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Density functional theory can be generalized to mixtures of ground and excited states, for the
purpose of determining energies of excitations using low-cost density functional approximations.
Adapting approximations originally developed for ground states to work in the new setting would
fast-forward progress enormously. But, previous attempts have stumbled on daunting fundamental
issues. Here we show that these issues can be prevented from the outset, by using a fluctuation
dissipation theorem (FDT) to dictate key functionals. We thereby show that existing exchange
energy approximations are readily adapted to excited states, when combined with a rigorous exact
Hartree term that is different in form from its ground state counterpart, and counterparts based
on ensemble ansatzë. Applying the FDT to correlation energies also provides insights into ground
state-like and ensemble-only correlations. We thus provide a comprehensive and versatile framework
for ensemble density functional approximations.

Introduction: Averages and fluctuations are essential
concepts to make sense of data of any sort. In physics,
these quantities are also used to explore the formal re-
lationships of theories and approximations. Via Feyn-
man’s path integrals [1], for example, classical physics
itself can be seen to emerge in terms of an averaged path
that, in the limit of ~ → 0, dominates over otherwise
irreducible quantum fluctuations. In condensed-matter
physics, to mention another important example, mean-
field approximations are used to formalize the concept of
the order parameters and their estimations; [2] consider-
ation of fluctuations are then necessary to fully charac-
terize second-order phase transitions.

Density functional theory (DFT) [3, 4] can also be con-
ceptualized in terms of averages and fluctuations. In
one and the same step [4] it overcomes the semiclassical
Thomas-Fermi approximation [5] and the mean-field ap-
proximation by mapping the original many-body problem
onto a one-electron problem capturing key fluctuations
– the exchange and correlation (xc) terms in DFT par-
lance. Simple and effective xc approximations for these
fluctuations have enabled DFT to become the workhorse
of electronic structure calculations. [6]

In this Letter, we turn to a generalization of DFT
through which excitation energies (not just the ground
state energy) of a many-electron system can be com-
puted; and invoke an extension of the (so-called) fluc-
tuation dissipation theorem (FDT) to effectively deal
with fluctuations relative to excited states. We shall
refer to this formulation of DFT [7, 8] as “ensemble
DFT” (EDFT) but, strictly, we deal with EDFT for

excited states (rather than other formulations such as
the one that accounts for states with different particle
numbers [9]). EDFT is a primary competitor of linear-
response time-dependent DFT for the evaluation of exci-
tation energies. Previous attempts at deriving improved
approximations have, however, stumbled on a series of
difficulties. Progress has recently attained a faster pace
due to new fundamental and practical results [10–27].

Current wisdom stresses that ensembles are best dealt
with by treating Hartree-Fock (Hartree-exchange, Hx, in
DFT) energies as a “conjoint” unit. [10, 18] Indeed, two
of the authors have previously strongly espoused this ap-
proach. [21] But, much of the progress in devising density
functional approximations (DFA) for ground states has
been enabled by treating Hartree (H) and exchange (x)
components on different footings: with the former al-
most always employed in its exact form and the latter
approximated in full, EHxc ≈ EH +EDFA

xc , (standard ap-
proximations) or partially, EHxc ≈ αEHx + (1−α)(EH +
EDFA

x ) + EDFA
c (hybrid approximations). DFAs of this

form have been refined over decades to balance accuracy
and practicality. It is imperative that we can transfer
such experience to excited states. Attempts so far have
been positive, but of somewhat narrow scope. Has the
time come to surrender?

Quite on the contrary, here we show that the ‘Hx’ en-
ergy in EDFT can be split into disjoint Hartree-like and
exchange-like contributions, which avoid the disastrous
issues encountered in previous proposals. We derive this
decomposition with the help of a generalization of the
FDT to passive states – ensemble states whose weights
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are non-increasing with increasing energy and are thereby
amenable to EDFT treatment. [28] The same FDT also
identifies key components of the corresponding correla-
tion energy functional. Hence we draw a complete, user
friendly, theoretical roadmap for developing novel ap-
proximations for excited states – which builds from fun-
damental principles without sacrificing previous work.

We begin with a brief introduction to EDFT for excited
states; and illustrate the problem that is solved in this
work. Then, we work out the details of the main results
and see them in action on prototypical cases. We first
work on the Hartree and exchange energy functionals,
then complete the development by deriving correspond-
ing results for correlations, before concluding.

Crash-course in EDFT: Consider the Hamiltonian
Ĥ = T̂ + Ŵ + V̂ext where T̂ is the kinetic energy of
the particles (electrons, in our case), Ŵ is the two-body
interaction (typically the Coulomb interaction), and V̂ext

is an external potential (typically the scalar electric po-
tential exerted by atomic nuclei on electrons).

We are often interested in a finite set of states with
different energies (or symmetries when degenerate) but
the same number of electrons – typically a handful of
low-lying solutions of Ĥ |κ〉 = Eκ |κ〉. These form the
ensemble described by the operator Γ̂w =

∑
κ wκ|κ〉〈κ|

where a set of prescribed mixing weights wκ ≥ 0 (collec-
tively, w) are taken as non-increasing (i.e., wκ ≤ wκ′ for
Eκ ≥ Eκ′) and normalised

∑
κ wκ = 1. Such ensembles

belong to the class of passive states [29]. Issues due to
spurious breaking of symmetries are avoided by assigning
equal weights to multiplets to obtain a totally symmetric
passive state. [30] The average of an operator, Ô, can be
written as, Tr[Γ̂wÔ].

Γ̂w fulfills an extended variational principle [28] ac-
cording to which

Tr
[
Γ̂w

trialĤ
]
≥ E = Tr

[
Γ̂wĤ

]
. (1)

Thus, E = inf Γ̂w
trial

Tr[Γ̂w
trialĤ] where the argument for the

infimum (usually a minimum), Γ̂w
trial =

∑
κ wκ|κt〉〈κt|,

involves prescribed weights, w, and mutually orthonor-
mal trial wavefunctions |κt〉.

In EDFT we compute the average energy, E , by min-
imizing the following functional of the ensemble-particle
density, n, [7, 8]

Ew[n] = T w
s [n] + EwHxc[n] +

∫
n(r)vext(r)dr. (2)

By analogy with standard DFT, T w
s [n] =

minΓ̂w
trial→n

Tr[Γ̂w
trialT̂ ], is the kinetic energy of the

Kohn-Sham (KS) system reproducing the particle
density of the ensemble; the minimum is attained at
Γ̂s ≡

∑
κ wκ|κs〉〈κs|. [31] EwHxc[n] subsumes the Hartree,

exchange, and correlation energies for the ensemble.
Note that in writing the energy functionals we use

capital calligraphic letters to refer to energies of mixed
states and capital Roman letters to refer to energies
of pure state or their components, respectively. The
superscript w indicates quantities that explicitly depend
on the weights, meaning eq. (2) describes a different
functional for every choice of w. Varying w lets us,
e.g., obtain excitation energies. The superscript shall
henceforth be dropped for brevity.

Thus one can define a KS Hamiltonian Ĥs = T̂ + V̂s[n]
which yields the same ensemble density, n = Tr[Γ̂sn̂] =
Tr[Γ̂n̂], as the interacting system when the KS ensem-
ble operator Γ̂s ≡

∑
κ wκ|κs〉〈κs| minimizes Tr

[
Γ̂sĤs

]
.

Following standard derivations one can show that the ef-
fective KS potential is given by vs ≡ vext + δEHxc

δn . We

emphasize that ambiguities in constructing Γ̂s due to ex-
tra (noninteracting) degeneracies are removed by choos-
ing the κs’s to belong to the same irreducible representa-
tion as the κ’s; hence, the κs’s may be configuration-state
functions (CSFs) (i.e., finite linear combinations of Slater
determinants). This allows us to preserve all the relevant
symmetries, consistently. [32]

In particular, because we work at the level of totally
symmetric ensembles, ensembles KS densities and corre-
sponding KS kinetic energies can still be computed by
referring to a “minimal” set of single Slater determi-
nants, {Φκ}, from which all the relevant |κs〉 states can
be constructed. Therefore, n ≡

∑
i fi|φi|2, and, Ts =

− 1
2

∑
i fi
∫
drφ∗i∇2φi, involve one-body orbitals obeying

the ensemble KS equation, {− 1
2∇

2 + vs[n](r)}φi(r) =
εiφi(r). Differences from ground state KS theory ap-
pear in the fractional occupation factors, fi =

∑
κ wκθi,κ,

which are ensemble averages of total (↑, ↓ or ↑↓) occu-
pation factors, θi,κ, for orbital i in state Φκ; and also in
the form of the Hxc energy functional, EHxc (see later).

A long standing struggle: Recall, in DFT we define
the Hartree energy as,

EH[n] ≡ 1
2

∫
drdr′

n(r)n(r′)

|r − r′|
(3)

and, correspondingly, the exchange energy as,

Ex[n] ≡− 1
2

∫
drdr′

|ρs(r, r′)|2

|r − r′|
≡ Ex[ρs] . (4)

Here, ρs(r, r
′) =

∑
i fiφ

∗
i (r)φi(r

′) is the KS one-body re-
duced density matrix (1-RDM) obeying ρs(r, r) = n(r).
Note that ρs(r, r

′) is a functional of the particle density,
ρs(r, r

′) = ρs[n](r, r′), because the KS orbitals have an
implicit dependency on n.

A natural ansatz (Ans1) to extend the above equations
to EDFT is to replace the density and 1-RDM by their en-
semble versions. Then, EAns1

H [n] := EH[
∑
wκns,κ(r)] =

EH[
∑
fi|φi(r)|2] and EAns1

x [n] := Ex[
∑
wκρs,κ(r, r′)] =

Ex[
∑
fiφ
∗
i (r)φi(r

′)], where ρs,κ = 〈κs|ρ̂|κs〉 (similarly
for ns,κ). Here, both ns,κ and ρs,κ are functionals of the
overall density n. Ans1 is appealing because it allows
standard DFA to be readily reused in EDFT [7, 8].



3

But, in practice, Ans1 has disastrous consequences.
“Ghost interaction errors” (GIE) badly affect both
Hartree and exchange, but do not cancel each other. GIE
can be understood as a generalization of the one-particle
self-interaction error, in which electrons spuriously in-
teract with ‘ghost’ counterparts in a different replica in
the ensemble, leading to errors. GIE corrections have
traditionally been worked out ad hoc. [13, 33, 34] Recent
work [17, 26] has made interesting progress in using Ans1
together with weight-dependent xc-approximations.

GIE can sometimes be avoided by considering a differ-
ent and, arguably, better ansatz (Ans2),

EAns2
H [n] :=

∑
κ

wκEH[ns,κ] , (5)

EAns2
x [n] :=

∑
κ

wκEx[ρs,κ] . (6)

Ans2 is appealling, as it suggests that ground state func-
tionals may be upgraded to ensembles via weighted aver-
ages of their “clones”. Ans2, however, falls short in cer-
tain cases, such as difficult spin-multiplets (see below).

All issues with the previous definitions for EH[n] and
Ex[n] are resolved by working at the level of a conjoint
EHx[n] which is problem-free by construction: [21]

EHx[n] ≡ lim
λ→0+

Fλ[n]− Ts[n]

λ
≡ Tr[Γ̂0+

Ŵ ] . (7)

Eq. (7) is successful (and maximally GIE free) because it
is written in terms of the well-defined universal functional
Fλ[n] = minΓ̂→n Tr

[
Γ̂(T̂ + λŴ )

]
≡ Tr[Γ̂λ(T̂ + λŴ )],

where Γ̂λ =
∑
wκ|κλ〉〈κλ| involves eigen-solutions, |κλ〉,

of {T̂ + λŴ + V̂ λ}|κλ〉 = Eλκ |κλ〉; with vλ[n] chosen to
ensure n = Tr[Γ̂λn̂] regardless of λ. When totally sym-
metric ensembles are employed, Γ̂λ[n], is also a unique
functional of n and w [24] so we restrict to this use-
ful case. We also assume that the ordering of states
is preserved (or preservable) along the adiabatic path
0 < λ ≤ 1. [35] Note, we can now rigorously define

Γ̂s ≡ limλ→0+ Γ̂λ ≡ Γ̂0+

, Ts ≡ F0 and EHxc ≡ F1 − Ts.
The conjoint treatment leads to well-defined “ensem-

blized” versions of Hartree-exchange [21] and correla-
tions [23], albeit with some additional complications com-
pared to the ground state. But, keeping ‘H’ and ’x’ joint
together loses the long experience gained in DFAs which
treat them separately. This is the most urgent drawback
of eq. (7) as it hampers access to prior work.

Its impact can be easily seen by considering the follow-
ing ensemble generalization of conventional DFAs:

EDFA
xc [n] :=

∑
κ

wκE
DFA
xc [ns,κ] . (8)

Eq. (8) involves an ensemble average of a standard DFA
(e.g. PBE) for xc, along the lines of Ans2. It can thus
draw from decades of work on DFA development. But, it

does not correct for all ghost interactions. Evaluating the
ensemble energy, E = Ts + EH + EDFA

xc +
∫
drnvext + EDD

c

(the final term is discussed below) therefore requires
choosing a GIE-free Hartree term to pair with eq. (8).
Efforts to develop new approximations can thus be fast-
forwarded, by ensuring that EH captures the energy com-
ponents that would otherwise be missed. Below, we
will show that the ideal EH must go beyond EAns2

H .
Furthermore, our derivation also sheds light on, EDD

c :
the recently discovered “density-driven” correlation en-
ergy, [23] discussed in recent work. [23, 25]

Resolution: First, recall that the average of the inter-
action can be expressed as follows: Tr

[
Γ̂λŴ

]
≡
∫

drdr′

2|r−r′|

nλ2 (r, r′) where, nλ2 (r, r′) = Tr[Γ̂λn̂(r)n̂(r′)]−n(r)δ(r−
r′). The crucial second step is to use the FDT for passive
states – stated and proved in the Supplementary Mate-
rial [36] – to write,

Tr
[
Γ̂λn̂(r)n̂(r′)

]
=Pλ(r, r′)−

∫ ∞
0−

dω
π =χ

λ(ω, r, r′) ,

(9)

in terms of the ensemble (retarded density-density) re-
sponse, χλ, of the considered passive state, Γ̂λ; and a
relevant pair-density,

Pλ(r, r′) =
∑
κκ′

min[wκ, wκ′ ]n
λ
κκ′(r)nλκ′κ(r′) , (10)

where nλκκ′ ≡ 〈κλ|n̂|κ′λ〉. Note, Pλ(r, r′) ≡
∑
κ wκ

nλκκ(r)nλκκ(r′) +
∑
κ′<κ wκ[nλκκ′(r)nλκ′κ(r′) + r ↔ r′] en-

tails two terms: the first term resembles a typical mean-
field-like contribution and involves products of pure state
densities (nλκκ); the second involves off-diagonal matrix
elements (nλκ 6=κ′) which represent extra ensemble-specific
fluctuations that are absent in pure ground states.

Next, by invoking the analogous FDT relationships
from ground state DFT functionals we can establish the
EDFT counterparts that account for degeneracies and
excited states. Any non-degenerate ground state obeys
Ex = −

∫
drdr′

2|r−r′| [n(r)δ(r − r′) +
∫∞

0
dω
π =χs(ω, r, r

′)],

where χs is the KS response of the ground state. This
relationship is useful for constructing and understanding
DFAs. It is therefore natural to similarly define,

EFDT
x [n] ≡−

∫
drdr′

2|r − r′|

{
n(r)δ(r − r′)

+

∫ ∞
0−

dω

π
=χs[n](r, r′;ω)

}
, (11)

where χs ≡ χλ=0+

is the ensemble KS response function
for the considered passive state, Γ̂0+

. Finally, using the
FDT [eq. (9)] with eq. (7) dictates the form of the corre-
sponding EDFT Hartree functional: EFDT

H = EHx−EFDT
x ,

or,

EFDT
H [n] =

∫
drdr′

2|r − r′|
Ps[n](r, r′) . (12)
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Ps ≡ Pλ=0+

is defined via eq. (10) with ns,κκ′ ≡ nλ=0+

κκ′ .
Thus, only non-interacting KS states are involved. [21,
24] Pλ[n] and χλ[n] are uniquely defined by vλ[n] and
w, meaning eqs (9)–(12) are functionals of the density.

Eq. (12) reduces to the usual semi-classical mean-field
approximation for a non-degenerate ground state (gs),
with Ps[ngs](r, r

′) = ngs(r)ngs(r
′), since wgs = 1 and

wκ = 0 otherwise. But in general, eq. (12) involves prod-
ucts between off-diagonal matrix elements of the density,
from eq. (10). Disregarding these off-diagonal terms, i.e.,
replacing Ps by

∑
κ wκns,κκ(r)ns,κκ(r′), reduces EFDT

H

to EAns2
H and involves direct integral terms only. The off-

diagonal terms lead to additional exchange integrals in
EFDT

H which, because EFDT
H + EFDT

x = EHx, must provide
contributions that are missed by Ans2. Applying Slater-
Condon rules to eq. (7) must give equivalent terms – the
FDT assigns these terms unambiguously to H or x.

Last but not least, an additional nice property of EFDT
H

and EFDT
x is that their integrands are invariant to rota-

tions around axes of symmetry, in contrast to Ans2 which
has an unphysical dependence on the choice of axes. De-
tails are in the Supplementary Material. [36]

Illustrative examples: To keep the discussion of key
results simple, let us work with a two electron system.
In KS theory, the ground state has a doubly occupied or-
bital, φ0, whereas the low-lying singlet/triplet excitations
involve φ0 and φ1 together.

First, consider Γ̂ST
s = wS|S0〉〈S0|+wTΓ̂T consisting of

the KS singlet ground state (S0) and the lowest-lying KS
triplet Γ̂T

s = 1
3

∑
Sz=1,0,−1 |TSz

〉〈TSz
| mixed with weights

wT ≤ 1
2 and wS = 1−wT. Because n̂ is spin independent,

〈TSz
|n̂|S0〉 = 0. Hence, eq. (12) yields EFDT

H,ST = EAns2
H,ST.

Then, consider Γ̂SS
s = wS0

|S0〉〈S0|+wS1
|S1〉〈S1|, which

mixes the ground (S0) state, as above, with the first KS
excited singlet state (S1), with weights wS1 ≤ 1

2 and
wS0

= 1 − wS1
. This ensemble enables direct evaluation

of excitations of the same symmetry. Eq. (12) yields,

EH,SS =EAns2
H,SS + 4wS1

EH[φ0φ1] ; (13)

i.e., eq. (13) differs, in its final term, from the weighted
average of Ans2. Ans2 and FDT both yield or-
bital functionals and thus require ensemble generalized
Kohn-Sham theories [37], optimized-effective potentials
(OEP) [38–40] or approximations. [17, 24, 27, 40]

Finally, consider the SS and ST ensembles when the
ground state has the same weight 1 − w. For simplic-
ity, also allow the orbitals to be the same. It follows
that EFDT

H,SS = EFDT
H,ST + 4wEH[φ0φ1]. The Hartree dif-

ference for the SS and ST ensembles is the (weighted)
spin splitting energy, 4EH[φ0φ1], obtained at the level
of CSFs – which is therefore captured when eq. (12) is
combined with eq. (8). This is not surprising given that
direct and exchange integrals appear in EFDT

H . In con-
trast, EAns2

H,SS = EAns2
H,ST does not contain this term.

Let us now test how the choice of Hartree functional
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FIG. 1. SS excitation (1Σ+
g → 1Σ+

u ) energies, ∆Eex(D) for
H2, as a function of interatomic distance, D. Compares
FDT+LDA (orange dash dot) and Ans2+LDA (red short
dashes) against exact energies (black) and EXX (blue dashes).

affects energies. To this end, Figure 1 shows the SS ex-
citation energy, ∆Eex, of dissociating H2 in a minimal
basis set, using the local density approximation (LDA,
ELDA

xc ) in eq. (8), paired with EFDT
H (FDT+LDA) or

EAns2
H (Ans2+LDA). This simple, non-trivial example il-

lustrates differences between the two Hartree function-
als but avoids complexities like weight-dependence and
OEPs. Details are in the Supplementary Material. [36]

FDT+LDA has a clear (albeit imperfect) minima
and agrees perfectly with exact calculations for large D
(∆Eex → 18 eV). In contrast, Ans2+LDA predicts no
minima and no gap for D → ∞. Ans1, not shown,
is nearly identical to Ans2. Exact exchange (EXX,
EHxc ≈ EHx) underestimates the asymptotic gap by a
factor of two (∆Eex → 9 eV) and has an extremely
shallow minima. For this example, it is clear that only
FDT+LDA produces qualitatively correct physics.

General purpose ensemble DFAs must go beyond the
LDA in eq. (8). They must also deal with density-driven
correlations. [23, 25] The penultimate section thus ap-
plies the FDT to the correlation energy functional, Ec, to
reveal its inner components, for the purpose of devising
and improving ensemble DFAs.

Correlations: Let us adiabatically connect the non-
interacting (λ = 0+) and fully interacting (λ = 1) sys-
tems. The Hellmann-Feynman theorem lets us write,

EHxc ≡ F1 − F0+

=
∫ 1

0+ dλ
dFλ

dλ =
∫ 1

0+ dλTr[Γ̂λŴ ]. We
can then subtract the corresponding Hx contribution (de-
rived earlier) to obtain the correlation energy,

Ec[n] ≡
∫ 1

0+

dλ

∫
drdr′

2|r − r′|

{
∆Pλ(r, r′)

−
∫ ∞

0−

dω

π
=∆χλ(r, r′;ω)

}
. (14)

Therefore, we see that, Ec entails two key contributions:
a contribution, ∆Pλ[n] = Pλ[n] − Ps[n], that naturally
pairs with EFDT

H ; and a second contribution, ∆χλ[n] =
χλ[n]− χs[n], that naturally pairs with EFDT

x .
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First of all, note that ∆Pλgs ≡ 0 in pure state DFT
because the density, n ≡ ngs, is preserved along the adia-
batic connection. In EDFT only the total ensemble den-
sity n =

∑
wκn

λ
κκ is preserved, whereas the densities of

individual terms, nλκκ′ , can (and do [22, 23]) vary. Some
of the present authors already stressed that this implies
a new form a correlation in EDFT: density-driven (DD)
correlations, the relevance of which has been thoroughly
illustrated in previous works. [23, 25] The contribution
from ∆Pλ thus provides an explicit expression for part
of the DD correlations.

The contribution from ∆χλ is expressed as a (corre-
lation) density functional of the “adiabatic-connection
fluctuations-dissipation” (ACFD) variety [41–44] – here
extended to passive states. ACFD approximations are
used directly and as an ingredient in “double hybrid”
approximations. [45] The integral over frequency reduces
sensitivity of ACFD approximations to issues like “mem-
ory effects” that manifest when using response functions
to directly evaluate excitation energies. Whether these
good features hold for ensembles should be explored in
future work.

Conclusions: The “Hartree-exchange” energy func-
tional for ensembles [eq. (7)] is a wilder beast than its
ground state counterpart. Here, we have shown that it
can be tamed by using the fluctuation-dissipation the-
orem to define an exchange functional [eq. (11)] that
is amenable to conventional approximations; and thus
dictate an unconventional Hartree functional [eq. (12)]
whose extra terms account for spin-multiplets and other
symmetry issues. The correlation energy has a similar
division [eq. (14)], which provides insights into density-
driven correlations. [23, 25]

This work thus completes the ‘ensemblization’ of
density functional theory that was begun in previous
works; [21, 23] and provides a comprehensive ensem-
ble treatment of all key functionals. It reveals how
years of successful experience accumulated for ground
states can, in principle, be re-used in a problem-free
fashion for excitations. Future work should investigate
how the framework provided here can be used to de-
velop successful approximations, especially for double
(and higher multiple) excitations that are difficult to cap-
ture in TDDFT. [46, 47] Its relationship to other EDFT
formalisms [16, 25] should also be investigated.
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work from correlations, Phys. Rev. X 5, 041011 (2015).

[30] By totally symmetric we mean, as usual, ensembles which
are invariant under any symmetry operations of the con-
sidered Hamiltonian [24].

[31] To avoid ensemble v-representability concerns we con-
sider only “well-behaved” densities here for which vs[n]
exists.

[32] This is a highly desirable prerequisite especially when
dealing with multiplets.

[33] N. I. Gidopoulos, P. G. Papaconstantinou, and E. K. U.
Gross, Spurious interactions, and their correction, in
the ensemble-kohn-sham scheme for excited states, Phys.

Rev. Lett. 88, 033003 (2002).
[34] E. Pastorczak and K. Pernal, Ensemble density varia-

tional methods with self- and ghost-interaction-corrected
functionals, J. Chem. Phys. 140, 18A514 (2014).

[35] Note, this assumption is usually made implicitly in Kohn-
Sham EDFT. The results from this work thus may not
apply in general but certainly cover all common applica-
tions of EDFT.

[36] Supplementary material may be found at
XXXXXXXXX.

[37] Gould and Kronik, Ensemble Generalized Kohn-
Sham Theory: The Good, the Bad, and the Ugly,
chemrxiv.12846836.v1 10.26434/chemrxiv.12846836.v1
(2020).

[38] R. T. Sharp and G. K. Horton, A variational approach to
the unipotential many-electron problem, Phys. Rev. 90,
317 (1953).

[39] J. D. Talman and W. F. Shadwick, Optimized effective

atomic central potential, Phys. Rev. A 14, 36 (1976).
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