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Quantifying the role of variability in future
intensification of heat extremes

Claudia Simolo 1 & Susanna Corti 1

Heat extremes have grown disproportionately since the advent of indus-
trialization and are expected to intensify further under unabated greenhouse
warming, spreading unevenly across the globe. However, amplification
mechanisms are highly uncertain because of the complex interplay between
regional physical responses to human forcing and the statistical properties of
atmospheric temperatures. Here, focusing on the latter, we explain how and to
what extent the leading moments of thermal distributions sway the future
trajectories of heat extremes. Crucially, we show that daily temperature
variability is the key to understanding global patterns of change in the fre-
quency and severity of the extremes and their exacerbation in many places.
Variability accounts for at least half of the highly differential regional sensi-
tivities and may well outweigh the background warming. These findings pro-
vide fundamental insights for assessing the reliability of climate models and
improving their future projections.

Global warming has been advancing rapidly since the beginning of the
industrial era, exposing humans and the environment to ever-
increasing risks1,2. The magnitude and pace of climate change, as well
as their potential impacts, vary widely across regions1,3,4 because of
both the multiple physical processes that are triggered by increased
greenhouse forcing and the inherent regional vulnerabilities. Critical
areas exist where average temperatures have already surpassed the
most conservative global limits laid out in the 2015 Paris Agreement5

and the extremes have changed dramatically2,6–9, the Arctic region
being one prominent example. Even worse, climate models predict
that these changes will accelerate further with rising levels of warming,
stressing the urgency of drastic mitigation actions10–12. Despite the
current uncertainties in scenario projections1,12, extreme events dis-
tinctly show robust and very heterogeneous changes around the
globe. In some places heat extremes are predicted to hugely increase
in number and become routine in the next few decades. In others they
will rise in severity much faster than what projections of mean climate
conditionswould suggest, with harmful consequences for humans and
ecosystems.

The question of whether and how these changes originate
from the background regional and seasonal warming is a very
vexed one6,13–22 and involves both statistical and physical aspects.
Amplification mechanisms are likely rooted in the complex Earth-

system interactions that unfold against the backdrop of global
warming. Among these, large-scale atmospheric changes (e.g., in
thermal gradients and circulation patterns) and internal climate
feedbacks between soil, snow cover, sea ice and the atmosphere23–33.
In turn, these processes may induce significant changes in the sta-
tistical properties of thermal distributions, namely, their leading
moments34–42.

As growing evidence suggests14,20,31,34,43, changes in the higher
order moments can either amplify or damp the response of the
extremes to greenhouse forcing, but the net effect is currently
unknown. In the next decades, a widespread decrease in midlatitude
temperature variability is expected31,34,35, whichwill likely contribute to
the rapidweakening of cold-season cold extremes. Furthermore, local-
to-regional increases in variability are predicted to enhance the
severity of hot events, particularly over tropical lands21,33,39. Unfortu-
nately, global data coverage in the recent past is limited, and obser-
vational evidence of historical changes in the higher moments is
scarce, leaving the matter controversial15–18.

In addition to higher order changes in thermal distributions, their
own native structure has proven relevant in many places44–48. Beside
variability, intrinsic non-Gaussian properties (e.g., skewness) of
atmospheric temperatures can either speed up or inhibit the increase
in the chance of unusual hot events with global warming, depending
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on whether local temperatures exhibit tails shorter or longer than
normal at the right end of the distribution47,48.

Clearly, a comprehensive understanding of the mechanisms
behind the differential regional behavior of the extremes would be
highly desirable and is not yet achieved. Here we take an important
step forward and provide a global-scale quantitative analysis of the
impact of the leading distributionmoments on the trajectories of heat
extremes. Based on the latest scenario projections, we show that the
past and future variability ofdaily temperatures areessential to explain
the global patterns of changes in the frequency and severity of the
extremes. Namely, changes in variability greatly exacerbate regional
differences in their warming rates and cause cold extremes to warm
much faster than hot extremes over large areas. On the other hand,
intrinsic variability (far more than its future changes) tightly controls
the increasing frequency of unusual hot events throughout the globe
and most often overrides the background regional warming.

Our findings help unravel the complex heterogeneity issue in the
regional response of the extremes to human forcing, laying the ground
for diagnosing the root causes. By elucidating the connection between
extreme climate trajectories and the statistical properties of thermal
distributions, we also provide key elements to better constrain climate
model predictions. This is crucial to anticipate themost serious threats
of climate change over the coming decades and to support mitigation
and adaptation efforts tailored to regional needs.

Results
Figure 1a shows future changes in global-mean surface air temperature
(GSAT) relative to the early industrial era (1851–1900), as these result
from scenario simulations endorsed by the Sixth Coupled Model
Intercomparison Project (CMIP6)49, under a range of Shared Socio-
economic Pathways (SSPs) and forcing levels (see the “Methods”

section and Supplementary Table 1). The latter comprise a high-
mitigation (SSP1-2.6), a middle-of-the-road (SSP2-4.5) and a business-
as-usual like scenario (SSP5-8.5). Rates of change in GSAT strictly
depend on the given SSP, despite large spreads across models. In the
worst case scenario, the Paris (upper) limit of +2Kwarming above early
industrial conditions could be breached before the middle of the
century (insets of Fig. 1a), and a +3K warming by 2100 cannot be ruled
out even in lower forcing scenarios50,51.

Here, focusing primarily on these levels of global warming
(GWLs),wefirst investigate changes in themagnitudeof the largest hot
and cold temperature anomalies of the year or season (the hottest day
TXx and the coldest night TNn respectively), which represent (mod-
erately) extreme events to be expected at the same frequency during
the past and the future. Next we deal with the converse, namely, the
change in the exceedance probability of large temperature anomalies,
whose magnitude is fixed and above a high quantile (the 99th and
99.9th) of the early industrial distributions. Details on the observables
and their processing are given in the “Methods” section.

Differential warming of heat extremes
Enhanced greenhouse forcing may cause a rapid warming of the
extremes in many places. Figure 1b, c shows global and land-averaged
changes in annual TXx and TNn at growing levels of warming
(regardless of their timings), under alternative SSPs. In line with pre-
vious findings52,53, the extremes exhibit near linear increase with GSAT
and quite the same rates of change irrespective of the emission tra-
jectory. Changes over land in bothTXx andTNn are faster thanover the
global area and robustly exceed the change in GSAT (by about 30 and
70%, respectively, Supplementary Table 2). Continent interiors indeed
warm faster than the ocean, consistently with the expected strength-
ening of land-sea contrasts under transient scenario simulations36,54.

Fig. 1 | Global changes in mean temperatures and the extremes. a Changes in
global-mean surface air temperature (GSAT) relative to early industrial times (gray
shadedbackground), on the basis of 20model simulations (SupplementaryTable 1)
forced by alternative Shared Socioeconomic Pathways, namely SSP1-2.6, SSP2-4.5
and SSP5-8.5. Shaded bands denote the total spread in model projections, solid
lines their multimodel mean. Box plots summarize the projected timings for GSAT
to reach +2K and +3K above the early industrial meanunder SSP5-8.5. They account

for themedian (inside bar), the upper and lower quartiles (box edges) and the total
range (whiskers) of model results. b, c Multimodel global and land changes in the
hottest days (TXx) and the coldest nights of the year (TNn), respectively, against
changes in GSAT, for the alternative SSPs. Gray dots denote the intermodel spread
and dashed lines the identity relation. d–fMultimodel patterns of change in annual
mean temperatures T and the extremes TXx and TNn respectively, at +2K warming
(SSP5-8.5).
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At fixed levels of warming (Fig. 1d–f and Supplementary Fig. 1),
changes in the extremes occur highly unevenly across the globe and
depart considerably from changes in mean conditions. For instance,
TXx anomalies rise faster than the annual mean over several low-
latitude and extratropical land regions, whereas TNn show the largest
increases at middle and high latitudes, with giant amplification over
the Arctic.

Warming rates of TXx and TNn are displayed by season in Fig. 2a,
b, where local changes at the +2K GWL are scaled by the respective
changes in the annual mean (the local background warming). They
evidence regions exposed to a higher risk in a warmer climate, due to
faster changes in the extremes than in mean conditions (red-shaded
areas). This is the case of the Euro-Mediterranean zone and central
areas of South America, where TXxwarming in thewarm seasonsmay
well exceed the local background (by up to 50%, Fig. 2a). At higher
latitudes TXx changes slow down in every season and reach a mini-
mum in a rather symmetric way over polar regions, where they may
be less than half of the changes in the annual mean (and even van-
ishing in the high-Arctic summer). Conversely, TNnwarming is much
faster than the local background at middle and high latitudes, in all
seasons except summer (Fig. 2b). It exhibits the highest rates during
winter, with local changes twice as large as the annual mean. In
the northern hemisphere, in particular, the strong TNn warming
extends all over the Arctic and down to midlatitudes. As seen in
Supplementary Fig. 2, the rates of change in TXx and TNn are rather
insensitive to an additional increase in GSAT, indicating that the
magnitude of the extremes grows near linearly with the local
warming.

The highly differential regional and seasonal behavior of the
extremes is closely related to the changes in the underlying anomaly
distributions. Regional amplifications of TXx and TNn originate either
from a rapid warming of the seasonal mean or from a change in the
higher ordermoments, including variability, or a combination thereof.
More precisely, for a given grid point andbackgroundwarmingΔT, the
TXx change can be expressed as a function of changes in the first and
the higher moments of the TX distribution (see Supplementary Note
and Supplementary Eq. (1)). Namely,

ΔTXx
ΔT

=
ΔTXm
ΔT

+
ðTXx � TXmÞ

TXsd

� �
EI

ΔTXsd
ΔT

+h:o: ð1Þ

where ΔTXm and ΔTXsd are the changes in the mean and standard
deviation respectively (see “Methods” for details), brackets denote
the early industrial averages and the h.o. term includes corrections
from higher than second order changes as a group. A pure upward
shift of the distribution leads the mean and the extremes to increase
at the same rate, thereby preserving their mutual distances. By con-
trast, changes in the higher order moments induce distortions in the
native distribution, that can significantly modify changes in the
extremes (Supplementary Fig. 3a). Equation (1) and the analogous for
TNn provide a theoretical scheme for interpreting the regional dif-
ferences in warming rates and quantifying the roles of the leading
moments.

As is shown in Supplementary Fig. 4, the seasonal averages TXm
and TNm increase everywhere in a +2K climate, though very hetero-
geneously, giving relevant contributions to the changes in TXx and
TNn respectively. For example, a rapid TXm increase compared to the
local background is seen in the warm season over several land areas
coinciding with TXx hotspots such as the Euro-Mediterranean zone
and South America, among others. In these regions, the excess
warming of TX anomalies is likely related to long-term trends in soil
drying, as this can modify the surface energy balance, with a loss of
evaporative cooling and the increase of sensible heat fluxes and thus
of temperatures26,55,56. Soil moisture-temperature coupling is the
strongest in transitional -wet to dry- climates, like that of the Euro-
Mediterranean zone showing among the most prominent warming.
Furthermore, TNm changes, similar to TNn, evidence the staggering
rate of warming of the Arctic during winter months, which is mainly
caused by sea-ice decline and the increase of seasonal heat storage
and release by the opened waters30,34.

Both TXx and TNn, however, distinctly deviate from the seasonal
averages in many places, most notably at mid-to-high latitudes,
revealing changes in the higher moments. In polar regions, for
example, winter TXx show tendencies opposite to those of TXm
which, unlike the previous ones, warm faster than the annual mean.
Clearly, seasonal warming rates cannot account alone for the highly
heterogeneous behavior of the extremes. In fact, the fraction of the
total spatial variation of TXx and TNn changes which is explained by
the changes in the seasonal averages hardly exceeds 50%, as indi-
cated by the coefficients of determination R2

red in Table 1. These are
obtained by Eqs. (1) and (4) as detailed in “Methods” and are further
discussed below.

Fig. 2 | Seasonal extremes. Multimodel warming rates of a the hottest days (TXx)
and b the coldest nights of every season (TNn), at +2K warming (in the high-end
scenario SSP5-8.5). Namely,ΔTXx/ΔT andΔTNn/ΔT, whereΔT is the local changes in
annual mean temperatures (Fig. 1d). TXx and TNn are used here and below to

denote seasonal extremes, unless otherwise specified. MAM denotes March-April-
May, JJA June-July-August, SON September-October-November and DJF December-
January-February. Regions showing a major warming are highlighted.
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Excess rates and the role of variability
Figure 3a, b displays the differences in the warming rates of TXx and
TNn relative to the seasonal averages (excess rates), at the +2KGWL. As
already noted, major excess rates are projected at middle and high
latitudes, where the coldest nights warm faster than the nighttime
meanwhile the hottest days warm slower than the daytimemean, in all
seasons but summer. At lower latitudes instead, TXx show local to
regional amplifications compared to TXm in every season, mainly over
tropical lands. Hence, according to Eq. (1), changes in the higher
moments as a group provide either additional boosts or delays, which
may be comparable in magnitude to (or even overshoot) the changes
in the averages (Supplementary Fig. 4). They substantially modify the
seasonal warming patterns, exacerbating regional differences in the
scaling behavior of the extremes andmaking coldwarming ratesmuch
higher than the hot ones in many places, particularly in the winter
hemispheres.

Among the higher moments, variability plays a prominent role,
as evidenced by the pattern similarities between the excess rates
(Fig. 3a, b) and the rates of change in standard deviation TXsd and
TNsd displayed by season in Fig. 3c, d (at the +2K GWL). The latter
point to rapid large-scale decreases in variability at middle and high
latitudes (except for summer) and milder regional increases at lower
latitudes, remarkably paralleling the excess warming of the extremes
all over the globe. Correlations are large and positive in TX anoma-
lies, negative in TN (Supplementary Table 3). Indeed, as is clear from
Eq. (1), decrease in variability at mid-to-high latitudes tends to bring
extreme anomalies closer to the mean, accelerating warming of the
coldest nights while suppressing that of the hottest days. In contrast,
the regional increases in TX variability force the hottest days away
from the mean, amplifying their warming. In the case of TN, reduc-
tion of variability is prevailing in most places and concurs to the
more intense warming of cold than hot extremes globally (e.g.,
Fig. 1b, c). Both TXsd and TNsd changes, like changes in the extremes,
are approximately linear with local warming (Supplementary Fig. 5)
and in many regions robust in sign across models, as discussed
later on.

Figure 3e, f illustrates the zonal contributions of variability to the
excesswarming ofTXx andTNn. In the left panels, warming rates of the
extremes are compared in the zonal and multimodel mean to those of
the seasonal averages, to highlight amplitude and direction of major
deviations. In the right panels, by following Eq. (1), TXx and TNn excess
rates are scaled by the early-industrial extreme-to-mean distance
(dashed lines) to allow for a quantitative comparison with the corre-
sponding fractional rates of change in TXsd andTNsd (black lines). Also
shown here are the total spreads inmodel projections (shaded bands).
Althoughuncertainties are rather large in either case, fractional rates in
standard deviation well agree in the multimodel mean with the scaled
excess rates in most places. In particular, they both tend to be dis-
tinctly negative at subpolar and middle latitudes (except for boreal
summer), indicating that the extreme-to-meandistancenarrows under
warmer conditions due to decreased variability. As a result, winter
warming of TNn is greatly amplified and, at northern mid-to-high

latitudes and over the Southern Ocean, can overshoot the seasonal
background by up to 30% and 50%, respectively (Fig. 3f). Meanwhile,
winter TXx warming is suppressed by even larger amounts (Fig. 3e).
Instead, during summer the slow changes in both TXx and TNn at high
latitudes mainly stem from the background seasonal warming, with
small (or null) contributions from the higher moments.

As seen in Fig. 3e, in some places the fractional decreases of TXsd
appear slightly faster than expected from the hot excess rates,
revealing residual contributions from changes in the non-Gaussian
properties of TX distributions, namely, skewness and/or kurtosis. For
example, at southern latitudes TX skewness shows increasing ten-
dencies that, by opposing variability decrease, may favor TXxwarming
(Supplementary Fig. 6a).With a few exceptions, non-Gaussian changes
as a whole play a minor role in the zonal approximations, because of
their patchy spatial structures and, perhaps, of mutual cancellations.
However, their effects may be appreciable at local-to-regional
scales38,41.

Table 1 summarizes the global area-weighted contributions of the
changes in thefirst andhighermoments to thewarmingpatterns of the
extremes in every season. The contribution of variability is crucial to
understanding their large regional unevenness, as proved by the
fraction (R2

full) of the total spatial variation of TXx and TNn changes
which is explained if corresponding changes in TXsd and TNsd are
taken into account in Eq. (1). This fraction is always much greater than
that explainedby the seasonal background alone (R2

red) and canexceed
90%. The gain is larger for TNn than TXx since the latter receive
regionally relevant contributions from non-Gaussian changes in TX
anomalies, as mentioned above.

The effects of changes in variability clearly depend on regions
and seasons, as shown by the zonal decomposition of both R2

full and
R2
red in Fig. 4. For example, in the summer hemispheres (Fig. 4a) TXsd

changes over the tropics, although moderate in magnitude, are
at least as important as changes in the averages to explain TXx
warming patterns, whereas they seem largely negligible elsewhere.
Conversely, during winter (Fig. 4b) TNsd changes give the most sig-
nificant contributions in a rather symmetric way at mid-to-high lati-
tudes, where they account for the detailed spread and amplification
of TNn warming.

Physical insights into higher order changes
Changes in distributions may have a profound impact on future cli-
mate, however, the mechanisms underneath have yet to be fully
understood. Midlatitude variability decrease, in particular, is a robust
result ofmodels and observations34–36,42,57–59. Current theories attribute
the underlying causes to a weakening of the meridional (equator-to-
pole) gradient by Arctic amplification. This may affect thermal
advection, leading to weaker anomalies and thus to a reduction of
variability at the daily and longer timescales34–36,41,42,59. As is further
evidenced by the latest simulations of a +2K climate (Supplementary
Fig. 7a–f), this mechanism acts prominently during winter months,
when the Arctic and the high latitudes warm faster than the rest of the
globe. Correspondingly, the winter meridional gradient is seen to
weaken over large swathes of land and ocean, where positive changes
oppose mostly negative early-industrial gradients. Patterns of change
share clear similarities with those of TNsd (Supplementary Fig. 7b, d),
thereby corroborating previous findings34,36,41,42. Regional factors may
also contribute, such as direct effects of sea-ice and snow cover
decline28,31,39,58 as well as changes in the zonal (east-west) gradients36.
The latter slacken in winter with greenhouse warming (Supplementary
Fig. 7e, f), as cold continents warm faster than the water masses,
accelerating TNsd decrease off the continental coasts.

During summer (Supplementary Fig. 7g–n), horizontal gradients
are smoother and, inmany places, tend to reinforce at risingGWLs (the
+2K changes having the same sign of the early industrial gradients),
both because already warmer continents warm faster than the oceans

Table 1 | Coefficients of determination

R2
red R2

full

TXx TNn TXx TNn

MAM 0.52 ≲0 0.85 0.87

JJA ≲0 0.58 0.87 0.95

SON 0.46 0.27 0.84 0.92

DJF ≲0 0.39 0.82 0.91

Fraction of spatial variation of the warming rates of the hottest days (TXx) and the coldest nights
(TNn) at +2Kwarming, explainedby the ratesof change indistributionmoments throughEq. (1) of
the main text. R2

red is the fraction explained by the first moment alone and R2
full is the fraction

explained by the first two moments (excluding skewness and next order changes).
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Fig. 3 | Excess rates andhighermoments. a,b Excess warming rates of the hottest
days (TXx) and the coldest nights of every season (TNn) respectively, that is,
(ΔTXx −ΔTXm)/ΔT and (ΔTNn−ΔTNm)/ΔT where TXm denotes the seasonal day-
time mean, TNm the seasonal nighttime mean and T the annual mean. MAM
denotes March-April-May, JJA June-July-August, SON September-October-
November and DJF December-January-February. c, d Seasonal rates of change in
standard deviation, ΔTXsd/ΔT and ΔTNsd/ΔT, respectively. e, f Left panels: com-
parison between e zonal-mean TXx and TXm warming rates and f between those of
TNn and TNm. Right panels: comparison between e zonal-mean scaled excess rates

(dashed lines) (ΔTXx −ΔTXm)/((TXx−TXm)EIΔT) and corresponding fractional rates
of change in standarddeviation (solid black)ΔTXsd/(TXsdEIΔT), and f similar forTN.
Here EI denotes the early industrial averages, while in the figure legend scaling
factors and zonal averaging are understood to simplify notations. Notice that both
TX and TN scaled excess rates are negative if the distribution tail shortens and the
extrememoves closer to themean. Shadedbandsdenote the intermodel spread for
the scaled excess rates (e light-red and f light-blue) and for the fractional rates in
standard deviation (gray). All results relate to +2K warming.
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and warming is non-uniform over land. Thus, stronger gradients imply
stronger thermal anomalies, which amplifies variability36,41. Summer
TXsd changes are rather consistent with those projected in the mean
gradients (Supplementary Fig. 7h, l). For example, TXsd increase in
northern and eastern Europe may be partly explained by a regional
strengthening of the meridional gradient, due to the faster back-
groundwarming of theMediterranean zone35,36,39,41. Several areas, such
as the Arctic coasts, northern Africa and Australia may also feel a
strengthening of (either negative or positive) gradients, which nicely
matches the expected TXsd increases. Along with advection-based
mechanisms, land surface and radiative processes can additionally
affect the higher moments beside mean temperatures. In particular,
summer increase in variability over midlatitude and tropical regions
(including, e.g., South America) has been directly related to surface
drying and changes in turbulent heat fluxes by soil moisture-
temperature feedbacks26,32,33,37–39,55,56,60.

Land-atmosphere interactions may also induce skewness
changes37,38, although the latter are generally uneven and more uncer-
tain than the lower order changes (Supplementary Fig. 6). Yet one
exception is the summer increaseof skewnessover theSouthernOcean,
which has detectable effects on TXx warming (Fig. 3e) and could be
physically connected by nonlinear advection arguments to changes in
the meridional gradient and temperature variability40. To date, how-
ever, only a few studies have explored skewness changes40,41,46, whose
origins thereby remain unclear.

Despite recent progress, the overall knowledge of changes in
the moments beyond the mean and of the root causes is still at an
early stage, and further work is needed to pinpoint pivotal processes,
e.g., by way of targeted model experiments. On the other hand,
since the most serious effects of higher order changes are to
exacerbate extreme events, assessing to what extent such changes
contribute to future hotspots remains a primary aim, as is further
discussed below.

Regional hotspots
Figure 5a–f displays the scaling behavior of the extremes and of the
leading moments over major hotspots (Fig. 2). Panels a, b show total
changes in TXx and TXm as a function of GSAT, regionally averaged
over the Euro-Mediterranean zone (EMD) in JJA and Central South

America (CSA) in SON, respectively (land only). Over both regions TXx
warming is much faster than over the global land (by ~30%, Fig. 5e and
Supplementary Table 2) and well exceeds the regional background
(ΔT), obeying approximate linearity with GSAT. The robustness of
these changes across models is similarly high in the local perspective,
since ~80% of both the EMD and the CSA domain may experience TXx
warming stronger than the regional background (ΔT~2.5K) in a +2K
future, according to at least 15 out of the 20 models (Supplementary
Fig. 8a, b).

As is clear from Fig. 5a, TXx changes in the EMD zone substantially
follow those of the summer average TXm, with little contribution from
the higher order moments, in line with observational results13,15,61.
Indeed, summer TXsd changes at the +2K GWL are rather modest (yet
significant, Fig. 5e) and mainly projected over northern and eastern
Europe (Supplementary Fig. 8d), although they are seen to grow with
the GWL, consistently with previous CMIP5 projections of the late 21st
century21,36,39. Also, most models predict skewness decrease over
Europe41 (Supplementary Fig. 6a), which could offset variability
increase and thus explain the closeness of TXx and TXm warming tra-
jectories throughout the simulation period. The intermodel spread in
skewness projections, however, is large and contributions from next
order (kurtosis) changes cannot be ruled out. By contrast, TXsd
increase in the CSA region is statistically significant (Fig. 5e) and robust
across models over much of the domain (Supplementary Fig. 8e),
already at the +2K GWL. This change adds to the intense warming of
the seasonal average and causes a ~10% amplification of TXx in the
regional mean (Fig. 5b).

The rapid TXx warming in major continental hotspots is thus
primarily supported by the strong seasonal background and likely due,
as noted above, to surface drying and soil moisture-temperature
feedbacks26,27,33,37,55,56. In particular, the varying strength of land-
atmosphere coupling across models is deemed to be responsible for
the broad range of TXx projections, and also for some discrepancies
with observational results26,62. Circulation changes, although uncertain
in future scenarios, may further enhance summer heat over mid-
latitudes, leading to more persistent anticyclonic patterns23–25.

Figure 5c, d displays regional changes inwinter TNn and TNmover
the Pan-Arctic zone (PAr) and northern mid-to-high latitudes (MHL)
respectively, including all land and ocean. The Arctic shows by far the
highest sensitivity to rising levels of warming, with total TNn changes
about three times the global ones (Fig. 5f and Supplementary Table 2),
in line with previous findings1,2,12. In the MHL zone TNn changes are
slower, but still highly significant and more than twice the global ones
(Fig. 5d, f). At the +2K GWL, the local changes robustly exceed the
background warming over most of the Arctic and midlatitudes (Sup-
plementary Fig. 8c), reaching a maximum over areas of rapid sea-ice
retreat, like the Barents-Kara seas63,64.

In the Arctic, winter TNn increase is largely due to the strong
seasonal warming, while the concurrentTNsddecrease -comingmainly
from the Barents-Kara sea region- provides a supplemental boost of
~10% (Supplementary Fig. 8f). Conversely, at mid-to-high latitudes
TNsd decrease is pervasive and robust almost everywhere, accounting
for about one-third of the regional increase in TNn (Fig. 5d, f). The
latter thereby receives a remarkable contribution from winter varia-
bility decrease, which is mainly related to the meridional gradient
weakening by Arctic amplification, and is expected to continue near-
linearly with growing levels of warming (Supplementary Fig. 9). Simi-
larly, over the SouthernOcean about half of the winter increase in TNn
(Supplementary Table 2) stems from TNsd decrease, which has the
highest rates at these latitudes (Fig. 3f).

Finally, it should be stressed that overshooting the +2K global
warming limit would trigger increasingly complex and heterogeneous
changes around the world, with unprecedented shifts from present-
day climate conditions and ever more disruptive extreme events. In
fact, +3K of globalwarmingmay result in a ~50%higher warming of hot

Fig. 4 | Contributions of the leading moments to the extremes. Zonal decom-
position of the coefficients of determination R2 of the warming rates of the hottest
days (TXx) and the coldest nights (TNn) in the summer (a) and the winter hemi-
spheres (b), respectively, at +2Kwarming.As inTable 1,R2

red accounts for changes in
the averages alone whereas R2

full accounts for the first two moments (excluding
skewness and next order changes).
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extremes over large continental areas and a further 4K-warming of
cold extremes over the Arctic (Supplementary Table 2).

Scaling rules of exceedance probabilities
Unusual hot events in the recent pastmaybecomeevermore common
under warming scenarios. Figure 6a, b shows the evolution of global
and land averaged probabilities for TX anomalies to exceed the early-
industrial 99th percentile (hot days) and the 99.9th (very hot days)
respectively, as a function of changes in GSAT under alternative SSPs.
The exceedance thresholds (determined for each model and grid
point, see “Methods”) select fixed magnitude events which occur
approximately three times a year and once every three years, respec-
tively, in the early industrial climate. As GSAT increases, the prob-
abilities of the extremes, like their magnitudes, grow at the same rates
irrespective of the forcing scenario (Fig. 6a, b). Unlike magnitudes,
however, probabilities are nonlinear with GSAT and grow faster in the
global than the land average due to the huge contribution from the
tropical oceans. This is shown in Fig. 6c (and Supplementary Fig. 10a),
where multimodel changes in hot (and very-hot) day probabilities are
represented in fractional terms at the +2K GWL relative to the early
industrial. Changes in probability are opposed, in some respects, to
changes inmagnitude, being larger over the oceans thanover land and
much larger in the tropics than in polar regions (despite the rapid
increase in TX warming with latitude, Fig. 6d). As is shown in

Supplementary Fig. 11, furthermore, hot event probabilities increase
disproportionately with the level of warming, the more (in fractional
terms) the rarer the events.

The intrinsic nonlinearity of exceedance probabilities is critical to
explaining their scaling with greenhouse warming and their highly
heterogeneous changes across the globe. This can be seen in a Gaus-
sian approximation of TX anomalies, having fixed variability to the
early industrial value TXsdEI and a shifting mean TXm with global
temperature T. Rates of change of hot event probabilities are then
given by

dPðx ≥ x + Þ
dT

=
1ffiffiffiffiffiffi

2π
p

TXsdEI

dTXm
dT

× exp � x + � TXmffiffiffi
2

p
TXsdEI

 !2
2
4

3
5, ð2Þ

where P is the total probability of exceeding a fixed threshold x+ (or
t = x+/TXsdEI in sigma units, see Supplementary Eq. (2)). Under these
assumptions, rates of change rise exponentially asTXm increases (even
linearly) with global warming and, for any fixed change in TXm, they
decay exponentially as TXsdEI widens. As a result, changes in prob-
abilities sharply depend on the native structure of the TX distribution
(defined by variability in the Gaussian case). Namely, the shorter is the
warm tail in the recent past, the faster is the rise in hot event prob-
abilities as the distributionmoves upward with global warming. This is

Fig. 5 | Scaling behavior of regional extremes. Multimodel total changes in
a, b the hottest days TXx and c, d the coldest nights TNn against changes in global-
mean surface air temperature (GSAT), regionally averaged over a the Euro-
Mediterranean zone (EMD, land-only grid points in 30N-55N, 10W-40E) in June-July-
August (JJA), b Central South America (CSA, land-only grid points in 2S-30S, 40W-
73W) in September-October-November (SON), c the Pan-Arctic zone (PAr, 67N-
90N) and d northern mid-to-high latitudes (MHL, 45N-67N) in December-January-
February (DJF). Gray dots denote the intermodel spread. Also shown are the cor-
responding multimodel changes in the seasonal (ΔTXm and ΔTNm) and the annual

averages (ΔT, given by straight-line fits). Dotted lines denote the identity relation.
e, f Top panels: distribution of TXx and TNn changes across model projections at
+2K and +3K warming, for the above-defined regions. Annual changes in land
averagedTXx and globalTNn are also shown in e and f, respectively. Bottompanels:
distribution of fractional changes in standard deviation e TXsd and f TNsd across
models, for the same regions and warming levels as above. Box-plots display the
five-number summary statistics (as in Fig. 1a). All changes are referenced to early
industrial times and based on the high-end scenario SSP5-8.5.
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confirmedby the strong anti-correlationbetweenprojected changes in
probabilities (Fig. 6c and Supplementary Fig. 10a) and native-
simulated standard deviations TXsdEI shown in Fig. 6e, f (Supplemen-
tary Table 4).

In fact, despite its simplicity, a Gaussian shift of TX distributions
with fixed variability well explains the future patterns of change in
exceedance probabilities, as is clear by comparing projected changes
in hot days (Fig. 6c) with theoretical expectations at the +2K GWL
displayed in Fig. 7a. The latter are obtained by way of Eq. (2) together
with multimodel simulated TXsdEI and changes in TXm at every grid
point. Native variability combinedwith the shift velocity thus suffice to

predict the evolution of hot day probabilities over most of the globe
(R2 ~ 0.9, see “Methods”). In particular, the wide spatial variation of
TXsdEI is pivotal, accounting alone for the main large-scale features of
projected changes in probability, such as their major amplification
over the oceans and their sharp reduction from the tropics to polar
regions (see Fig. 7b, c). Similar results hold for very hot days (Sup-
plementary Fig. 10a, b) and higher levels of warming.

All this points to the leading role of native variability which, far
outweighing its predicted changes as well as local TX warming, tightly
controls future frequencies of hot and very hot days. Thus, regions
showing the smallest TXsdEI are those prone to the most rapid rise in

Fig. 7 | Gaussian model for hot day probabilities. a Theoretical probability
changes obtainedby integrating Eq. (2) (main text) over the +2Kwarming range and
usingmultimodel grid-point results for the changes in the annual average TXm and
the early-industrial standard deviation TXsdEI. b, c Theoretical changes calculated
from Eq. (2) as above, but each of the two parameters, in turn, is held fixed
throughout and equal to its area-weighted global average, to disentangle the
relative contributions. Respectively, b TXm = <TXm > g and c TXsdEI = < TXsdEI > g.

The fraction R2 of total spatial variation of projected changes in hot day prob-
abilities (FCEP-99th, Fig. 6c) explained by the full Gaussian model F(TXm, TXsdEI) (a)
amounts to ~0.9, and it reduces to ~ 0.5 if TXm = < TXm > g (b). Instead, if
TXsdEI = < TXsdEI > g (c) R2 becomes negative (~−0.9), meaning that if the total
spatial variation of TXsdEI is not accounted for, the Gaussian model has worse
predictions than the baseline global average of FCEP-99th.

Fig. 6 | Global changes in hot event probabilities and their key determinants.
a, b Evolution ofmultimodel global and land averaged probabilities (on a log-scale)
of hot and very hot days respectively (exceedanceprobabilities EP), as a function of
changes in global-mean surface air temperature (GSAT) under alternative forcing
scenarios. Gray dots denote the total spread in model projections. c Multimodel
pattern of change of hot day probabilities at +2Kwarming (in the high-end scenario

SSP5-8.5), expressed in fractional terms relative to the early industrial. Namely,
FCEP =ΔEP/EPEIwith EPEI =0.01. d Zonal changes in the annual averagesTXm at +2K
and +3K warming. e, f Zonal and grid-point standard deviations TXsd, respectively,
as simulated in the multimodel mean over the early industrial era. Gray-shaded
bands (d, e) denote the intermodel spreads.
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the number of hot events. The largest increase is foreseenover tropical
oceans, where native-simulated variability is at its lowest (≲1K in the
regional mean). Here, despite the rather-slow TX warming, hot days
may become commonplace already at the +2K GWL, with a ~50-fold
increase relative to early industrial times, as seen by regional aggre-
gation in Fig. 8a, b (Supplementary Table 2). At mid-to-high latitudes
the larger TXsdEI, mostly over land, counteracts the effects of stronger
TXwarming, scaling down the increaseof hot events. Changes are even
negligible in Antarctica, where variability is at its highest and TX
warming relatively moderate (Fig. 6d–f).

Although significant changes are predicted in TX variability
under greenhouse warming (e.g., Fig. 3c), they are found to con-
tribute little to the evolution of probabilities globally. Changes in
the higher moments as a whole, as well as intrinsic non-Gaussian
properties are likely responsible for the fraction of the total spatial
variation of probability changes (~10%) which remains unexplained
by the above Gaussian model (Fig. 7a). For example, as suggested by
pattern correlations (Supplementary Table 4), increases in TXsd,
mainly projected in the tropics, may further enhance the chance of
hot events regionally. Likewise, regions showing marked left-skewed
distributions and/or skewness increase (like over the Southern
Ocean) may experience faster rise in probability than expected by a
rigid Gaussian shift.

Increase in probabilities over land, though slower than over the
oceans, may still be large and significant, particularly in the tropics3,65

as seen in Fig. 8c. Averaged over tropical lands, the hot day probability
is 12-fold higher at the +2K GWL than under early industrial conditions
(rising from about 3 to more than 40 events per year) and rapidly
grows with GSAT (Fig. 8a, b). Likewise for very hot days, predicted to
be ~34 times more frequent at the +2K GWL (Supplementary Table 2).
Consistently with observed tendencies4,66, the most impressive chan-
ges involve tropical South America (Fig. 8c) where they are enhanced
by a dangerous combination of intense warm-season TXwarming, low
native variability and its increase in all seasons (Fig. 3c).

The rise in frequency of hot extremes is paralleled by a wide-
spread decrease of cold extremes (Supplementary Fig. 12), which is
especially fast again in the tropics and over the oceans due to the low
TN variability.

Historical variability, thereby is the key to explaining the ampli-
tude and spread of future changes in exceedance probabilities all over
the globe. Furthermore, because of nonlinearity, even moderate
model errors in native simulated variability can produce large uncer-
tainties in future probabilities (Supplementary Note). This is of critical
importance for regions, like the tropics, where hot events are expected
to increase disproportionately.

Comparison with real data over the early industrial past can thus
help evaluate projection reliability and reduce the above uncertainties.
Results from a preliminary assessment are illustrated in Supplemen-
tary Fig. 13, where daily observations from the Berkeley Earth dataset67

are used to obtain historical (1881–1910) TXsd over much of the global
land. A glance to Fig. 6f reveals a rather poor matching between
simulated and observed TXsd in many places20. Ostensibly, models
tend tomisrepresent historical distributions overestimating variability
at subtropical and higher latitudes, whereas the opposite is observed
around the equatorial belt. This means that hot event probabilities
might rise faster thanprojected in several areas, like the EMD zone and
Australia, whereas they might be slightly slower in regions such as
Central America (Supplementary Fig. 13). The intermodel spread about
early industrial TXsd, however, is rather large (Fig. 6e) and observa-
tional errors unknown. Clearly, in order to draw firm conclusions, a
thorough analysis is required, including additional observational pro-
ducts and an estimate of their uncertainties.

Discussion
Heat extremes are predicted to intensify rapidly with anthropogenic
greenhousewarming, reaching unprecedented levels of frequency and
severity in many places. Our results provide fundamental insights into
the underlying amplification/damping mechanisms, showing that the
high heterogeneity in future trajectories of the extremes is closely
related to the fine structure of thermal distributions and their detailed
evolution (Fig. 9).

Specifically, native variability is found to be crucial to explaining
and predicting the global patterns of changes in the frequency of
unusual hot events. It reshapes the strength of the background
regional warming and, inmany areas, is by far predominant. This is the
case of the tropics where the intrinsically low variability causes hot
events to hugely increase in number, notwithstanding the rather slow
background warming. Viceversa, at higher latitudes the larger varia-
bility dampens the effects of the more intense background. Historical
climate conditions are thus more important than their changes from a
predictive standpoint.

How realistically climate models may represent historical dis-
tributions, therefore, has a substantial impact on projected changes in
hot event probabilities, affectingboth their amplitude anduncertainty.
Indeed, because of the high sensitivity of probability changes to native
variability, even little overestimation of the latter can lead to large
underestimation of the future frequency of hot events, contributing to
inflate projection uncertainty. This stresses the importance of scruti-
nizing models’ performance in simulating true historical variability,
so as to better constrain scenario projections and to narrow the

Fig. 8 | Tropical changes in hot day probabilities. a Multimodel hot-day prob-
abilities (exceedance probabilities EP-99th) averaged over tropical oceans (TOs,
non-land grid points in 30S-30N) and tropical lands (TLs, land-only grid points in
30S-30N), as a function of changes in global-mean surface air temperature (GSAT).
Gray dots denote the intermodel spread. b Distributions of fractional changes in

hot day probabilities (FCEP-99th) across models, averaged over TOs and the globe
(top panel), and over TLs and the global land (bottom), at fixed levels of warming.
cMultimodel fractional changes in hot day probabilities over land (ocean changes
are masked) at +2K warming. All results are based on the high-end scenario
SSP5-8.5.
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uncertainties. This aim can be achieved either by way of weighting (or
selection) algorithmswhichprioritize results from thebestperforming
models62,68 or by applying bias correction to simulated distributions
such that these match the observed ones improving projection
accuracy69. The applicability of these approaches, though, is chal-
lenged by the unequal global data coverage and remains confined to
regions where reliable observations exist and go back to early
industrial times.

On the other hand, future changes in variability (regardless of the
historical values) are shown to deeply affect warming rates of the
extremes, leading to striking deviations from the regional and seasonal
background and a large unevenness across the globe. Decrease in
midlatitude variability, above all, causes cold extremes to warmmuch
faster than hot extremes in many places.

In either case, next order moments (e.g., skewness) and their
changes are found to play a minor role at the global scale, however,
they can be of importance regionally and need to be investigated
further.

Unfortunately, there is not a direct link between the past beha-
vior of thermal distributions and the future severity of the extremes,
since their warming degree depends on the coincident changes in
the leading moments. However, misrepresentations of historical
changes in distributions can signal models’ deficiencies in simulating
relevant physical processes58,62,68, undermining confidence on future
magnitudes of heat extremes. Furthermore, how distribution
moments are predicted to change under warming scenarios could
help uncover the main physical drivers. A case in point is winter
variability decrease atmidlatitudes, which is spatially consistent with
the meridional gradient weakening and points thereby to polar
amplification as a key mechanism behind the prominent warming of
cold extremes34,42.

Hence, the significance of the higher statistical moments for
extreme climate trajectories cannot be overstated. Their tight con-
nections are essential to understand the differential regional response
of the extremes to greenhouse warming. At the same time, they can be
leveraged to improve model projections of future changes, which is a
pressing goal in order to anticipate the worst consequences of climate
change and to cope with them.

Methods
Model outputs
This study is based on a global daily-scale set of near-surface (2m)
maximum (TX) and minimum temperature data (TN), taken from a
multimodel ensemble of historical (1850–2014) and 21st century
CMIP6 simulations49. A range of alternative forcing scenarios is inves-
tigated (SSP1-2.6, SSP2-4.5 and SSP5-8.5), retaining one realization per
model as detailed in Supplementary Table 1.

Annual mean temperatures were first derived from monthly data
throughout the simulation period, and then averaged all over the
globe and across models to obtain GSAT and its changes since early
industrial times (1851–1900). The timings for GSAT to exceed +2K and
+3K above the early industrial mean were estimated for each model in
the high-end scenario (SSP5-8.5), using 21-year running averages.
Crossing periods were defined by model-specific 21-year windows
around the exceedance years (listed in Supplementary Table 1) and
then routinely used to compute the expected values of relevant
observables at the given level of warming.

Daily anomalies
TX and TN daily data were turned into anomalies by computing
deviations from the respective day-of-the-year early-industrial nor-
mals. TX and TN daily normals were formerly estimated for every point

Fig. 9 | Summary chart ofmajor hotspotchanges.Schematic illustration of future
changes in the magnitude and frequency of heat extremes over the hotspot zones
at +3K warming (Supplementary Table 2), and their relations with changes in the
underlying thermal distributions. A theoretical density function allowing skewness

(where appropriate) is used to represent the data47,61. ΔTXx and ΔTNn denote the
change in the hottest days and the coldest nights respectively, ΔEP-99th the change
in hot day probabilities and ΔT the change in annual mean temperatures.
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of themodel native grids by taking the 1851–1900meanof the absolute
temperatures within a time window centered around each calendar
day and thenusingdiscrete Fourier transforms tofilter out noise.Upon
removal of the annual cycle, daily anomalies in the early industrial era
have zero mean by construction, but the detailed shape of distribu-
tions is model and grid point specific at any time.

Statistical moments
The leading properties of grid-point TX and TN distributions (mean,
variability and skewness) were assessed for every single year and sea-
son throughout the simulation period and for each model and sce-
nario, using thefirst and the higher-order centralmoments. These read

μ1 = E½x� and μk = E½ðx � μ1Þk �, k = 2,3 ð3Þ

respectively, where E[ ] is the expectation operator and x the tem-
perature anomaly. Distribution standard deviation is given by the
square root of the secondmoment about themean, σ =

ffiffiffiffiffi
μ2

p
. Skewness

is the third standardized moment γ1 =μ3=ðμ2Þ3=2 and measures the
degree of asymmetry between cold andwarmanomalies. For example,
skewness is negative if the tail at the left end of the distribution is
longer than the tail at the right end, meaning that very cold events are
more likely to occur than very hot ones.

Empirical moments were computed from Eq. (3), using model
grid-point data and common sample estimators70. Specifically, the
latter were derived for every single year from annual and seasonal
samples of daily anomalies (at least 360 and 90, respectively). The
choice of the data samples is aimed at removing spurious trends in the
higher moments induced by the increasing mean (which is subtracted
year by year, Eq. (3)) and, furthermore, at tracing the time evolution of
the daily distributions from which the extremes are drawn.

Heat extremes
Magnitudes and probabilities of the extremes were obtained, as dis-
tributionmoments, for eachmodel on its native grid.Magnitudeswere
analyzed for the fixed-probability events given by the hottest daytime
(TXx) and the coldest nighttime anomaly (TNn) of every year and
season in 1851–2100, under alternative forcing scenarios. Probabilities
of fixed-magnitude extremes were defined using, throughout the
simulation period, climatological exceedance thresholds (i.e., the 1st,
the 99th and the 99.9th percentile) drawn from the grid-point anomaly
distributions of all days of the year in the early industrial era
(1851–1900, disregarding seasons).

Local changes in statistical moments and the extremes under
alternative forcing scenarios were referenced as a rule to the early
industrial averages. Global and regional area-weighted aggregations
were then performed for each model using native grid results, and
finally re-expressed as a function of projected changes in GSAT.

Uncertainty in future projections is assessed to a first approx-
imation by the total spread across models, since this tends to be
broader than, and to encompass, individual intramodel spreads, as
already noted in previous studies31,36. This is further shown in Supple-
mentary Fig. 9, where the intermodel and intramodel spreads are
compared, as a matter of example, in the case of midlatitude changes
in TN variability, by exploiting the runmultiplicity of a couple of GCMs.

Multimodel patterns of change
Global patterns of change in distribution moments and the extremes,
as projected by each model at the +2K and +3K GWL, were estimated
by taking at each grid point the time average over the model-specific
21-year period associated with the given increase in GSAT, as stated
above (Model Outputs). Native grid-point changes, always referenced
to the early-industrial averages, were later remapped to a common
coarse-grained grid (Gaussian N32), before averaging across models
and over the latitude circles.

The agreement between model simulated patterns of change in
the magnitude and frequency of the extremes and the theoretical
expectations based on Eqs. (1) and (2), respectively, was quantified by
the coefficient of determination

R2 = 1� SSres
SStot

; ð4aÞ

SStot =
X
i

wi ð yi � �yÞ2, �y =
X
i

wiyi ð4bÞ

SSres =
X
i

wið yi � ŷiÞ2, ð4cÞ

where yi is themultimodel grid-point changeat thegivenGWL (i running
over the total numberofpoints), ŷi its theoretical counterpart andwi the
grid point weight (cell area fraction). In the case, e.g., of TXx warming
rates (Table 1), yi is the grid-point seasonal change per degree of local
warming ΔTXx/ΔT at the +2K GWL, while ŷi is given by the correspond-
ing distribution changes combined according to Eq. (1). Likewise, for
probabilities (Fig. 7), yi is the grid-point fractional change in hot day
probabilities at the +2KGWL, while ŷi is its analog obtained from Eq. (2).

The total variation SStot ofmodel changes about their globalmean
�y gives the degree of their spatial heterogeneity, and R2 is ameasure of
how this is captured by the theoretical expectations. Namely, the
smaller is the area-weighted sum SSres of squared residuals, the closer
to 1 is R2, i.e., the larger is the fraction of SStot explained by theoretical
changes. Viceversa, if the latter have worse predictions than the global
mean �y, then R2 becomes negative.

Data availability
The model data used in this study are publicly available at https://
pcmdi.llnl.gov/CMIP6/. The Berkely Earth observational dataset is
available at http://berkeleyearth.org/data/. Source data used for the
figures are provided with this paper.

Code availability
Computer codes developed for data analyses are available on request
from the authors.
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