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A B S T R A C T

The rising atmospheric carbon dioxide (CO2) levels significantly contribute to climate change. Converting CO2 
into valuable products offers an attractive strategy to mitigate its environmental impact. Here, we present a 
highly efficient, solvent-free method for CO₂ fixation into cyclic carbonates using a novel green catalyst, 
β-cyclodextrin, linked to an imidazolium-based ionic liquid (β-CD-Im+Br− ). This catalyst facilitates the conver
sion of various terminal and internal epoxides into cyclic carbonates with exceptional performance. Notably, 
β-CD-Im+Br− achieves up to 98 % conversion of styrene oxide to its corresponding carbonate within 24 h at 120 
◦C, demonstrating significant activity without needing a co-catalyst. Operating under solvent-free conditions, this 
method avoids environmentally harmful synthetic pathways by utilizing the hydroxyl groups of cyclodextrins as 
hydrogen bond donors and employing the bromine counterion to facilitate epoxide ring opening. Mechanistic 
studies reveal that β-CD-Im+Br− enhances catalytic performance by lowering the activation energy of the rate- 
limiting step through its hydrogen bond acceptor properties. Importantly, the catalyst is both recyclable and 
reusable, highlighting its cost-effectiveness and environmental benefits. This approach represents a significant 
advancement in sustainable chemistry, offering a green alternative for CO₂ fixation.

Introduction

Carbon dioxide (CO2) is a significant greenhouse gas, and its exces
sive levels in the Earth’s atmosphere contribute to climate change [1,2]. 
However, the chemical conversion of CO2 has generated considerable 
interest among chemists globally, as CO2 is a widely available, harmless, 
and cost-effective carbon resource [3,4]. Notably, in industrial appli
cations, CO2 is a raw material for synthesizing urea, methanol, poly
carbonate, and cyclic carbonate [5]. Among these, the highly efficient 
cycloaddition reaction of CO2 with epoxide, which achieves 100 % atom 
economy and yields cyclic carbonate, holds great promise for applica
tions in lithium batteries, polymer materials, fuel, and other emerging 
energy sectors [6–8]. Currently, various homogeneous and heteroge
neous catalysts have been identified to enhance this cycloaddition 

reaction, including quaternary ammonium salts, metal complexes, ionic 
liquids, quaternary phosphonium salts, amines, metal oxides, and met
alloporphyrins [9–17]. While many of these catalysts exhibit high effi
ciency in converting CO2, they often face significant drawbacks that 
constrain their effectiveness. These drawbacks include difficulty in 
product separation, susceptibility to air or water, and a lack of recy
clability [6]. Additionally, many catalysts are associated with costly 
initial materials, metal dependency, or expensive synthetic pathways 
with environmental implications. Often, demanding reaction condi
tions, such as the involvement of co-catalyst additives, are necessary 
[18].

The inherent challenges of corrosion, toxicity, and environmental 
ramifications associated with metallic cations further complicate the 
development of effective catalysts. Therefore, designing efficient and 
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environmentally benign catalysts for the coupling reaction of CO2 and 
epoxide remains a formidable task.

Currently, β-cyclodextrin (β-CD), a cost-effective and stable 
biopolymer with abundant hydroxyl groups, has gained significant 
attention as a catalyst component in various reactions [19–23]. Since 
2008, it has been employed as an excellent catalyst for the coupling 
reaction of CO2 with epoxides in a dual system involving tetrabuty
lammonium chloride (TBAC), tetrabutylammonium bromine (TBAB), or 
tetrabutylammonium iodide (TBAI), thus expanding β-CD’s application 
to a novel area [24–26]. Given the ease of modifying cyclodextrins 
(CDs), we contemplated enhancing the catalytic activity by introducing 
an ionic liquid as a second component [27–30]. Ionic liquids are well- 
established as crucial in facilitating CO2 cycloaddition to epoxide re
actions, presenting a forward-thinking and environmentally conscious 
approach. Typically, a successful catalyst for this type of reaction re
quires a Lewis acid to activate the epoxide and a nucleophile to open the 
ring. In this paper, we designed, synthesized, and studied catalyst 1, 
based on a β-CD moiety linked to 3-(3-hydroxypropyl)-1H-imidazol-3- 
ium bromide (Fig. 1). The hydroxy groups of β-CD act as hydrogen bond 
donors, replacing the Lewis acidic metal center, while the bromide 
counterion facilitates the epoxide ring opening. Linking cyclodextrin to 
imidazole likely combines the beneficial properties of both molecules. 
Cyclodextrin provides a unique microenvironment and stability, acting 
as a hydrogen bond donor thanks to its hydroxy groups. Meanwhile, 
imidazole contributes to catalytic activity by delivering a bromine 
counterion, which is crucial for the epoxide ring opening. This combi
nation could result in a highly effective catalyst that leverages the 
strengths of both components. The strength of this catalyst lies in its 
exceptional activity, demonstrated by high conversion rates in the CO2/ 
epoxide cycloaddition reaction in solvent-free conditions and, impor
tantly, its excellent reusability.

Experimental section

Materials

The starting materials β-cyclodextrin, 1-methylimidazole, 3-bromo-1- 
propanol, styrene epoxide, cyclohexene epoxide, 1,2-epoxy-3-phenoxy
propane, 4-vinyl-1-cyclohexene 1,2-epoxide, 1-adamantanol, epichlor
ohydrine, 2,2-dimethyloxirane, 1,2-epoxyhexane, dimethylformamide, 
absolute ethanol (EtOH), deuterated chloroform (CDCl3) were purchased 
from Sigma-Aldrich. Thin-layer chromatographic separations were per
formed on Merck silica gel 60-F254 precoated aluminum plates. Flash 
chromatography was accomplished on Merck silica gel (200–400 mesh). 
Dowex 1X8 (200–400 mesh) analytical grade was purchased from VWR. 
A Milli-Q water purification system produced deionized water. 1H NMR, 
13C NMR, and HSQC spectra were recorded using Bruker AvanceTM 400 
MHz and on Varian UNITY Inova 500 MHz.

Synthesis of the catalyst

Synthesis of 3-(1H-imidazol-1-yl)propan-1-ol (4)
Synthesis of compound 4 was carried out by mixing imidazole 2 

(300.0 mg, 4.41 mmol) and 3-bromopropanol 3 (590 mg, 4.41 mmol) at 

40 ◦C in solvent-free conditions. After 24 h, the reaction mixture was 
cooled to room temperature. The product was purified by flash chro
matography using DCM/MeOH (8:2) as eluent. After solvent evapora
tion, compound 4 was isolated as bromide salt. Yield: 65 %.

1H NMR (400 MHz, CDCl3) δ 7.81 (s, 1H, Im), 7.10 (t, 1H, J = 1.2 Hz, 
Im), 6.97 (t, J = 1H, 1.4 Hz, Im), 4.17 (t, 2H, J = 7.1 Hz, CH2), 3.62 (t, 
2H, J = 6.1 Hz, CH2O), 2.01 (q, 2H, J = 6.5 Hz, CH2).

Thereafter, compound 4 was eluted from Dowex 66 ion exchange 
resin using water/methanol (1:1) to obtain the free base. The collected 
fractions were evaporated under vacuum to obtain a transparent oil.

1H NMR (400 MHz, CDCl3) δ 7.46 (s, 1H, Im), 7.04 (t, 1H, J = 1.1 Hz, 
Im), 6.93 (t, 1H, J = 1.3 Hz, Im), 4.11 (t, 2H, J = 7.6 Hz, CH2), (t, 2H, J =
5.9 Hz, CH2O), 1.99 (q, 2H, J = 6.5 Hz, CH2). HMRS (ESI): m/z calcd. for 
C6H11N2O (M + H+): 126.0871, found: 127.0850.

Synthesis of Mono-6-O-p-toluenesulfonyl-β-cyclodextrin (6)
Compound 6 was synthesized as reported in the literature with minor 

modifications [31]. To a suspension of β-CD (1.2 g, 1.05 mmol) in 0.4 M 
NaOH (15 mL) at 0 ◦C, tosyl chloride (5) (0.804 g, 4.22 mmol) was 
slowly added, and the resulting mixture was stirred at 0 ◦C for 50 min. 
The resulting precipitate was removed by filtration, and the pH was 
adjusted to 8.5 by adding 0.1 M HCl. The reaction was allowed to stir at 
r.t. for 1 h, and then, the white precipitate was recovered by filtration, 
washed 3 times with water, and dried in vacuum for 48 h. Yield: 33 %.

Synthesis of β-cyclodextrin-6-(3-(3-hydroxypropyl)-1H-imidazol-3-ium 
tosilate (7)

Compound 7 was prepared according to published procedures with 
minor modifications [32]. Briefly, a mixture of compounds 6 (232 mg, 
0.2 mmol) and 4 (252 mg, 2 mmol) were allowed to react in DMF (1 mL) 
at 90 ◦C for 48 h under N2 atmosphere. Then, cold acetone was added, 
and the precipitate was collected by filtration and washed with acetone. 
The obtained powder was purified by flash chromatography using a 
mixture of propanol/ethyl acetate/H2O/NH3 (4:2:3:2), Rf = 0.12, to 
afford the final product as a white solid. Yield: 45 %.

1H NMR (400 MHz, D2O): δ = 8.4 (s, 1H, Im), 7.56 (s, 1H, Im), 
5.07–4.95 (m, 1H, H1), 4.33–4.21 (t, 2H, CH2), 4.00–3.31 (m, 8H, H2–6 
and CH2), 2.11–2.02 (m, 2H, CH2). MALDI-MS: m/z calcd. for 
C48H79N2O35

+ (M+): 1243.450, found: 1243.484.

Synthesis of β-cyclodextrin-6-(3-(3-hydroxypropyl)-1H-imidazol-3-ium 
bromide (1)

Solid product 7 (35.0 mg, 0.025 mmol) was eluted from Dowex 1X8 
ion exchange resin, bromide using water/methanol (1:1). The collected 
fractions were evaporated under vacuum to give compound 1 as a white 
solid.

1H NMR (400 MHz, DMSOd6): δ = 9.13 (s, 1H, Im), 7.79 (s, 1H, Im), 
7.74 (s, 1H, Im), 5.93–5.72 (m, 2H, OH-2 and OH-3), 4.85–4.82 (m, 1H, 
H1), 4.59–4.51(m, 1H, OH-6), 4.26–4.24 (t, 2H, CH2), 3.74–3.48 (m, 
3H, H3, H4, H5), 3.43–3.23 (m, 3H, H2 and H4, CH2), 1.97–1.94 (m, 2H, 
CH2). MALDI-MS: m/z calcd. for C48H79N2O35

+ (M+): 1243.450, found: 
1243.491.

Synthesis of cyclic carbonates

150 mg of CO2 (dry ice) were added to a high-pressure stainless-steel 
reactor containing 0.4 mmol of selected epoxide and the catalyst (1.8 % 
mol). The reaction underwent specific time and temperature conditions 
and was cooled to room temperature. The optimized conditions were 
identified as 14 h for the time and 120 ◦C for the temperature. A fraction 
of the crude product was immediately transferred into an NMR tube and 
diluted with CDCl3 for subsequent analysis by NMR spectroscopy.

Reusability

Recyclability was assessed by washing the catalyst with acetone. Fig. 1. Designed catalyst 1.
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After centrifugation, the compound was recovered and reused for 
further reactions involving styrene epoxide and CO2 as a reference re
action, carried out at optimized conditions.

Computational details

To determine the activation energy barrier of each step and the re
action energy profile, the reactant complex, transition state, and product 
complex structures were fully optimized. All transition structures were 
characterized by only one imaginary frequency in normal mode analysis 
and further supported by Intrinsic Reaction Coordinate (IRC) calcula
tions. Other stationary points (reactant complex, intermediates, and 
product complex) were characterized by all real frequencies and IRC 
calculations.

Conformational analyses were conducted using the Conformer- 
Rotamer Ensemble Sampling Tool (CREST) combined with the xTB at 
the GFN-2 level of theory. CREST employs an iterative conformational 
search workflow that generates conformer/rotamer ensembles by 
extensive metadynamic sampling, with an additional genetic z-matrix 
crossing step at the end. The most stable structure has been utilized as 
the starting point for the GFN-2 xTB refinement.

Results and discussion

Synthesis and characterization of catalyst

Catalyst 1 was synthesized through a carefully designed procedure 
involving the interaction between β-CD and a selected ionic liquid 
(Scheme 1). Monotosylated β-CD 6 was prepared by reaction of β-CD 
with tosyl chloride (5) in water (Scheme 1). Successively, compound 6 
was reacted with 3-(1H-imidazol-1-yl)propan-1-ol (4), obtained by 
nucleophilic substitution of imidazole (2) with 3-bromopropanol (3), to 
generate the ionic liquid 7. Therefore, the purified compound 7 

underwent anionic exchange with LiBr to obtain the desired catalyst 1. 
Compound 7 was characterized by MALDI-TOF MS and 1H NMR 
(Figs. S1,2), whereas the obtained ionic liquid 1 was characterized by 
MALDI-TOF MS, 1H, and 2D-COSY NMR (Figs. S5–7). Moreover, ther
mogravimetric analysis (TGA) was conducted on 1 to assess its thermal 
stability (Fig. S8).

The TGA curve showed that the degradation of 1 starts at 212 ◦C, a 
lower temperature compared to β-CD alone, which begins degradation 
at 314 ◦C [33]. This disparity may be attributed to the imidazolium 
moiety, which induces structural distortion in the β-CD [34].

Catalytic activity

The catalytic activity of newly synthesized 1 was evaluated by a 
model reaction involving styrene oxide (8a) and CO2 as reactants to 
produce the corresponding cyclic carbonate 9a (Scheme 2).

The studies demonstrated that temperature and reaction time 
strongly influence the catalyst’s impact on the reaction (Table 1).

When the reaction was carried out at 40 ◦C, no product formation 
was detected (Table 1, entry 1); at 60 ◦C, the yield was low (Table 1, 
entry 2). The best conversion (98 %) was obtained by maintaining the 

Scheme 1. Synthesis of the catalyst 1.

Scheme 2. Model reaction to test the catalyst 1.
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temperature at 120 ◦C for 12 h (Table 1, entry 5) under solvent-free 
conditions, thus employing an environmentally friendly approach and 
achieving almost a complete conversion of the epoxy group to 
carbonate.

The progression of the reaction was followed by 1H NMR spectros
copy, looking at the H2 and H3 protons of the epoxy ring and the cor
responding H4 and H5 ones in the carbonate ring (Fig. 2). NMR analysis 
confirmed the formation of the corresponding carbonate, evidenced by 
the disappearance of the epoxy group signals at 2.81, 3.16, and 3.87 
ppm and the appearance of peaks at 4.35, 4.82, and 5.69 ppm relative to 
the product. After 1 h, the conversion is 45 % (Table 1, entry 6), and at 3 

h, there was no discernible change (48 %, Table 1, entry 7), indicating 
that the conversion rate remains relatively constant. However, the re
action accelerated after 6 h, ultimately achieving a conversion of 98 % 
after 12 h. It’s crucial to emphasize that no by-products are detectable 
throughout NMR, then the reaction also proceeds with a selectivity ≥ 99 
%. Only the desired product and/or starting reagents are detected in the 
NMR spectra.

To comprehend the effectiveness of catalyst 1, control experiments 
with the starting reagents and intermediates and comparative studies 
with other catalysts were conducted on the model reaction employing 
the optimized conditions, and the results are reported in Table 2. The 
β-CD and bromoalchool 3 were not efficient as a catalyst; no reaction 
occurred (Table 2, entries 1 and 3), whereas the imidazole (2) gave a 36 
% conversion (Table 2, entry 2) since 2 functions as both acid and base, 
we ascribed to this the observed results. When we substitute the imid
azole with the N-methylimidazole, the conversion percentage increases 

Table 1 
Optimization of the reaction conditions for the cycloaddition of 8a with CO2 
using catalyst 1.

Entry Temperature (◦C)[a] Conversion (%)[b]

1 40 0
2 60 15
3 80 44
4 100 68
5 120 98

Time (h)[c]

6 1 45
7 3 48
8 6 73

[a] Reaction conditions: epoxide 8a (52.5 mg, 50.0 mL, 0.43 mmol), catalyst 1 
(3.0 mg, 1.8 % mol), and CO2 (150 mg, 3.40 mmol), time = 12 h.

[b] The conversion was determined by 1H NMR spectroscopy.
[c] As in [a] but with a fixed temperature of 120 ◦C and changing the time.

Fig. 2. 1H NMR spectra (400 MHz) in CDCl3 of CO2 fixation into styrene oxide catalyzed by 1 at optimized reaction conditions.

Table 2 
Screening of different catalysts for the reaction between 8a and CO2 under 
optimized conditions.

Entry Compound Conversion (%)

1 β-CD 0
2 2 36
3 3 0
4 4 96
5 7 52
6 N-methylimidazole 82
7 N-hexyl-N-methyl imidazolium iodide 93
8 1 + 1-adamantanol 98
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to 82 %, demonstrating that, despite losing the acid function, the reac
tion not only proceeded but also speeded up.

Furthermore, we employed Compound 4 in both its salt form and as a 
free base to catalyze the reaction between 8a and CO2. It was observed 
that only compound 4 with HBr achieved a high conversion rate of 96 % 
(Table 2, entry 4). This conversion is attributed to the Br− anion, which 
functions similarly to ionic liquids enhancing reaction rates. This 
observation is supported by both the literature [35] and our findings, as 
demonstrated by our testing of the ionic liquid N-hexyl-N-methyl imi
dazolium iodide, which yielded a 93 % conversion (Table 2, entry 7).

Although we discovered that only imidazole could be a suitable 
catalyst for the cycloaddition reaction, its use is limited, considering the 
difficulty of recycling the material. Moreover, the catalytic activity is not 
as good as that of catalyst 1. This can be attributed to the capacity of 
cyclodextrin for hydrogen bond formation, which can better activate the 
epoxide toward the nucleophilic attack [36].

Finally, an investigation was conducted to determine if the hydro
phobic cavity of β-CD plays a role in the reaction. So, catalyst 1 was 
mixed with 1-adamantanol (a β-CD cavity competitive guest [37,38]) in 
a 1:1 M ratio with respect to the β-CD, and the cycloaddition reaction 
was conducted at optimized conditions (Table 1, entry 5). After 12 h, we 
obtained compound 9a with the same conversion percentage as when 
only catalyst 1 was used (Table 2, entry 8 vs Table 1, entry 5), indicating 
that the cavity of β-CD is not implicated in the reaction. The catalytic 
activity of 1 was also evaluated by performing the cycloaddition reac
tion of CO2 with other structurally different epoxides (8b–h). The re
sults, reported in Table 3, showed that catalyst 1 exhibited high 
conversion toward forming cyclic carbonates for substrates 8b,d,g, h. 
Conversely, epoxides 8e,f exhibited lower reactivity, yielding only 49 

and 51 % of the corresponding carbonate. This was not surprising, 
considering that the reactivity of internal epoxides is usually lower than 
that of terminal ones [39]. However, the conversion percentage is 
comparable with those reported in the literature [40]. All the obtained 
carbonates are identified through comparison through NMR matching to 
what is reported in the NIST database.

The turnover number (TON) for SC was calculated as mole of SC 
produced per mole of catalyst. The reaction time of frequency (TOF) was 
calculated considering the yield obtained in the presence of 1 (PA), the 
reaction time in hours (t), and the mol% of 1 (A0) (Eq. (1) [41]: 

TOF ≈
PA

t • A0
(1) 

The obtained values are reported in Table 3.
To highlight the excellent catalytic ability of 1 in CO2 fixation, its 

ability to convert styrene oxide in cyclic carbonate was compared with 
other Lewis-type catalysts (Table 4). The comparison clearly shows that 
compound 1 offers an excellent compromise in terms of reaction con
ditions (temperature and time), operating without the need for metals 
and co-catalysts, which are required in most cases.

Reusability test

Reusability studies have been performed to highlight the advantage 
of using catalyst 1 for CO2 cycloaddition reactions. After the first 
catalysis, 1 was recovered through a straightforward filtration process, 
washed, dried under vacuum, and reused for the succeeding cycle. As 
depicted in Fig. 3, the catalyst can be reused for at least four cycles. Only 
a slight decrease in activity was observed during the fourth cycle, with a 
conversion rate of 91 %, while maintaining a selectivity of 99 %.

Mechanism of action of the catalyst 1

The many atoms involved in the inquiry led to a high computational 
cost; therefore, we decided to perform an in-silico study utilizing a 
semiempirical quantum mechanical methods GFN2-xTB as implemented 
in the xtb (extended tight binding) program package. We have well- 
validated semiempirical methodologies in calculating activation en
ergies and transition state structures for similar reactions involving 
several atoms [50,51].

Based on the experimental evidence indicating that catalyst 1 can 
still catalyze the reaction even when its hydrophobic cavity is occupied, 
we designed a model to explain such behavior. The literature suggests 
that the formation of the C-Br bond and the opening of the epoxide ring 
are the rate-determining steps during the reaction of CO2 with epoxides 
[52,53]. Initially, we investigated the energy profile and activation en
ergy for the reaction between isolated epoxide and Br− in the absence of 
the catalyst in the gas phase, which showed a ΔG value of 25.78 kcal/ 
mol. Subsequently, we examined the effect of interactions, such as 
hydrogen bonding between epoxide and the catalyst, on the activation 
energy of the reaction. Considering that the reaction does not occur 
inside the cyclodextrin cavity, the proper site for anchoring the imid
azole substituent to the cyclodextrin was also investigated. A confor
mational analysis was conducted to determine the optimal position for 
anchoring the imidazole substituent, and the optimized structure of this 
position is reported in Fig. 4.

In this low energy conformation, the N–CH–N proton points inside 
the cyclodextrin cavity, while the N–CH–CH–N protons point outside the 
ring. Although the N–CH–N proton of the imidazole has been shown to 
play a relevant role in the catalytic activity, its position inside the ring 
suggests it has a minor role in our catalysis. The OH group of the alkyl 
chain attached to the imidazole forms a network of hydrogen bonds with 
the bromine ion and the OH group of the small cyclodextrin rim.

A secondary analysis was performed considering the epoxide, aiming 
to identify the molecular complex before forming the C-Br bond and the 

Table 3 
Reaction of epoxides 8b–f with CO2 using catalyst 1 under optimized conditions.

Epoxide Carbonate Conversion 
(%)

Selectivity TON TOF 
(h− 1)

98 99 55 2.3

8b
9b

87 99 48 2.0

8c
9c

99 99 55 2.3

8d
9d

95 98 52 2.2

8e 9e

47 97 26 1.1

8f 9f

51 98 28 1.2

8g
9g

93 99 51.6 2.1

8h
9h

86 98 48 2.0
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opening of the epoxide ring in the rate-determining step. The analysis 
showed that the oxygen of the epoxide ring engages in a hydrogen bond 
with the OH group of the alkyl chain of the imidazole.

The entire reaction was then studied in the presence of catalyst 1. 
Fig. 5 illustrates the free-energy profiles, intercepted minima, and 
transition states. The analysis revealed that in the molecular complex, 
the oxygen of the epoxide ring forms a hydrogen bond with the OH 
group of the functionalized alkyl chain of the derivatization moiety of 
the catalyst 1, with an initial bond length of 1.74 Å (Fig. 5, MC). After 
the activation of the epoxide by coordination to catalyst 1, the reaction 
proceeds via a nucleophilic attack by the bromide ion on the methylene 
carbon, resulting in the ring-opening and subsequent formation of the 
anion I1 (Fig. 5). The calculated energy barrier, i.e., the activation en
ergy of the rate-limiting step, relative to I1 is 23.95 kcal/mol. It involves 
a transition state referred to as TS1. In TS1, the oxygen of the epoxide 

ring also deprotonates the OH group of the derivatization moiety of 
catalyst 1, shortening the initial H-bond interaction from 1.74 Å to 1.54 
Å. Additionally, the bromine ion is 2.23 Å away from the C2 of the 
epoxide ring (Fig. 5, TS1) [55].

The activation of the CO2 molecule for the reaction is indicated by 
the slight deviation of the O-C-O angle from its linearity to 175.9◦ [56]. 
Due to this activation, the insertion into the alkoxide becomes a 
straightforward step, requiring an activation energy of 4.61 kcal/mol 
(Fig. 5, TS2). In the optimized TS2 structure, the calculated distance 
between the epoxide oxygen O1 and the carbon of the CO2 is 2.00 Å, 
while the calculated O–C–O angle of the CO2 is 153.6◦. The formed 
carbonate anion I2 is 19.28 kcal/mol more stable than TS2. In this in
termediate, the delocalized negative charge of the carbonate anion is 
stabilized by hydrogen bonding with the catalyst 1. In the final step of 
the reaction, the cyclic carbonate product is formed by releasing the 
bromide and creating a new C–C bond. The product 9a intermediate is 
highly exergonic, lying 22.45 and 29.85 kcal/mol below the MC re
actants and TS3, respectively.

While the geometry calculation suggested a network of hydrogen 
interactions during the TS, they also indicated that the N-CH-N proton of 
the imidazole is not involved in the catalysis, which differs from the 
previously reported mechanism [57]. The activation energy involved in 
the TS was calculated to be 1.83 kcal/mol lower than the activation 
energy of the reaction without a catalyst. This reduction in activation 
energy is due to the hydrogen bond acceptor properties of the catalyst, 
which lower the activation energy of the rate-limiting step, thereby 
explaining the catalytic behavior of catalyst 1.

Conclusions

To address the pressing issue of global warming, it is imperative to 
develop an efficient, cost-effective, and environmentally sustainable 
system for capturing or converting CO2. In this context, we have 
developed a low-cost and reusable catalyst based on β-CD linked to an 
ionic liquid, free of metallic cations, capable of converting epoxides into 
cyclic carbonates, a valuable product for industries, with high efficiency. 
Comparative studies and control experiments have highlighted the su
perior performance of the cyclodextrin-ionic liquid catalyst in promot
ing the CO2 cycloaddition reaction. This catalyst facilitates the 
transformation of various epoxides into cyclic carbonates with high 
conversion rates, including challenging substrates such as internal ep
oxides. Mechanistic insights further elucidate the role of hydrogen bond 
donors and acceptors in enhancing catalytic performance.

Overall, this method demonstrates high efficiency and selectivity, 
operating under environmentally friendly, solvent-free conditions, thus 
mitigating the adverse impacts of conventional synthetic pathways.

Beyond its immediate impact on chemical transformations, this 
catalyst holds promise for applications in diverse fields, including 
lithium batteries, polymer materials, and emerging energy sectors. The 
integration of this catalyst addresses current environmental concerns 

Table 4 
Comparison of catalytic activity with Lewis-type catalysts on styrene oxide conversion to cyclic carbonate.

Catalyst Temperature and time Co-Catalyst Metal Conversion (%) References

β-CD-Im+Br− 120 ◦C, 12 h No No 98 This work
Im-CD1-Br 130 ◦C, 5 h No No 91 [18]
[DBUH][PFPhO]/β-CD 130 ◦C, 5 h No No 95 [42]
Amino-functional bis-β-CD 110 ◦C, 4 h No No 99 [26]
5B–SiO2–NH2–3–I 110 ◦C, 6 h No No 47 [43]
In2(OH)(btc)(Hbtc)0.4(L)0.6⋅3H2O 80 ◦C, 4 h Yes Yes 73 [44]
Mg-MOF-74 100 ◦C, 4 h No Yes 95 [45]
Co-MOF-74 100 ◦C, 4 h No Yes 96 [46]
Hf-NU-1000 r.t., 56 h Yes Yes 100 [47]
[Cd2(Ni-L)2(H2O)4]⋅3DMF 80 ◦C, 4 h Yes No 81 [48]
Ni-TCPE2 100 ◦C, 12 h Yes Yes 86 [49]

Fig. 3. Reusability of catalyst 1.

Fig. 4. Optimized structure after conformational analysis of the catalyst 1. 
Figures generated with CYLview20 [54].
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and contributes to the development of cleaner and more sustainable 
technologies for the future.
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