. Specifically, for α = 1, β = 0, the inverse Fourier trans-
form of the characteristic function in Eq. 1 has an analytical solution.
In that particular case, the pdf of the α-stable is

γ

π((x− µ)2 + γ2)
(8)

which corresponds to a Cauchy distribution with location parameter µ
and dispersion parameter γ. If the distribution of gene expression were
Cauchy, we would have found that α ≈ 1 and β ≈ 0 most of the times
for the characteristic exponent and the skewness parameter, respectively;
and Figure 3 shows that the values reached in the estimation of the shape
parameter α are typically in the interval [1.5− 1.8].

The α-stable distributions provide a unified framework for modelling various
characteristics that were modelled by other models in an isolated way; hence
this evidence suggests that we could use α-stable distribution to model the
distribution of the gene expression.

5 Assessing differential expression using the

α-stable

The Gaussian distribution is a particular case of the α-stable distribution.
Therefore, the α-stable assumption is a long-tailed and skewed alternative
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that offers the same results in identification of differential expression, if the
distribution of the gene expression were Gaussian, as those based on the Nor-
mal distribution Lonnstedt & Speed (2002). However, the distribution of the
gene expression is found empirically not to be Gaussian.

There are some works in the literature which, following Purdom & Holmes
(2005), assume a Laplace distribution for gene error expression. In Bhowmick
et al. (2006), a Laplace mixture model is proposed as a long-tailed alternative
to the Normal distribution in order to identify differentially expressed genes
in microarray experiments.

The independence assumption is frequently made between genes, but in
the presence of differential expression, assuming an identical value of the µ
parameter for all genes is not a realistic scenario. For that reason, many works
consider that the log-ratios of non-differentially expressed genes are distributed
around zero (µ = 0) and they propose a two-component mixture model dif-
fering in the location parameter Lonnstedt & Speed (2002); Bhowmick et al.
(2006); Lewin et al. (2007). In particular, Lonnstedt & Speed (2002) assumes
the following model:

Mij|µi, λi, σ ∼ N(µi, λiσ
2) for all i. (9)

where N is the number of genes on each array and n the number of replicates

(arrays), and the data will be denoted as Mij = log
(
Rij
Gij

)
, where i = 1...N ,

j = 1...n and λ follows an Inverse Gamma distribution. This is an Scale
Mixture of Normals model, although it is not explicitly stated in Lonnstedt &
Speed (2002) and, therefore, if µi = 0, Mij is distributed as a t-student (see
Fernandez & Steel (2000)).

Moreover, the parameter µ is regarded as drawn from a distribution P (θ)
if the gene is expressed or µ = 0 if it is not differently expressed.

p(µi|λi, σ) = wP (θ) + (1− w)δ(0) (10)

A similar model could be build using the Scale Mixture of Normals property
of the α-stable distribution. If the prior distribution for λ in equation (9) is a
positive α-stable, instead of Inverse Gamma, with the following values of the
parameters

p(λi) = fα
2
,1(2{cos

(πα
4

)
}

2
α , 0) (11)

then the distribution of Mij for the non-expressed genes is distributed as a
symmetric α-stable, which was found to be the case when the self-self dataset
was studied. Then, some well-known properties of the α-stable distribution can
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be used to build a statistic S to assess whether a gene is differently expressed,
as will be explained below.

Let zi indicate whether a given gene is differentially expressed (zi = 1) or
not (zi = 0):

zi =

{
0 if µi = 0,
1 if µi ∼ fα,0(σ, 0).

The log posterior ratio for a given gene i can be calculated as

Si = log
Pr(zi = 1|Mij)

Pr(zi = 0|Mij)
. (12)

Following the Bayes’ Theorem and assuming independence between genes

Si = log
w

1− w
Pr(Mi|zi = 1)

Pr(Mi|zi = 0)
, (13)

where Mi is the vector of the n replicates for gene i. Our goal is to calculate the
posterior probabilities Pr(Mi|zi = 1) and Pr(Mi|zi = 0) in order to compute
the log posterior odds Si which, for a given gene i, computes the probability
of being differently expressed.

In parallel to the work of Lonnstedt & Speed (2002), the statistic Si can
be considered a way of ranking genes. Therefore, the proportion of expressed
genes needs to be established a priori.

Considering Mi. as the average of Mij for j = 1 . . . n for a given gene i.
The distribution of Mi conditional on µi, λi and σ is

p(Mi|µi, λi, σ) = (2πλi)
−n

2 σ−ne
− 1

2λiσ
2

∑
j(Mij−µi)2

= (2πλi)
−n

2 σ−ne
− 1

2λiσ
2 (

∑
j (Mij−Mi.)

2+n(Mi.−µi)2)
, (14)

and, for the proposed model:

p(Mi|zi = 1) =

∫ ∫
p(Mi, µi, λi)dµidλi

=

∫ ∫
p(Mi|µi, λi)p(µi|λi, zi = 1)p(λi)dµidλi (15)

and

p(Mi|zi = 0) =

∫ ∫
p(Mi|µi, λi)p(µi|λi, zi = 0)p(λi)dµidλi

=

∫
p(Mi|λi)p(λi)dλi. (16)
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Substituting in the expressions (15) and (16) the distributions for our model
and considering the following equality

N(µi|0, λiσ2) · e−
n(Mi.−µi)

2

2λiσ
2 = N(µi|

n

n+ 1
Mi.,

λiσ
2

n+ 1
) · (n+ 1)−1/2 · e−

1
2λiσ

2
n
n+1

M2
i. ,

(17)

it is possible to integrate out the distribution N(µi| n
n+1

Mi.,
λiσ

2

n+1
) and to obtain

the following integrals:

p(Mi|zi = 1) =

∫
(2πλi)

−n
2 σ−ne

− 1
2λiσ

2

∑
j(Mij−Mi.)

2

× (n+ 1)−1/2e
− 1

2λiσ
2

n
n+1

M2
i.

× fα
2
,1(2{cos

(πα
4

)
}

2
α , 0)dλi (18)

and

p(Mi|zi = 0) =

∫
(2πλi)

−n
2 σ−ne

− 1
2λiσ

2

∑
j(Mij)

2

× fα
2
,1(2{cos

(πα
4

)
}

2
α , 0)dλi. (19)

Due to the non existence of an analytical expression for the α-stable pdf,
the integrals (18) and (19) need to be calculated numerically. Some different
approaches could be used in order to accomplish this goal. We took advantage
of the fact that drawing samples from an α-stable distribution can be easily
accomplished using Chambers’ algorithm Chambers et al. (1976). If we have

T random samples
[
λ

(1)
i ...λ

(t)
i ...λ

(T )
i

]
with distribution p(λi) given by Eq. (11),

a Monte Carlo empirical estimate of the integrals (18) and (19) is

p(Mi|zi = 1) =
1

T

T∑
t=1

(2πλ
(t)
i )−

n
2 σ−ne

− 1

2λ
(t)
i
σ2

∑
j(Mij−Mi.)

2

× (n+ 1)−1/2e
− 1

2λ
(t)
i
σ2

n
n+1

M2
i.

(20)

and

p(Mi|zi = 0) =
1

T

T∑
t=1

(2πλ
(t)
i )−

n
2 σ−ne

− 1

2λ
(t)
i
σ2

∑
j(Mij)

2

. (21)
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6 Results

6.1 Case study 1

To illustrate the performance of the statistic S proposed in this paper, we
simulated a dataset containing N = 10, 000 genes and n = 4 replicates. The
non-expressed genes were simulated following an α-stable distribution with
parameters: α = 1.8, β = 0, σ = 0.1 and µ = 0. Thus, the samples are
simulated from the following mathematical model:

Mij|µi, λi, σ ∼ N(0, λi0.1
2) for i = 1 : N. (22)

p(λi) = f 1.8
2
,1(2{cos

(
1.8π

4

)
}

2
1.8 , 0). (23)

They were typical values obtained in the analysis of the four gene expression
datasets studied in Section 3.

A proportion p = 0.01 of the N = 10, 000 genes were considered to be dif-
ferently expressed. For that set of genes, the values of the α-stable parameters
were chosen the same as the non-expressed but the location parameter µ was
simulated as an α-stable with dispersion parameter set to V σ with V = 1.5,
where V represents a type of generalized signal-to-noise ratio. The parameter
V was also introduced in Lonnstedt & Speed (2002); Bhowmick et al. (2006).
The estimation of this parameter is very difficult because only a very small
proportion of genes are expressed and we do not know which ones. This diffi-
culty was also pointed out in Lonnstedt & Speed (2002) for a Gaussian mixture
model and for a Laplace mixture model in Bhowmick et al. (2006) where the
parameter V was not estimated correctly. It will be shown in the simulation
study that the performance of our algorithm is not affected by the ignorance of
this parameter. This is for two different reasons: on the one hand, the α-stable
distribution is a heavy-tailed distribution, and therefore it is a proper distri-
bution to accommodate outliers in the data; on the other hand, the number
of genes differently expressed is usually a very small proportion of the whole
dataset.

One of the simulated datasets is plotted in Figure 5, where the average
M-values versus the logarithm of the variance is plotted. The expressed genes
are denoted with crosses. These are the genes with expectation different to
zero. It is easily seen that many of the true influenced genes have a negligible
value of the average, and therefore it is not possible to detect them using any
method.
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Figure 5: Mi. vs. log-variance for one of the simulated datasets. Crosses: True
expressed genes.

For each different values of the cutoff w considered (40 different values from
w = 0 to w = 1), 100 different datasets were simulated. The Stable statistic
S and B were calculated for each dataset.

The Receiver Operating Characteristic curve for the 40 different cutoffs w
is plotted in Figure 6 for each synthetic dataset. The fraction of true-positive
and false-positive genes is averaged over the 100 datasets. In this figure, the
statistic based on the α-stable distribution is compared with B, the statistic
based on the scale t-statistics proposed in Lonnstedt & Speed (2002). The
Stable statistic exhibits higher values of true positives and true negatives than
B for each value of the cutoff.

6.2 Case study 2

In the case study 1, we compared the proposed method with a published
method using the receiver operating characteristic curve. In that case, the
data was simulated using the α-stable mixture model; therefore, the proposed
methodology was expected to perform better. The use of the α-stable mix-
ture model instead of the Gaussian mixture to model the distribution of gene
expression was justified in Section 3 and 4. Although the appropriateness of
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Figure 6: Case Study 1. Receiver Operating Characteristic curve for Si and
Bi statistics computed on the simulated α-stable data with α = 1.8, β = 0,
σ = 0.1 and µ = 0.

the α-stable modelling has been shown in this article, in the current section
the data will be generated using the Gaussian mixture model in Lonnstedt &
Speed (2002). The main difference between the two models is the expression
of the prior distribution p(λ). For ν degrees of freedom and scale parameters
a > 0, c > 0, Lonnstedt & Speed (2002) set τi = na/2σ2

i and assume that

τi ∼ Γ(ν, 1) (24)

µi|τi =

{
0 if zi = 0,
N(0, cna

2τi
) if zi = 1.

In this simulation, the following values of the parameters were chosen:
N = 10000 genes, n = 4 replicates, ν = 2.8, a = 0.040 and c = 1.5. The
proportion of expressed genes was set to p = 0.01. These hyperparameters
were estimated from a real dataset (see Lonnstedt & Speed (2002) for a deeper
explanation of the model and the hyperparameters).

For each different value of the cutoff w (12 different values from w = 0 to
w = 1), 100 different datasets were simulated. The Stable statistic S and B
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Figure 7: Case Study 2. Receiver Operating Characteristic curve for Si and Bi

statistics computed on the data simulated using the Gaussian mixture model
in Lonnstedt & Speed (2002).

were calculated. In Figure 7, both statistics are compared. The B statistic
performs only slightly better than S for this dataset, but it is important to
note that, even for this dataset, the B statistic does not improve very much
upon the stable statistic. This was expected since α-stable is a scale mixture
of Gaussians. Furthermore, the α-stable distribution is more flexible than the
Gaussian distribution, because it has a greater number of parameters. This
feature allows the α-stable distribution to fit a large family of distributions
and illustrates that the proposed methodology is a useful alternative to assess
whether a gene is differently expressed.

7 Future work: normalization of gene expres-

sion

Some normalization methods in the literature assume that the fluctuations
across replicated microarray data follow a Gaussian distribution Chen et al.
(1997); Wang et al. (2002). However, the fluctuations across replicates is found
to present a degree of impulsiveness which cannot be modelled using a Gaussian
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distribution. Consequently, there are some recent works in the literature which,
following Purdom & Holmes (2005), assume a Laplace distribution for gene
error expression. In Ramirez et al. (2006), a new method for normalization of
cDNA Microarray data is proposed based on the Laplace distribution and its
properties.

Our work suggests that using the α-stable distribution and its well-studied
properties instead of a Laplace distribution could help to build a novel method
of normalization. We believe that the α-stable distribution is a skewed alter-
native which could enable us to build not only new statistics to assess whether
differential expression has occurred, as it has been pointed out in the previous
section, but also to develop novel normalization algorithms. Furthermore, the
properties of the α-stable distribution are very well understood and, to our
knowledge, they have not been applied before in microarray data.

8 Conclusion

In this work, we have presented a new statistical model for the distribution of
differential gene expression. The model provides the flexibility for modelling
impulsiveness and skewness required for gene expression data. We stress the
fact that it is not an ad-hoc model but has strong theoretical justifications
such as the generalised central limit theorem. It confirms with earlier obser-
vations made by other researchers such as Paretian tails and non-converging
standard deviation. Both impulsiveness and skewness are parametrised in a
parsimonious way using the α-stable distribution. A rich variety of techniques
exist in the literature for parameter estimation.

A statistic based on α-stable modelling to assess differential expression in
replicated microarray data is presented. A mixture of an α-stable and a Dirac
delta function is introduced to model the expressed and non-expressed genes,
respectively. The Scale Mixture of Normals property is used to calculate the
Bayes log posterior odds. The performance was compared to a statistic based
on t-student distribution. We believe that the statistical model presented in
this paper will be very useful in estimation and detection problems involving
gene expression array data.
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