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Abstract
A 3D volumetric technique for measuring the evolution over time of the kinematic and
geometric characteristics of the bubble population in multiphase flows at moderate void fraction
is here proposed. The method is based on a shadowgraphy approach and requires a set of
calibrated and synchronized cameras, each placed in front of a bright screen. Synchronized, 2D
images of the bubbly flow are analyzed to extract the outline of the bubbles as seen from every
camera. Then, each bubble is separately identified as a 3D volume described by the intersection
of the cones having vertices on the optical center of each camera and passing through the
contour of the bubble. Details about the implementation of the procedure, including the further
refinements of the first rough bubble identification and the optimization of the number and
geometric arrangement of the points of view, are reported against the results obtained on a
reference set of spheres of known dimensions. Application on isolated bubbles demonstrates the
ability of the procedure to extract quantitative and self-consistent information over time. These
results are consolidated by a hint at a plunging jet test case with a significant void fraction,
showing potential for application to situations of practical interest.

Keywords: two-phase flow, bubbly flow, volumetric shadowgraphy, space carving, bubble
tracking

(Some figures may appear in colour only in the online journal)

1. Introduction

An accurate analysis of the bubble geometric features, distri-
bution and kinematic characteristics in a two phase air–water
flow is essential to achieve a greater knowledge on the bubble
dynamics in a wide range of technical and natural applications.
An incomplete list should include the cavitation induced by the
propellers of high-speed boats and submarines, the effect of
drag variation in the hydrodynamics of ships, the fundamental
role in chemical structures (reactors, adsorption towers, heat
exchangers, etc) and the key action in the processes of heat
and mass exchange between the oceans and the atmosphere,
just to name a few of the possibilities.

Several experimental studies on bubbly flows of different
types have been performed using intrusive resistivity probes,

which measure the air concentration and bubble velocities
based on the difference of electrical resistivity between air
and water [1, 2]. A high sampling frequency is supported by
the direct contact of the intrusive probe with the flow (about
20 kHz for a double-tip conductivity probe), and allows one to
faithfully follow the flow behavior [3, 4]. On the other side, the
drawbacks due to the intrusiveness of those probes involves
a partial alteration of the motion of both liquid and gaseous
phase. Moreover, their point-like measurement requires the
use of decomposition techniques on the detected air–water sig-
nal for the characterization of the flow turbulence [5].

A first step to overcome the aforementioned limitations
was made by the introduction of the planar particle image
velocimetry (PIV) in experimental studies focused on the
liquid phase, this optical measurement technique being able
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to provide measurements of two or three components of the
flow velocity field over a planar section and without disturb-
ing the flow [6–8]. Despite the recent advances in the applic-
ation of PIV techniques for the simultaneous and separated
analysis of two-phase air–water flow by means of phase dis-
crimination algorithms [9–11], a robust statistical analysis of
fluid kinematics is only possible for low void fraction or no-
entrainment regimes, because of the reduced visibility of the
seeding particles as the void fraction increases. More specific-
ally, in these conditions the seeding particles are occluded by
the air bubbles moving between the investigated section and
the optics of the PIV system [12]. This leads to a lack of know-
ledge about the air-bubble kinematic processes which domin-
ates high-void-fraction bubbly flows and suggests that, for the
analysis of such kind of flows characterized by high void frac-
tion and/or strongly three-dimensional dynamics, the invest-
igated region should be extended from a section to a volume.
The simultaneous analysis of the two phases in air–water flows
can be achieved by means of the combination of two tech-
niques: PIV for the water flow field and shadowgraphy for the
air bubbles measurement and tracking [13–15].

Shadowgraphy is a well-known flow visualization tech-
nique that highlights the difference of refractive index at the
interface between a body and its surrounding medium. It is a
simple technique that requires a light source and a recording
plane on which to project the shadow of the different phases.
The efficiency of the method is particularly high in the pres-
ence of large differences in refractive index, as it is between
water and air [16].

The shadowgraphy technique has been used, in combina-
tion with image analysis algorithm, for air bubble tracking and
measurement [13, 14, 17–19]. The application of these tech-
niques involves the evaluation of the bubble geometric features
based on the projection of the bubble boundaries on the image
frame. This way, the measurement accuracy is closely related
to the number of points of view and their geometrical rela-
tionships. The aforementioned studies adopt a single camera
located in front of the investigated section. The single point of
view provides only the shape and orientation of the air bubble
in the plane orthogonal to its optical axis, thus the volume, the
three-dimensional aspect ratio and orientation of the bubble
cannot be directly observed and measured. A first improve-
ment can be obtained by adopting two points of view hav-
ing an orthogonal optical axis, but the resulting 3D intersec-
tion between the cones will be characterized by corners and
edges that make the results far from acceptable. The shape
and orientation of the air bubble obtained with two points
of view require the use of refinement algorithms to better
approximate the bubble geometry, e.g. bounding box method
[20] and slicing method [21]. Yet, bubbles embedded in flows
characterized by a high void fraction and/or strongly three-
dimensional dynamics may have complex geometry that can-
not be described using the aforementioned algorithms.

Here we report about the implementation of a 4-camera, 3D
volumetric shadowgraphy technique and validate its accuracy
against the benchmark measurement of buoyant, rigid spheres
of known size, rising in still water. The detection of the size
and shape of the spheres is made possible by a space carving

algorithm [22]. Then, the same technique is applied to a set of
isolated air bubbles having a different diameter, rising in still
water, to investigate its capabilities in describing the bubble
kinematics and deformations in time. The use of the shadow-
graphy technique with relatively fast cameras allows us to fol-
low the spatial-temporal evolution of individual air bubbles
[23] and a tracking algorithm provides the 3D Lagrangian
description of the bubble path. The tracking algorithm is based
on the local form of the optical flow approach [24] and is used
to find the bubbles correspondence in successive 2D images.
This procedure allows a check about the mutual consistency
of results both in space and frequency domains and with lit-
erature data. Finally, the shadowgraphy is applied to a set of
test cases of a vertical plunging jet with several flow rates. The
goal of this last application is to show the effectiveness of the
proposed technique as a tool for the detailed analysis of air
bubbles in two-phase air–water flows, also in the presence of
relevant void fractions.

2. Experimental setup

This paper reports the main characteristics of the proposed
shadowgraphy approach when applied to the description of the
gaseous phase in a two-phase flow by grounding on three dif-
ferent ad-hoc designed experiments of increasing complexity.
The focus moves from the benchmarking case of the rising of
a rigid and buoyant sphere of known diameter to the capture
of the population of bubbles trapped by a jet plunging on the
free surface, passing through the characterization of a single,
deformable rising bubble.

All the experiments share the same general arrangement,
which consists of an octagonal base tank of side L= 230 mm
and height H= 500 mm, made in transparent plexiglas to
allow the optical access, an image acquisition system and a
backlight illumination (figures 1 and 2).

The images acquisition system relies on two couples of
Dalsa Falcon 1.4M100 cameras, whose CMOS sensor has a
resolution of 1400× 1024 pixels. The cameras mount 35 mm
focal length lenses and are placed in front of two orthogonal
tank sides, as shown in figure 1, with an azimuthal angle
of 90

◦
and an elevation angle of ± 15

◦
from the horizontal

plane (details in figure 3). Each couple of cameras is con-
nected to Camera-Link frame grabbers (DALSA Coreco Ima-
ging X64-CL): the whole acquisition chain allows a full-frame
data stream of 100 frames per second (fps), which can be
increased by reducing the frame size. As described below, the
data stream is adapted to the characteristic time-scale of each
experience, while the exposure time is kept constant and equal
to 400 µs. The frame grabbers are hosted in the PCIx slots
of an end-user PC, equipped with 64 GB of RAM and with
a couple of solid state disks (SSD). An in-house acquisition
software addresses the image streams from the frame grab-
bers to a circular buffer allocated in the RAM and eventually
on SSD disks, with a First In First Out manipulation scheme.
The system allows for the acquisition of synchronized image
sequences whose length is limited only by the SSD disks
capacity. The backlight illumination is provided by a couple
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Figure 1. The basic experimental setup consists of a octagonal tank, two light panels and a set of four cameras. Different arrangements are
reported for the rising sphere and bubble in still water (a) and the plunging jet (b). The clamping system for the rising sphere is not reported
for the sake of readability. The investigated volume is the same for both the buoyant sphere and the rising bubble experiments.

Figure 2. A photo of the experimental setup with the octagonal
tank, the bright screens in the background and the cameras. The
feeding tube of the plunging jet is labeled ‘P’, while the clamping
device for the release of the rigid balls, visible on the bottom of the
tank, is labeled ‘C’ and detailed in the insert at the top right.

of rectangular LED panels with a dimension of 297× 210 mm
and a power of 30 W. Panels are placed on the opposite
sides of the tank with respect to the two couples of cameras
(figure 2).

In addition to the general experimental arrangement, each
of the three reported experiments has required the adoption of
specific setup adjustments.

2.1. Rigid buoyant sphere

We checked the accuracy of the reconstruction algorithm
by testing it on the rising of buoyant, rigid polypropyl-
ene spheres of known diameter DS= [7.94 mm, 10 mm,
12.7 mm, 15mm] ± 0.05 mm and density ρ= 0.87 g/cm3

(RGPBALLS®). Spheres are released individually from the
center of the bottom wall of the tank by means of a clamping

device (figure 2, top-right insert). Images of their rising are
acquired by the acquisition system and analyzed by the shad-
owgraph algorithm as described in the following. The com-
parison of the estimated size with the known one provides a
quantitative evidence of the measurement chain accuracy.

2.2. Isolated rising bubble

The second setup configuration is based on a steel pipe of
three different diameters DP= [4.5 mm, 7 mm, 9 mm], which
provide the release of isolated air bubbles. The axis of the steel
pipe is placed along the center line of the tank and the nozzle
is located at 140 mm from the bottom of the tank (figure 1(a)).
The investigated volume for the cases of the rigid sphere and
of the isolated bubbles extends from the nozzle to 126 mm
upward (x-direction), and from −9 mm to 9 mm spanwise (y-
direction) and depthwise (z-direction).

2.3. Plunging jet

The last and most complex configuration considers a water jet
that falls from a downward oriented steel pipe, plunging onto
the free surface (figure 2). The pipe is aligned to the center line
of the tank and has a nozzle of diameter DJ = 21 mm, placed
at a distance of 14DJ from the walls. The falling height is HJ

= 5DJ , while the fluid depth is 15DJ , kept constant with the
outlet gate valve of the tank (figure 1(b)). The water flows in
a closed circuit, moved by a centrifugal pump with a flow rate
measured in time with an electromagnetic flowmeter.

The plunging jet experiment requires a larger investigated
volume than the previous setups, which extends from the
free surface to 6.5DP streamwise (x-direction vertical), from
−2.5DP to 2.5DP spanwise (y-direction) and from −1DP to
1DP depthwise (z-direction), while the LED panels illuminate
the investigated volume from the impinging point to a depth
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equal to 8DP (figure 1(b)). It is to notice that the increase of
the investigated volume along with the spanwise and depth-
wise directions adopted for the plunging jet case has required
the increment of the image size, this leading to a reduction of
the frame rate from 275 Hz to 130 Hz.

3. Measurement principles

The basic principle of the volumetric shadowgraphy lies upon
the evaluation of the three-dimensional position, shape and
motion of the air bubbles, based on their boundaries or sil-
houettes observed from different points of view [23]. The
projection of each boundary in the three-dimensional space
defines a cone having as axis the straight line passing through
the optical center of the digital camera lens and the bubble
centroid. Figures 3 and 4 illustrates this principle. Here, the
image plane (in gray) represents a projection planeOixiyi, (i=
1, ..,n, where n is the number of cameras). It is identified by an
originOi and a local coordinate system xiyizi, where the x- and
y-axes are oriented as the sensor grid, the z-axis indicates the
camera optical axis direction. The z-axis through the origin O
falls on the center of the camera sensor (i.e. the center of the
image). The four object silhouettes, observed by the four cam-
eras, are projected from the respective image plane (in gray) to
the space OwXwYwZw, until they cross each other. The volume
defined by the intersection of the conic projections embeds the
observed object and greater precision can be achieved using a
higher number of cameras, arranged in order to observe the
object from different points of view.

The application of volumetric shadowgraphy requires an
accurate photogrammetric calibration in order to evaluate the
camera’s intrinsic and extrinsic parameters [25]. Knowing the
latter, it is possible to project in the 3D space the n cones,
related to the n cameras, for each bubble inside the investigated
volume. The intersection of the n cones defined by the bubble
silhouettes provides its convex hull [22]. Furthermore, since
the shape of the bubbles can be roughly considered as spher-
ical or ellipsoidal, an ellipsoid fitting has been used to evaluate
different bubble features, such as the principal semi-axes dir-
ections (a⃗x0,1,2) and length (ax0,1,2, where ax0 < ax1 < ax2),
eccentricity (e= ax0/ax2) and rotation angle [26].

3.1. Camera calibration

Camera calibration is aimed at evaluating the camera paramet-
ers, both extrinsic and intrinsic. Through these parameters it is
possible to correct images from lens distortion and evaluate the
camera sensor location with respect to the investigated volume
and vice-versa, in order to project the images from their local
2D, discrete pixel reference system to continuous, 3D world
units, thus allowing for a measure of the recorded objects ([25]
among the others). The estimation of the camera parameters
takes place through a well established calibration procedure
[27] which involves the use of a specific target, where aWorld
reference system OwXwYwZw is defined. In the present work,
a planar chessboard 90× 50 mm with squares of 5 mm ±
0.02 mm in side, stuck on a planar (Zw= 0) steel plate was
used.

Figure 3. Camera Configuration A, ∆ϕ= 90
◦
, ∆θ=± 15

◦
.

Azimutal ∆ϕ and elevation ∆θ angles refer to horizontal (red) and
vertical (blue) planes respectively. A chessboard target allows for a
space calibration.

Figure 4. Measurement principle. The intersection of conic
projections having apex in the cameras center of view and defined
by the silhouette of the object on the plane of each image identifies a
volume that embeds the object itself.

Simultaneous recording by all the cameras of 40 images
containing the entire translated and rotated target provides the
basis for the camera overall camera system calibration. The
accurate corners identification in each target image allows
one to finalize a preparatory and separated camera calibra-
tion procedure for each camera and then to move to a double
stereo calibration for the couples of cameras, e.g. Cam0 −
Cam1 andCam2 −Cam3 [28, 29]. Having in hand the extrinsic
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parameters of each camera referred to the same common tar-
get, we firstly evaluate the relative position and orientation
of Cam1 to Cam0 and of Cam3 to Cam2 and subsequently
we estimate the position and orientation of the two cam-
era couples both relative and absolute, with respect to the
world coordinate system. This last step provides the map-
ping of the target and, consequently, of the whole investigated
volume.

With the aim to check the influence of the geometry of
the camera system on the overall accuracy of the process and
to move towards an optimum for the spatial arrangement of
the points of view, two different configurations have been
compared, namely Configuration A (figures 3) and Configur-
ation B. In the former configuration, azimutal angles between
optical axes of Cam1 −Cam3 and Cam0 −Cam2 are the same
(∆ϕ= 90

◦
) so as the elevation angles between Cam0 −Cam1

and Cam2 −Cam3 (∆θ= ± 15
◦
). On the contrary, in the lat-

ter configuration the azimutal angles between Cam1 −Cam3

and Cam0 −Cam2 are different (∆ϕ02 = 33.75◦, ∆ϕ13 =
135◦) while the elevation angles are the same (∆θ1 = 15◦,
∆θ2 =−15◦).

A first estimation of the accuracy of the camera calibra-
tion procedure, is given by looking at the reprojection errors,
calculated as the distances, in pixels, between detected and
reprojected corners. More specifically, the reprojection errors
are calculated through the projection of the corner from the
world coordinates, represented by the target checkerboard, to
the image coordinates, by using the calibrated camera para-
meters. The results reported in figure 5 and in table 1 show
better performances of Configuration A for all the four cam-
eras (black crosses), being their values in the range between
−1.5 pixel to 1.5 pixel (corresponding to−0.2mm to 0.2mm).
On the contrary, the reprojection errors in Configuration B
ranges between −3 pixel to 3 pixel, with higher values for
Cam1 and Cam3 because of their wider angle to the optical
center with respect to Cam0 and Cam2. Therefore, under the
evidence of lower reprojection errors confirmed in repeated
applications of the proposed calibration procedure, the spa-
tial arrangement of the points of view in Configuration A is
adopted for the experimental activity reported below. It is to
notice that the wider reprojection error can be associated to
the planar nature of the adopted target, because all the cameras
have to see it simultaneously during the calibration procedure
and large angles of view can amplify the uncertainties. The
adoption of a 3D target may reduce such kind of association
and its test is planned for future activities.

3.2. Space carving

The space carving technique provides the convex hull of the
reconstructed object starting from the projection of the object
silhouettes observed from different views. The procedure con-
sists of the following steps:

(a) projection in the Euclidean space of the four cones, defined
as the set of half-lines connecting the cameras center of
view, e.g. the cones apex, to all of the points on the four
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Figure 5. Reprojection errors for Configuration A (black circle) and
Configuration B (red cross). Reprojecton errors refer to the final
mapping of the four cameras and exhibit lower magnitudes in
Configuration A.

contours of the object silhouette captured by the different
points of view (figure 3 and figure 4);

(b) computation of the four Delaunay triangulations, one for
each cone;

(c) definition of a three dimensional mesh to evaluate the
volume of intersection of the four cones (one for each
investigated bubble). The center of the mesh corresponds
to the object centroid, the voxel side is of 0.10 mm, small
enough to allow an accurate reconstruction of the objects
investigated in the present work and side assessed through
a series of measurements aimed at providing themaximum
size of the air bubbles, which led to a mesh side of 16 mm
for the plunging jet test;

(d) internal common points research between the Delaunay
triangulations. From this operation a mask that contains
zeroes (external points) and ones (internal points) is
obtained; and

(e) the three-dimensional triangulation of the voxels centroids
belonging to the isosurface from the mask data provides
the rough boundary of the observed object.

Figure 6 shows an example of how the space carving tech-
nique works in the reconstruction of a sphere with four cam-
eras. Figure 6(a) reports a real sketch of the influence of the
number of points of view and of their position on the accuracy
of the final result. The elements measured on the original 2D
images, i.e. the bubble contours extracted from the four cam-
eras, are reported as black, crimson, green and brown closed
curves that represent the tangent loci between the cone of view
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Figure 6. Errors colormap referring to the ratio between estimated and true sphere diameter. Tangent loci between cones and sphere are
reported as black, crimson, green and brown closed curve while cones axes are shown as lines departing from the closed curves center to the
points of view. Sphere diameter DS2.

and the sphere. A set of four lines with the same colors con-
nect the geometric center of each best fitting ellipse to the cam-
era optical center; they represent the axis of the cone of view.
When the operation of cone intersection takes place, the res-
ulting object is strongly affected by the lack of a point of view
orthogonal to the Y–Z plane: solid cones intersection generates
strong sphere distortions at intermediate positions. The error
distribution (departure from D̃S = 1) reported in figure 6(a)
quantitatively confirms a good approximation of the sphere
along the tangent curve. On the contrary, at intermediate pos-
itions where the cones intersect themselves, the discrepancy
between the sphere estimation and the real one rises up to
30%. The rough level of accuracy imposes a refinement of the
volume shape, as described in the following.

3.2.1. Space carving refinement. An optimal solution to
catch the true object’s shape would be the insertion of a point
of view orthogonal to the plane X= 0, however this was not
possible because of the setup design and because of the pres-
ence of the free surface. A procedure is then applied to refine
the rough sphere contour, which consists of a rotation of the
previous space carving operation by half of the cameras azi-
mutal distance∆ϕ/2= 45

◦
. In the analysis of the rigid spheres,

rotation occurs around an axis orthogonal to the plane X= 0
(plane of θ-symmetry of the video cameras’ location), passing
through the center of the equivalent ellipsoid (see figure 6(a)).
It is applied to the whole set of 3D points, previously identified
with cones intersection, by following the classical rigid body
rotation approach (see [30] among the others).

After the computation of the Delaunay triangulations for
both rotated and non-rotated objects, the refinement ends fol-
lowing the steps (iv) and (v) reported in section 3.2, with the
internal common point research between the two Delaunay

triangulations of the rotated and non-rotated sets of points.
The final result is reported in figure 6(b). Errors in proximity
of the closed curves of tangency between the sphere and the
projected cones remain almost the same, while the deform-
ations in the intermediate locations are drastically reduced,
providing an overall accuracy of the sphere’s radius between
−2% to 4%.

It is worth noting that the space carving procedure smooths
the regions close to the intersection of the surfaces of the
cones, by a surface of revolution generated after the rota-
tion of the curve where the cones are tangent to the object
(black, crimson, green and brown curves in figures 6(a) and
(b)), implicitly assuming the hypothesis of axial symmetry.
This approach has physical soundness when dealing with isol-
ated rising bubbles, where an equatorial plane can be identi-
fied in the equivalent (oblate) ellipsoid, as will be introduced in
section 4.2.1. In that case, the rotation occurs around an axis
(a⃗x0) passing through the ellipsoid center and orthogonal to
the equatorial plane. However, it must be acknowledged that
the overall approach is only valid for convex objects and that
inner concavities cannot be retrieved. Further refinements to
take into account more complex object shapes are planned for
future works.

3.3. Rigid sphere and air bubble detection and tracking

In shadowgraphy images of a bubbly flow, light from the
background bright screen meets air–water interfaces from one
or more bubbles and scatters both by total reflection and
refraction followed by internal reflections and refractions [31],
such that the light intensity collected on the camera sensor var-
ies accordingly. In particular, the strongest attenuation occurs
at the bubble edge. On this basis, we assume the ansatz that
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Figure 7. Bubble contour identification. (a) Original image. (b) Background removal. (c) Thresholding. (d) Watershed. (e) Outline and final
contour.

the image intensity of pixels excited by light rays close to the
edges of bubbles is lower than the background. In the first step,
the bubbles and their boundaries are detected by applying the
procedure schematically reported in figure 7.

For each camera, the image background is calculated as the
median over the entire sequence and subtracted to every image
(figure 7(a) to (b)). This step minimizes the reflections from
fixed objects and light non-uniformity within resulting images,
thus emphasizing the contribution of moving objects like the
bubbles (figure 7(b)).

The second step concerns the binarization of the images
(figure 7(c)), which transforms the intensity value of each pixel
with intensity above a given threshold to a maximum (i.e. 1)
while each pixel whose intensity is below a given threshold is
reduced to a minimum (i.e. 0). The optimal threshold is given
by the IsoData algorithm [32]. Here the optimal threshold is
automatically chosen as a result of an iterative process able to
detect the entire bubble boundary also when bubbles coalesce
in complex clusters, as shown in figure 7(c).

The difficulty in managing the bubbles overlap inside
bubble clusters is overcome by the application of a watershed
technique [9, 33]. This technique assumes a gray-scale digital
image like a relief map, with the gray levels of pixels indicat-
ing their elevation in the relief. Considering a bubble cluster
as a series of hydrographic basins adjacent to each other, the
watershed lines allow their division and, consequently, their
detection, see figure 7(d).

The last step in bubble boundary identification consists in
the detection of their boundaries Bi(x, y), i= 1, ...,N t, where
B is a discrete vector of contours and N t is the number of
contours identified within the image at time t. Notwithstand-
ing the relatively common use of techniques with sub-pixel
accuracy, here the bubble boundary has been extracted by con-
sidering the pixel outline of the internally connected regions
considered as isolated bubbles (figure 7(e)). The recorded
shadowgraphy images of bubbles exhibit a thick dark bound-
ary at the air–water interface, induced by the change in the
refractive index due to the surface curvature variation, which
masks the subpixel details (figure 7(b)). Moreover, the over-
all geometric arrangement deals with a high spatial resolution
(≈ 0.1 mm/px) and a subpixel refinement will fall below this
threshold. The voxel side adopted for the discretization of the
3D volume is again 0.1 mm, so the subpixel adjustment at
image level could fall inside the same voxel obtained with a

pixel-level boundary estimation. Grounding on these observa-
tions and considering that the sub-pixel location estimation is
a time-consuming analysis, its cost-benefits ratio appears to be
disadvantageous for the present application.

The application of the bubble identification procedure
provides a set of bubble boundaries for each image, in each of
the sequences provided by the cameras, i.e.Bc

2D(t) = Bi(x,y),
where c is the camera identifier. The correspondence between
boundaries of the same bubble at different times (i.e. in dif-
ferent images) is extracted on the basis of the results of the
Lucas–Kanade algorithm [24] applied to 2D image sequences
of bubble boundaries. The bubble boundary correspondence
allows one to track them in time. The shadowgraphy applied
to the set ofBc

2D(t) provides the 3D position of the bubble sets
at each time t, namely B3D(t). On the basis of the knowledge
of the Lagrangian behavior of the bubbles, a 3D description of
the bubble evolution is obtained.

4. Results and discussion

In what follows, if not otherwise specified, lengths are normal-
ized as X̃= X/D, where D is the characteristic diameter of the
configuration under consideration. It can be one of the fourDS

diameters of the rigid sphere case, one of the threeDP pipe dia-
meters in the isolated bubble case or the nozzle dimension DJ

in the plunging jet application. Accuracy of the estimated dia-
meter Dest in the benchmark tests is expressed as D̃= Dest/D,
where D is one of the aforementioned design diameters. Nor-
malization of other quantities is done against their maximum
value and is explicitly specified in the text.

4.1. Technique validation

The test of the reconstruction algorithm on buoyant polypro-
pylene spheres of known size provides a quantitative estim-
ation of the accuracy of the procedure in the calculus of
the equivalent sphere radius. Our validation test is limited
to a spherical object as this trivial geometry is the baseline
shape of the bubble topology under study in this work. In this
respect, the test provides the fundamentals for future valida-
tion on shapes of higher complexity that could find interest in
a broader range of applications.

A single sphere is clamped on the bottom of the tank and
then released (top-right inset of figure 2). During the sphere
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Figure 8. Time sequence of a sphere (DS2 ) position and accuracy of
its volume estimation. The lower object corresponds to the object in
figures 6.

ascent, driven by the buoyancy force, its size and motion can
be measured. Figure 8 shows the sequence of positions occu-
pied by the sphere with DS2 = 10 mm during its rise inside
the investigated volume, together with the estimated sphere
diameter D̃. The lower object of the sequence corresponds
to the object in figures 6 and exhibits the higher discrepan-
cies between D̃ and its ideal value of 1. Larger under- and
over estimations occur close to the intersections of the loci of
tangency between the sphere and the projected cones but, on
the contrary to what can be argued from figure 6(a), here the
relationship with the cone intersection geometry is tainted by
the further complexity introduced by the space carving refine-
ment procedure, which requires an estimation of the equivalent
ellipsoid to identify the center and the axis of rotation. How-
ever, the local distribution of D̃ appears to be unchanged with
the bubble rising. The four different spheres show values of
⟨D̃⟩ in the range between 0.999 to 1.011, with a standard devi-
ation σ(D) between 0.001 2 mm, for the sphere with diameter
10 mm, to 0.003 8 mm, for the sphere with diameter 7.94 mm
(figure 9). The time averaged value of D̃ along the rising dir-
ection X̃, ⟨D̃⟩, is reported in figure 10(a) for results obtained
by from different combinations of cameras.

A sketch of the results about the reconstruction algorithm
accuracy is reported in table 1, in terms of the normalized dia-
meters ⟨D̃⟩. The estimation of the fitted ellipsoid provides the
three principal semi-axes and their eccentricity e, expressed as
the ratio between the time averaged value of theminor (⟨D̃min⟩)
and major (⟨D̃max⟩) axis, ranges between 0.932 and 0.945.

Furthermore, a comparison between the results about the
reconstructed sphere with diameter DS2 = 10 mm obtained

0.99 1 1.01

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 9. D̃S vs. X̃ rising location. Dashed lines mark ⟨D̃S⟩ for each
diameter: DS1 (△), DS2 ( ), DS3 ( ), DS4 ( ). X normalized by its
extent.

considering different camera groups is shown in figure 10(b).
By moving from two to four cameras it can be noticed that
the size of the reconstructed sphere gets closer to its true
value, due to an increase of the number of intersected cones
(figure 10(b)), It decreases from a value of ⟨D̃⟩ equal to 1.034
for the couples Cam1–Cam3 to 1.011 for the four cameras
configuration. In order to better verify the accuracy of the
reconstruction technique, the variation of the size measure-
ment along the frame sequence has been also evaluated con-
sidering the normalized standard deviationΘ(D̃) (error bars in
figure 10(a)), calculated as

Θ(D̃) = σ(D̃)/⟨D̃⟩ (1)

where ⟨D̃⟩ and σ(D̃) are the mean and the standard deviation
of the normalized diameters computed along the rising direc-
tion X̃. As the number of cameras increases, a reduction of the
coefficient of variation Θ is observed, with the minimum val-
ues measured for the four cameras configuration (see figure
10(a)). Therefore, we argue that the reconstruction technique
with four cameras configuration is able to provide reliable res-
ults with limited errors on the estimation of the size and shape
of the measured elements and that configurations with higher
number of cameras may be able to further improve the recon-
struction accuracy.

4.2. Rising bubble in still water

A 3D Lagrangian tracking algorithm has been applied to the
volumetric data obtained with the shadowgraphy technique
implemented here, providing the time-resolved size and loc-
ation of each air bubble and consequently the velocity along
their path [34, 35]. The technique has been initially applied
to the detection of single bubbles. These bubbles are released
individually from the bottom of the observation tank, bymeans
of a steel pipe of three different diameters DP= [4.5 mm,
7 mm, 9 mm]. Results are expressed normalized by their
maximum value, e.g. Ψ̃ = Ψ/Ψmax for volumes. Every bubble
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Figure 10. Aggregated and disaggregated accuracy in sphere diameter DS2 estimation.

Table 1. Statistical parameters for the reconstruction algorithm accuracy. Dtrue: certified diameter of the sphere. ⟨D⟩: averaged diameter
along the sphere’s trajectory. σ(D): diameter standard deviation along the sphere’s trajectory. Dmin, Dmax: extrema of the sphere’s radius
along the sphere’s trajectory. e: eccentricity. Errors are given as Dest/Dtrue.

Test case Dtrue (mm) ⟨D⟩ σ(D) (mm) Dmin Dmax e

(mm) Error (mm) Error (mm) Error
1 7.940 7.932 0.999 0.007 6 7.670 0.966 8.178 1.030 0.937
2 10.000 10.110 1.011 0.002 4 9.830 0.983 10.4 1.040 0.945
3 12.700 12.806 1.008 0.005 2 12.254 0.965 13.208 1.040 0.932
4 15.000 15.074 1.005 0.007 0 14.52 0.968 15.434 1.029 0.941

can be represented by its equivalent ellipsoid, characterized by
its center C0e = X0e,Y0e,Z0e, its axis direction a⃗xi and length
axi, (i= 0, 1, 2).

Unlike the polypropylene spheres considered, air bubbles
are deformable objects that can change their shape and size
during their rise, hence a case of interest to demonstrate the
ability of the implemented technique in the reconstruction of
objects characterized by complex geometries. Therefore, in
order to evaluate the gradual shape and motion variations of
the air bubbles, the image sequences are recorded at a frame
rate equal to 275 Hz. This allows a correct time-resolved
reconstruction of the air bubbles with an optimal pixel dis-
placement of the bubble boundaries. Figure 11 shows the
recorded and reconstructed sequence of positions taken by the
air bubble, plotting one out of every five, for a clear and easy-
to-understand representation, avoiding the overlap between
bubbles on different frames owing to the high frame rate. The
tracking of the individual bubble in terms of rigid translation of
the bubble centroid, shifted away from the bubble centroid for
the sake of clarity, is also reported. Furthermore, the dimen-
sionless air bubble volume Ψ̃ is represented. Although the air
bubble injection mechanism has been designed to produce a
gradual release of identical volumes of air, marked variations
in bubble shape are observed near the outlet section, due to
the bubble detachment from the nozzle. Subsequently, an air
bubble expansion is observed: the bubble volume reachesmax-
imum values at a vertical distance from the bottom of the tank
close to 8DP, where DP is the steel pipe diameter.

4.2.1. Shape and path oscillations. The kinematics and geo-
metric characteristics of the bubble at the three investigated

pipe diameters are compared in figure 12, where the evolu-
tion in time of the dimensionless volume Ψ̃ (dashed line) and
streamwise velocity Ũ (continuous line) are reported along
the whole bubble rising sequence. It can be noticed the onset
of a phase opposition relationship in the first times for lower
diameters DP1 and DP2 , while at higher diameter DP3 the
rising velocity increases its oscillation frequency and this
relationship, although certainly present, is harder to identify.
Moreover, the time evolution of the axes ax0,1,2 (red, green and
black line) of the equivalent ellipsoid is reported in figure 13,
together with the bubble eccentricity (gray line) as the ratio
between the minor axis ax0 and the major axis ax2 (rightside
axis). The air bubble shape appears more spherical near the
outlet section, while it shows a more elliptical shape during
its rising with fluctuating values of the eccentricity e. Interest-
ingly, the shape oscillation is in agreement with the streamwise
velocity, with a more or less flattened shape as the stream-
wise velocity increases or decreases respectively. The same
agreement can be observed between the axes of the equivalent
ellipsoid (figure 13). Their behavior unveils the existence of
an equatorial, almost circular section (plane a⃗x1(t)− a⃗x2(t)),
where ax1(t)≈ ax2(t), which oscillates in opposition of phase
with the length ax0(t) along the orthogonal axis a⃗x0(t). This
latter identifies the instantaneous axis of rotation adopted for
the space-carving procedure.

The comparison between bubbles having increasing dia-
meters shows a more spherical appearance, with smaller vari-
ations of shape and size, for the air bubble generated by the
steel pipe with the smaller diameter (DP1), compared to DP2

and DP3 . These results are consistent with the physical prop-
erties of a bubble rising in still water. In particular, if the
bubble is large enough, the action exerted by the water on
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Figure 11. Rising bubble at DP2 = 7 mm. Left: Sequence in time of
images of one isolated bubble from one of the four points of view
(Cam0). Right: Sequence of reconstructed bubble positions along the
rising direction X̃. Gray tones report the normalized bubble volume
Ψ̃. Red arrows report the bubble trajectory and velocity along the
whole sequence (slightly shifted for the sake of readability).

the bubble surface overcomes the surface tension, involving
a distorted oblate spheroidal shape. This effect is expressed
through the Weber number We= ρU2 ∗Dp/σ, where U is the
bubble velocity and σ is the surface tension. Large deforma-
tions occur for We>> 1. Here we have 1.76<WeDp2

< 10.20
and 3.42<WeDp3

< 15.43, respectively for Dp2 and Dp3 . For
smaller bubble, like DP1 , the water forces do not exceed the
surface tension, with the latter that involves a spherical shape
minimizing the air bubble surface area (1.52<WeDP1

< 3.76,
[20]. A further support to the consistence of the reported res-
ults is provided by the phase plot in the Galilei–Eötvös plane
Ga−Eo (figure 1 in [36]), which subdivide the Ga−Eo space
in five distinct bubbles regimes with sharply defined bound-
aries. By defining the adimensional Galilei number as Ga=
ρw

√
gReqReq/µw and the Eötvös number as Eo= ρwgR2

eq/σw
(where ρw is the water density, g is the gravity acceleration,Req
is the bubble equivalent radius, µw is the water dynamic vis-
cosity and σw is the water surface tension), the bubbles presen-
ted in this work have the coordinates Eo= [0.76, 2, 2.9] and
Ga= [360, 750, 990]. The line defining their location in the
Ga−Eo plane goes through the boundary between region III
(case DP1), where the bubbles exhibit an oscillatory motion
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Figure 12. Time evolution of the isolated bubble rising velocity Ũ
(continuous line) and of the bubble volume Ψ̃ for diameters DP1

(top), DP2 (bottom) and DP3 (bottom). A phase opposition
relationship between Ũ and Φ̃ is noticeable in the first times for DP1

and DP2 .

(zig-zag or spiral one), and region IV (case DP2 and DP3),
where a transition towards a peripheral breakup takes place.
This transition occurs simultaneously with a change in bubble
shape, i.e. from the oblate spheroid to the spherical cup with
open, unsteady wake, as conceivable from eccentricity results
in figure 13 and obtained following the classical Eo−Re space
classification of figure 8 in [37], where the Eo characteristic
length is Deq.

Further details about the relationship between the bubble
shape, its velocity and its path oscillation are provided by the
frequency spectra of the time history of the eccentricity, shown
in figure 14. These spectra are obtained by applying the clas-
sical Fourier analysis to the time signal of e. With the aim to
reduce the finite-length noise-related effects and to artificially
increase the spectra resolution, the signal is convolved by a
Hanning-like window and symmetrically zero-padded from
128 to 256 samples. The PSD sketched in figure 14 shows that
the eccentricity oscillation frequency behaves in very peculiar
ways at different bubble sizes, with the distribution of PSD
occurring at fundamental frequencies and at their linear com-
binations. At smaller diameter DP, the PSD of e exhibits a
single, well defined peak at fDP1

= 9.8 Hz (black line and text).
At intermediate diameter, two fundamental peaks are evid-
ent, one at fmDP2

= 7.52 Hz and the other at fMDP2
= 10.74 Hz,

together with their linear combinations at
∑
fDP2

= 18.26 Hz
and at ∆fDP2

= 3.22 Hz (blue line and text); at larger dia-
meters, the fundamental peaks occur at fmDP3

= 7.52 Hz and

fMDP3
= 11.82 Hz, together with their sum at

∑
fDP3

= 19.34 Hz
(red line and text).
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Figure 13. Axis of the equivalent ellipsoid ax0 (red), ax1 (green),
ax2 (black), together with eccentricity (gray) for DP1 (top), DP2

(middle) and DP3 (bottom). The almost regular oscillations at DP1

evolves towards more irregular changes at DP2 and eventually
doubles their frequency at DP3 (see figure 14).
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Figure 14. Frequency spectra of ecccentricity variation at
increasing pipe diameters DP1 (black), DP2 (blue) and DP3 (red) and
shedding frequency of the bubble wake f s≈ 10 Hz (gray, dash-dot
line). Frequency peak at DP1 is locked at f s, while at DP2 and DP3

the fundamental peaks fall around f s.

This complex and counterintuitive behavior can be asso-
ciated again with the change in shape characters due to the
passage between region III and region IV of the Ga−Eo dia-
gram described beforehand and, more specifically, to the sta-
bility of the wake that develops behind the rising bubble. An
insight about the wake stability is provided by the projection
onto the Y–Z plane of the bubbles’ path (figure 15). There,
it can be observed the passage from a zig-zag trajectory for

A
C B

0.3 0.6 0.9
Eccentricity

Figure 15. 3D representation of bubbles trajectory, colored by the
eccentricity e(t) and shifted for clarity along Ỹ. Their projection on
the ỸZ̃ plane is reported as well (black, blue and red curves for A, B
and C trajectories). The bubbles’ path evolve from a smooth zig-zag
(DP1 , A) to a more jagged spiral (DP2 , B and DP3 , C). Higher
curvatures traits in zig-zag regime (A) correspond to more squeezed
bubble shape, straight intervals to more spherical bubble appearance.

DP1 (line A) to a spiral-like one for DP2,3 (lines B and C).
Colors in 3D paths correspond to eccentricity values, while
black, blue and red colors of 2D curves identifyDP1,2,3 respect-
ively. As reported by [38], the zig-zag condition is character-
ized by the presence of two equal-strength vortex pairs, which
shed twice during a period of the pure zig-zag path. The zig-
zag motion is triggered by the amounts of streamwise vorticit-
ies accumulated on the bubble interface, when a critical value
is reached. However, when the balance between the counter-
rotating vortices is broken, an angular velocity is induced
between the asymmetric vortex pairs, driving the bubble to
rise in a spiral path. Fourier analysis of the bubble path identi-
fies a zig-zag frequency of f z≈ 5 Hz for both DP1 and DP2 .
On the contrary, no neat path oscillation frequency can be
found at DP3 . On these basis, it can be argued that the shed-
ding of the wake locks the bubble oscillation [39] at the shed-
ding frequency fs = 2× fz ≈ 10 Hz (dash-dot, gray line in fig-
ure 14) and concentrates the spectral energy around f s forDP1 .
Changes in the bubble shape modifies the balance of the rear
vortexes; this induces a transition from zig-zag to spiraling of
the bubble’s path atDP2 andDP3 and excites modes at frequen-
cies slightly lower and higher than f s. Interestingly, under the
zig-zag condition the intervals of the trajectory with a higher
curvature are nicely associated with a low bubble eccentri-
city (oblate spheroid), while during the straightest sections
the bubble takes on a more spherical appearance (figure 15,
trajectory A).
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Figure 16. Snapshot of the bubble field at frame fr= 8 by Cam1.
Superimposition of 26 raw images from fr= 0 to fr= 25 for three
trajectories (1, 2, 3). Red arrow in the bubble’s displacement
direction. Bubbles circled in red match the frame fr= 8.

A comparison of present results to what is found in literat-
ure can be done following [39], where twomodes of ellipsoidal
harmonics, namely modes (2, 0) and (2, 2), are considered:

f2,0 =
1
2π

√
16
√
2e2σw

ρw(e2 + 1)3/2R3
eq

f2,2 =
1
2π

√
8σw
ρwϵR3

eq
. (2)

Equations (2) applied to bubbles having size DP2 provide:
fDP2

(2,0) = 12 Hz and fDP2
(2,2) = 7.4 Hz, while for DP3 :

fDP3
(2,0) = 9.8 Hz and fDP3

(2,2) = 6.1 Hz. Given the com-
plexity of the described bubbles configuration and considering
the influence of the shedding mode, there is a good agreement
between expected and measured frequencies.

4.3. Application to a plunging jet

The procedure described so far is now applied to the study of a
plunging jet and in particular to the evolution of the air bubbles
close to the free surface. The vertical water plunging jet comes
out of a pipe of diameterDJ . The experimental campaign takes

Figure 17. An overall sketch of the bubbles trajectory evolution in a
plunging jet, for time t= 0 to t= 2 s. Time instants are identified by
the colormap, the darker is the older. Free surface at X̃= 0.

into account three sets of experiments, performed with a water
flow rate equal to QJ = [0.5 l/s, 0.6 l/s, 0.7 l/s], correspond-
ing to values of the Weber number We0.5 between 24.47 and
34.26 and of the Reynolds number Re between 3.40× 104

and 4.76× 104, defined asWe0.5 =
√
(ρwV2

JDj)/σw and Re=

(ρwVJDj)/µw, where VJ is the water velocity inside the pipe
with diameter DJ . These values are just below those sugges-
ted in the literature to avoid scale effects (We0.5≥ 32 and Re≥
105 [40]). However, this is not a constraint for this research,
as the goal is to show the effectiveness of the proposed
technique as a tool for the detailed analysis of air bubbles
in two-phase air–water flows, also in presence of relevant
void fractions.

The jet falling height Hf is equal to 5DJ . The water flow
rate has been linearly increased, starting from the minimum
flow rate for the air bubble entrainment inception (QJ1), and
identifying three different operating conditions.

A preliminary analysis of convergence established the total
number of acquired frames required to gain robust statist-
ics to be equal to 2000, with a frame rate equal to 130 Hz.
This frame rate is settled in order to maximize the size of the
acquired image and of the corresponding volume. Compared
with the setup of the isolated bubble rising, it is more than
halved because the image dimension is changed from 1400×
300 pixels (individual rising bubble) to 1400× 751 pixels. The
reduced acquisition frequency limits the analysis in frequency
space of the evolution of the geometric characteristics of the
bubble, i.e. volume and eccentricity.

An image acquired by Cam0, with a snapshot of the invest-
igated field, is reported in figure 16 together with the super-
imposition of 26 raw images from fr= 0 to fr= 25 for three
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Figure 18. Examples of trajectories (red numbered 1, 2, 3 in figure
16) extracted from figure 17. Leftmost: Details of the raw data from
Cam0 (left) and Cam2 (right). Rightmost: Reconstructed bubble
volumes in time.

trajectories (1, 2, 3). Here the bubbles’ trajectory evolution is
pointed by a red arrow, while their position at snapshot acquis-
ition time is coloured in red. The space subdivision induced
by the plunging jet is overlapped for the sake of readability.
The Lagrangian trajectories in figure 17 report the reconstruc-
ted sequence of positions occupied by the air bubbles from
t= 0 to 0.2 s (26 frames). Details of bubbles’ trajectories 1,
2, 3 (figure 16) are reported in figure 18: original images from
two different cameras (left) and reconstructed ones (right). Air
bubble trajectories in figure 17 and 18 are colored as a func-
tion of the time, moving from dark red at t= 0 s to bright yel-
low at t= 0.2 s. A larger number of air bubbles trajectories
is observed below the jet zone in figure 16. Lateral recircula-
tion zones are instead characterized by a lower number of air
bubbles, most of them having an upward helical path similar
to that observed in the rising of individual air bubbles. This is
due to the lower velocity and therefore lower Weber number.

The spatial distribution of the air concentration is shown in
figures 19 and 20. The air concentration is computed as the
mean value inside the investigated volume (figure 1(b)) and
expressed as the normalized void fraction ϕ̃b, equal to 3.25%

Figure 19. Axial air concentration distribution at the plane Z̃= 0
and versus depth X̃. Black curve indicates the decrease of the axial
air concentration with the depth, following a power-law trend
(equation (4)). Circles indicate: QJ1 ( ), QJ2 ( ), QJ3 ( ).

for QJ1 , 5.10% for QJ2 and 14.86% for QJ3 . The void fraction
is calculated as

ϕ̃b = Nb/Nf×Vb/Vv (3)

where Nb is the number of detected bubbles, N f is the number
of recorded frames, Vb is the mean volume of the air bubble
equivalent sphere inside the voxel with volume Vv. Figure 19
reports the dimensionless axial air concentration distribution
as a function of its maximum value ϕb,max, versus the dimen-
sionless vertical distance from the free-surface X̃. Results are
well fitted by

ϕ̃′b = k0 ×
√
Dj/(Hf− x′) (4)

where k0 is a scale coefficient, equal to 2.7 for this exper-
imental investigation, and x ′ is the generic point along the
streamwise direction X̃. The bubbles captured by the plunging
jet move vertically from the impingement point to the bottom
of the tank. As the depth from the free surface increases, the
bubbles tend to rise owing to the buoyancy force, which coun-
teracts the drag force of the spreading jet on the bubbles. The
axial air concentration decreases as the vertical distance from
the impinging point increases, with values close to the 60% at
a vertical distance of X̃= 7, and shows a substantial independ-
ence upon the water flow rate. The cross-sectional air concen-
tration distribution along the transversal direction at Z̃= 0 and
for different depths X, exhibits a Gaussian trend (figure 20),
with a greater air concentration along the centerline of the jet
zone which decreases toward the lateral recirculation zones.
The Gaussian fitting is expressed as

ψ̃b = 1/(
√
πσ(ϕ̃))e−0.5((Ỹ−⟨ϕ̃⟩)/σ(ϕ̃) (5)
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Figure 20. Cross-sectional air concentration distribution in the
plane Z̃= 0 vs. Ỹ. Curve reports a Gaussian decrease of the air
concentration with the depth (equation (5)). ⃝, + and ♢ markers
refer to X̃= 2, 4 and 6 respectively. Red, blue and green colors refer
to QJ1, QJ2 and QJ3.

where ⟨ϕ̃⟩ and σ(ϕ̃) are respectively the mean and stand-
ard deviation of ψ̃b. The power-law trend for the dimension-
less air concentration and the Gaussian trend for the cross-
sectional one are both in agreement with results obtained by
[2]. Moreover, despite a significant increase of the void frac-
tion as a function of the water flow rate, both the dimensionless
air concentration distributions, axial and cross-sectional, fol-
low a similar trend regardless of the water flow rate.

5. Conclusions

This paper shows the effectiveness of a 3D volumetric shad-
owgraphy technique in characterizing the kinematics of air
bubbles in water under different conditions. Both the measure-
ment principle and the calibration procedure have been care-
fully described. In addition, an analysis of the influence of the
camera system geometry has been carried out, in order to eval-
uate the optimal spatial arrangement of the points of view,
upon which the accuracy in reconstructing of the observed
object depends. The implemented technique has been valid-
ated on the benchmark case of rigid and buoyant spheres of
known size, rising in still water. The detection of the shape and
size of an object is made possible by space carving with a sub-
sequent refinement of the reconstructed object. Four spheres
with different radii have been tested, showing a time averaged
value of the ratio between estimated and true diameter along
the rising direction between 0.999 to 1.011, with an eccentri-
city of the fitted ellipsoid between 0.932 and 0.945. Further-
more, the accuracy in reconstructing the true volume is shown
to increase with the number of points of view, with a lower
coefficient of variation, indicating a more accurate and stable
measurement of the observed object. It is worth mentioning
that the design of an optimal setup configuration should con-
sider the presence of a point of view orthogonal to the main

reference plane, here not possible because of the presence of
the free surface.

Then, the shadowgraphy technique has been used for a 3D
Lagrangian tracking of a set of air bubbles released individu-
ally from the bottom of the observation tank, providing the
spatial-temporal evolution of the air bubbles and the velocity
along their path. Results highlight marked shape variation near
the outlet section, due to the bubble detachment from the pipe
nozzle, with a subsequent air bubble expansion as the depth
decreases. Moreover, reduced variations of shape and size are
observed for the smaller air bubbles. These findings are in
agreement with the physical properties of a bubble rising in
still water and are confirmed by the frequency spectra of the
eccentricity recorded in time. In particular, the water forces for
a small bubble do not exceed the surface tension, involving an
olblate spheroid shape that minimizes the air bubble surface
area. For larger bubbles, the action exerted by the water on
the bubble surface overcomes the surface tension, involving
a distorted spheroidal cup shape with open, unsteady wake.
The projection of the present results in theGa−Eo and Eo−Re
phase diagrams unveil the transition that occurs in air bubble
shape for the selected range of diameters, moving from an
oblate spheroid rising along a zig-zag path to a spherical cup
with spiraling trajectory. The wake action in the former condi-
tion locks the bubble eccentricity oscillation to the wake shed-
ding frequency f s, while the instability associated with the lat-
ter condition allows for the excitation of two modes whose
frequencies agree quite well with data from the literature.

Finally, shadowgraphy is applied to the investigation of a
vertical plunging jet at different flow rates. The detection of the
boundaries of the same bubble at different times has allowed
us to follow the trajectories of each air bubble also in the pres-
ence of relevant void fractions. In addition, a statistical ana-
lysis has been performed, providing the spatial distribution
of the air concentration. More specifically, both the axial and
cross-sectional dimensionless air concentration distributions
are seen to follow similar trends with very little effect on the
water flow rate. Furthermore, the air bubble paths first move
downward and then rise across the lateral recirculation zones.
This behavior induces the observed power-law-trend decrease
of the axial air concentration distribution. On the contrary,
the cross-section air concentration distribution follows a Gaus-
sian trend, with the peak in the jet zone and decreasing values
toward the lateral recirculation zones.

The promising outcome of this work encourages further
refinements to improve the accuracy of the methodology with
further validation tests using non-spherical reference geomet-
ries, in order to expand its range of applications to flows char-
acterized by higher void fractions, faster time scales and larger
range of bubble dimensions.
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