
Fast and backward stable computation of eigenvalues and

eigenvectors of matrix polynomials∗

Jared Aurentz†, Thomas Mach‡, Leonardo Robol§, Raf Vandebril¶, David S. Watkins‖

June 19, 2017

Abstract

In the last decade matrix polynomials have been investigated with the primary focus
on adequate linearizations and good scaling techniques for computing their eigenvalues and
eigenvectors. In this article we propose a new method for computing a factored Schur form
of the associated companion pencil. The algorithm has a quadratic cost in the degree of the
polynomial and a cubic one in the size of the coefficient matrices. Also the eigenvectors can
be computed at the same cost.

The algorithm is a variant of Francis’s implicitly shifted QR algorithm applied on the com-
panion pencil. A preprocessing unitary equivalence is executed on the matrix polynomial to
simultaneously bring the leading matrix coefficient and the constant matrix term to triangular
form before forming the companion pencil. The resulting structure allows us to stably factor
each matrix of the pencil as a product of k matrices of unitary-plus-rank-one form, admitting
cheap and numerically reliable storage. The problem is then solved as a product core chas-
ing eigenvalue problem. A backward error analysis is included, implying normwise backward
stability after a proper scaling. Computing the eigenvectors via reordering the Schur form is
discussed as well.

Numerical experiments illustrate stability and efficiency of the proposed methods.

Keywords: Matrix polynomial, product eigenvalue problem, core chasing algorithm, eigen-
values, eigenvectors
MSC class: 65F15, 65L07

1 Introduction

We are interested in computing the eigenvalues and eigenvectors of a degree d square matrix
polynomial:

P (λ)v = 0, where P (λ) =

d∑
i=0

Piλ
i, Pi ∈ Ck×k.

The eigenpairs (λ, v) are useful for a wide range of different applications, such as, for instance, the
study of vibrations in structures [20,22,26] and the numerical solution of differential equations [4],
or the solution of certain matrix equations [5].

∗The research was partially supported by the Research Council KU Leuven, project C14/16/056 (Invers-free
Rational Krylov Methods: Theory and Applications), and by the GNCS/INdAM project “Metodi numerici avanzati
per equazioni e funzioni di matrici con struttura”.
†Jared.Aurentz@icmat.es, Instituto de Ciencias Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain
‡Thomas.Mach@nu.edu.kz, Department of Mathematics, Nazarbayev University, Kazakhstan
§Leonardo.Robol@isti.cnr.it, ISTI, Area della ricerca CNR, Pisa, Italy
¶Raf.Vandebril@cs.kuleuven.be, Dept. of Computer Science, KU Leuven, Belgium
‖Watkins@math.wsu.edu, Dept. of Mathematics, Washington State University, USA

1

ar
X

iv
:1

61
1.

10
14

2v
2

 [
m

at
h.

N
A

]
 1

6
Ju

n
20

17

Even though recently a lot of interest has gone to studying other types of linearizations [10,19,
22], the classical approach to solve this problem is still to construct the so-called block companion
pencil linearization

S − λT =


λIk P0

−Ik
. . .

...
. . . λIk Pd−2

−Ik λPd + Pd−1

 ∈ Cn×n[λ], (1)

with n = dk and Ik the k×k identity, having eigenvalues identical to the eigenvalues of P (λ) [16,17].
Even though the companion pencil is highly structured, the eigenvalues of S − λT are usually

computed by means of the QZ iteration [24], which ignores the available structure. For example
the MATLAB function polyeig uses LAPACK’s QZ implementation to compute the eigenvalues
in this way. This approach has a cubic complexity in both the size of the matrices and the degree
O(d3k3). The algorithm we propose is cubic in the size of the matrices, but quadratic in the
degree O(d2k3). In all cases where high degree matrix polynomials are of interest, such as the
approximation of the stationary vector for M/G/1 queues [5] or the interpolation of nonlinear
eigenvalue problems [12], this reduction in computational cost is significant.

If we consider a particular case of the above setting k = 1, the problem corresponds to ap-
proximating the roots of a scalar polynomial. In a recent paper Aurentz, Mach, Vandebril, and
Watkins [1] have shown that it is possible to exploit the unitary-plus-rank-one structure of the
companion matrix to devise a backward stable O(d2) algorithm, which is much cheaper than the
required O(d3) when running an iteration that does not exploit the structure. On the other hand
the case d = 1 is just a generalized eigenvalue problem. This can be solved directly by the QZ
iteration. The cost of this process equals O(k3). Based on these considerations, we believe that
an asymptotic complexity O(d2k3) is the best one can hope for, for solving this problem by means
of a QR based approach. In this work we will introduce an algorithm achieving this complexity.
Even though a fundamentally different approach from the one presented here might lead to a lesser
complexity of, e.g., O(max(d, k)dk2), we think that a QZ based strategy cannot easily achieve a
better result.

There are only few other algorithms we are aware of that solve the matrix polynomial eigenvalue
problem. Bini and Noferini [6] present two versions of the Ehrlich-Aberth method; one is applied
directly on the matrix polynomial leading to a complexity of O(d2k4) and another approach
applied on the linearization leads to an O(d3k3) method. Delvaux, Frederix, and Van Barel [9]
proposed a fast method to store the unitary plus low rank matrix based on the Givens-weight
representation. Cameron and Steckley [8] propose a technique based on Laguerre’s iteration which
is of the order O(dk4 + d2k3). In his PhD thesis [25] Robol proposes a fast reduction of the block
companion matrix to upper Hessenberg form, taking the quasiseparable structure into account;
this could be used as a preprocessing step for other solvers. Eidelman, Gohberg, and Haimovici [13,
Theorems 29.1 and 29.4] present in their monograph an algorithm for computing the eigenvalues
of a unitary-plus-rank-k matrix of total cost O(d2k5). Fundamentally different techniques, via
contour integration, are discussed by Van Barel in [27].

We will compute the eigenvalues of the original matrix polynomial by solving the generalized
block companion pencil1 (S, T) in an efficient way. The most important part in the entire algorithm
is the factorization of the block companion matrix S and the upper triangular matrix T into the
product of upper triangular or Hessenberg unitary-plus-rank-one matrices. Relying on the results
of Aurentz, et al. [1] we can store each of these factors efficiently with only O(n) parameters.
Relying on the factorization we can rephrase the remaining eigenvalue problem into a product
eigenvalue problem [3, 7, 31]. A product eigenvalue problem can be solved by iterating on the
formal product of the factors until they all converge to upper triangular form. This procedure
has been proven to be backward stable by Benner, Mehrmann, and Xu [3] and the eigenvalues
are formed by the product of the diagonal elements. The efficient storage and a core chasing

1We will use both notations (S, T) and S − λT when referring to the pencil.

2

implementation of the product eigenvalue problem lead to an O(d2k3) method for computing the
Schur form. The eigenvectors can be computed as well in O(d2k3). Moreover, we will prove that
the algorithm is backward stable, if suitable scaling is applied initially.

The paper is organized as follows. In Section 2 we present three different factorizations: we
propose two ways of factoring the block companion matrix S and a way to factor the upper
triangular matrix T . One factorization of S uses elementary Gaussian transformations, the other
Frobenius companion matrices. In Section 3 we show how to store each of the unitary-plus-
rank-one factors efficiently by O(n) parameters. As the block companion matrix is not yet in
Hessenberg form, we need to preprocess the pencil (S, T) to reduce it to Hessenberg-triangular
form. We present an algorithm with complexity O(d2k3) that achieves this in Section 5. The
product eigenvalue problem is solved in Section 6. Deflation of infinite and zero eigenvalues is
handled in Section 7. Computing the eigenvectors fast is discussed in Section 8. Finally we
examine the backward stability in Section 9 and provide numerical experiments in Section 10
validating both the stability and computational complexity of the proposed methods.

2 Factoring matrix polynomials

The essential ingredient of this article is the factorization of the companion pencil associated with a
matrix polynomial. The factorization of the pencil coefficients into structured matrices, providing
cheap and efficient storage allows the design of a fast structured product eigenvalue solver.

2.1 Matrix polynomials and pencils

Consider a degree d matrix polynomial

λdPd + λd−1Pd−1 + · · ·+ λP1 + P0 ∈ Ck×k[λ], (2)

whose eigenvalues one would like to compute as eigenvalues of a pencil S − λT ∈ Cn×n[λ], with
n = dk. The classical linearization equals (1). Following, however, the results of Mackey, Mackey,
Mehl, and Mehrmann [23] and of Aurentz, Mach, Vandebril, and Watkins [2] we know that all
pencils

S =


−M0

Ik −M1

Ik
. . .

...
Ik −Md−1

 and T =


Ik N1

Ik
. . .

...
Ik Nd−1

Nd

 , (3)

with Ik the k×k identity, M0 = P0, Nd = Pd, and Mi+Ni = Pi, for all 2 6 i 6 d−1 have identical
eigenvalues. In this article we discuss the more general setting (3), since the algorithm can deal
with this. An optimal distribution of the matrix coefficients over S and T in terms of accuracy is,
however, beyond the scope of this manuscript, though a reasonable distribution should satisfy

√
‖[M0, . . . ,Md−1]‖2 + ‖[N1, . . . , Nd]‖2 ≈

√√√√ d∑
i=0

‖Pi‖2.

In the next sections we will factor the matrices S and T . Before being able to do so, we
need to preprocess the matrix polynomial. The leading coefficient Pd needs to be brought to
upper triangular form and the constant term P0 to upper or lower triangular form. This is shown
pictorially in Figure 1 or Figure 2.

These structures can be achieved stably by computing the generalized Schur decomposition2

of either (Pd, P
−∗
0) or (Pd, P0). Suppose U and V are the two unitary matrices such that U∗PdV

is upper triangular and U∗P0V is triangular.

2To compute the Schur decomposition of (Pd, P
−∗
0) stably one solves the product eigenvalue problem PdP

∗
0

implicitly, without requiring inverses, nor multiplications between P0 and Pd.

3

Pd Pd−1 Pd−2 · · · P1 P0

Figure 1: Structure of the matrices: Pd upper and P0 lower triangular

Pd Pd−1 Pd−2 · · · P1 P0

Figure 2: Structure of the matrices: Pd and P0 upper triangular

Performing an equivalence transformation on (2) with U and V provides the desired factoriza-
tion. In the remainder of this section we will therefore assume without loss of generality that all
Pi’s are overwritten by U∗PiV , such that the leading coefficient Pd = Nd is upper triangular and
the constant term P0 = M0 is triangular.

2.2 Frobenius factorization

The block companion matrix S from (3) having its upper right block M0 in lower triangular form
(see Figure 1) can be factored into the product of scalar companion matrices.

Theorem 1 (Frobenius factorization). The block companion matrix S in (3), with blocks Mi ∈
Ck×k and M0 lower triangular, can be factored as S = S1S2 · · ·Sk, where each Si ∈ Cn×n, n = dk,
is the Frobenius companion matrix linked to a scalar monic polynomial of degree n.

Proof. The proof is constructive and proceeds recursively. We show how to factor a companion
matrix S into the product of two matrices S = S1S̃, with S1 a companion matrix of a scalar
polynomial of degree n = dk and S̃ the matrix on which we will apply the recursion.

Consider J the n×n nilpotent downshift matrix, i.e., it has ones on the subdiagonal and zeros
elsewhere. Name M = [MT

0 ,M
T
1 , . . . ,M

T
d−1]T the skinny matrix of size n×k having all Mi stacked

vertically. The elements of the blocks Mi (0 6 i 6 d− 1) are indexed according to their position
in M , thus M0 and Md−1 look like

m11

m21 m22

...
. . .

mk1 mk2 · · · mkk

 and


m(d−1)k+1,1 m(d−1)k+1,2 · · · m(d−1)k+1,k

m(d−1)k+2,1 m(d−1)k+2,2 m(d−1)k+2,k

...
. . .

...
mdk,1 mdk,2 · · · mdk,k

 .
The block companion matrix S = Jk −M [0, . . . , 0, Ik] admits a factorization S1S̃, where

S1 = J − [m11,m21, . . . ,mdk,1]
T
eTn , and S̃ = Jk−1 − M̃ [0, . . . , 0, Ik−1] , with en the n-th

standard basis vector and M̃ of size n× (k − 1) consisting of the last k − 1 columns of M moved

up one row. The top k and bottom k rows of M̃ are thus of the forms
m22

m32 m33

...
. . .

mk,2 mk,3 · · · mk,k

mk+1,2 mk+1,3 · · · mk+1,k

 and


m(d−1)k+2,2 m(d−1)k+2,3 · · · m(d−1)k+2,k

m(d−1)k+3,2 m(d−1)k+3,3 m(d−1)k+3,k

...
. . .

...
mdk,2 mdk,3 · · · mdk,k

0 0 · · · 0

 .

Continuing to factor S̃ in a similar way results in the desired factorization S = S1 · · ·Sk, where
each Si is the Frobenius companion linearization of a degree n = dk scalar polynomial.

Remark 2. Computing the Frobenius factorization is cheap and stable as no arithmetic operations
are involved.

4

Example 3. Consider a degree 3 matrix polynomial λ3I3 + λ2M2 + λM1 +M0 with 3× 3 blocks

M0 = −

 1
2 10
3 11 18

 , M1 = −

 4 12 19
5 13 20
6 14 21

 , and M2 = −

 7 15 22
8 16 23
9 17 24

 .
The associated companion matrix S equals S1S2S3, with

S1 =



1
1 2

. . .
...

1 7
1 8

1 9

 , S2 =



10
1 11

. . .
...

1 16
1 17

1 0

 , S3 =



18
1 19

. . .
...

1 24
1 0

1 0

 .

In Section 2.4 we will provide an alternative factorization of the block companion matrix S,
which, as we will show in Section 9 leads to a slightly better bound on the backward error.

2.3 Gaussian factorization

Both S and T are of unitary-plus-low-rank form, which is essential for developing a fast algorithm.
For proving backward stability in Section 9, we need, however, more; we require that all the factors
in the factorizations of S and T have the low rank part concentrated in a single column, the spike.
For instance a companion is also a unitary-plus-spike matrix. For factoring T from (3), we will
use Gaussian transformations providing us a factorization into identity-plus-spike matrices, that
is, matrices that can be written as the sum of the identity and a rank-one matrix having a single
nonzero column.

Theorem 4 (Gaussian factorization). The matrix T from (3), with matrix blocks Ni ∈ Ck×k and
Nd upper triangular can be factored as T = T1T2 · · ·Tk, where each Ti ∈ Cn×n, with n = dk, is
upper triangular and of identity-plus-spike form.

Proof. The proof is again of recursive and constructive nature and involves elementary matrix
operations. We will factor T as T̃ Tk, where Tk is of the desired upper triangular and identity-
plus-spike form, the recursion will be applied on the matrix T̃ . Write

T = In + [NT
1 , N

T
2 , . . . , N

T
d−1, Ñ

T
d]T [0, . . . , 0, Ik] = In + Ñ [0, . . . , 0, Ik],

with Ñ ∈ Cn×k and Ñd = Nd − Ik. Again we index the individual blocks Ni (1 6 i 6 d− 1) and

Ñd according to N . It is easily verified that T = T̃ Tk, with

Tk = In +
[
n11, n21, . . . , ñ(d−1)k+1,1, 0, . . . , 0

]
eT(d−1)k+1 = (Ñe1)eT(d−1)k+1,

and

T̃ = In +



n12 n13 · · · n1k
n22 n23 · · · n2k
...

...
...

n(d−1)k,2 n(d−1)k,3 · · · n(d−1)k,k

ñ(d−1)k+1,2 ñ(d−1)k+1,3 · · · ñ(d−1)k+1,k

ñ(d−1)k+2,2 ñ(d−1)k+2,3 · · · ñ(d−1)k+2,k

ñ(d−1)k+3,3 · · · ñ(d−1)k+3,k

. . .
...

ñdk,k


[0(k−1)×((d−1)k+1), Ik−1].

Continuing to factor T̃ proves the theorem.

5

Remark 5. There are two important consequences of having Pd = Nd in upper triangular form.
First, the proof of Theorem 4 reveals that we can compute the factorization in an exact way, as
no computations are involved. Second, all factors in the factorization of T are already in upper
triangular form, which will come in handy in Section 5 when transforming the pencil (S, T) to
Hessenberg-triangular form.

Example 6. Consider a 9× 9 upper triangular matrix T as in (3), with 3× 3 blocks

N2 =

 1 8 16
2 9 17
3 10 18

 , N3 =

 4 11 19
5 12 20
6 13 21

 , and N4 =

 7 14 22
15 23

24

 .
Then we have that T = T1T2T3 with

T1 =



1 16
. . .

...
1 21

1 22
1 23

24

 , T2 =



1 8
. . .

...
1 13

1 14
15

1

 , T3 =



1 1
. . .

...
1 6

7
1

1

 .

2.4 Gaussian factorization of the block companion matrix

In this section we provide a second option for factoring the block companion matrix S (see (3)).
Whereas Theorem 1 factors S into regular Frobenius companion matrices, the factorization pro-
posed here relies only on Theorem 4 for factoring upper triangular matrices. To be able to do
so the block M0 needs to be in upper triangular form (see Figure 2), in contrast to the lower
triangular form required by Theorem 1.

Instead of factoring S directly we compute its QR factorization first. Let (n = dk)

Q =


0 0 · · · 0 1
1 0

1 0
. . .

...
1 0

 ∈ Cn×n, (4)

leading to

S = QkR =


0 0 · · · 0 Ik
Ik 0

Ik 0
. . .

...
Ik 0




Ik −M1

Ik −M2

. . .
...

Ik −Md−1

−M0

 .

The upper triangular matrix R can be factored by Theorem 4 as R = R1 · · ·Rk, providing a
factorization of S of the form S = QkR1 · · ·Rk.

3 Structured storage

To develop an efficient product eigenvalue algorithm we will exploit the structure of the factors.
In addition to being sparse, all factors are also of unitary-plus-rank-one form, and we can use an
O(n) storage scheme, where n = dk. We recall how to efficiently store these matrices, since the
upper triangular factors differ slightly from what is presented by Aurentz et al. [1].

To factor these matrices efficiently we use core transformations Qi, which are identity matrices
except for a unitary two by two block Qi(i : i + 1, i : i + 1). Note that the subscript i in core

6

transformations will always refer to the active part (i : i + 1, i : i + 1). For instance rotations or
reflectors operating on two consecutive rows are core transformations.

Let us first focus on the factorization S = S1 · · ·Sk from Section 2.2. All matrices Si with
1 6 i 6 k are of unitary-plus-rank-one and of Hessenberg form and we replace them by their
QR factorization Si = QRi. This factors the companion matrices into a unitary Q and upper
triangular identity-plus-spike matrices Ri. Indeed, the matrix Q is, initially, identical for all Si,
and looks like (4), being the product of n − 1 core transformations: Q = Q1 · · ·Qn−1, with all
Qi(i : i + 1, i : i + 1) = [0 1

1 0] counteridentities. From now on, we will use caligraphic letters to
denote a sequence of core transformations such as Q. Because the core transformations in Q are
ordered such that the first one acts on rows 1 and 2, the second one on rows 2 and 3, the third one
on rows 3 and 4, and so forth, we will refer to it as a descending sequence of core transformations.
When presenting core transformations pictorially as in Section 5 we see that Q clearly describes
a descending pattern of core transformations.

As a result we have a factorization for S of the form

S = S1S2 · · ·Sk = QR1QR2 · · · QRk (Frobenius factorization). (5)

Alternatively, considering the factorization from Section 2.4, we would get

S = QkR1 · · ·Rk (Gaussian factorization). (6)

It is important to notice that even though (5) and (6) use the same symbols Ri, they are differ-
ent. However, as both factorizations are never used simultaneously, we will reuse these symbols
throughout the text.

Since Q can be factored into n − 1 core transformations Qk from (4) admits a factorization
into k descending sequences of core transformations too. It remains to efficiently store the upper
triangular identity-plus-spike matrices Ri:

Ri =



1 ×
1 ×

. . .
...

1 ×
×

1
. . .

1


. (7)

In the Frobenius case (5) the spike is always located in the last column and in Gaussian case (6)
the spike is found in column n+ 1− i.

For simplicity we drop the subscript i and we deal with all cases at once: Let R have the form
(7), with the spike in column `. Then R = Y + (x− e`)yT with Y = In unitary, x ∈ Cn the vector
containing the spike, and y = e` ∈ Cn. We begin by embedding R in a larger matrix R having
one extra zero row and an extra column with only a single element different from zero:

R =



1 × 0
1 × 0

. . .
...

...
1 × 0
× 1

1 0
. . .

...
1 0

0 0 · · · 0 0 0 · · · 0 0


.

7

Let P denote the (n + 1) × n matrix obtained by adding a zero row to the bottom of the n × n
identity matrix. Then R = PTRP . In fact our object of interest is R, but for the purposes of
efficient storage we need the extra room provided by the larger matrix R. The 1 in the last column
ensures that the matrix R remains of unitary-plus-spike form R = Y +xyT , where y = e` ∈ Cn+1,

and x ∈ Cn+1 is just x with a −1 adjoined at the bottom. Thus PT y = y, PTx = x,

Y =



1
1

. . .

1
0 1

1
. . .

1
1 0


and x =



×
×
×
...
×
0
...
0
−1


. (8)

Let C1, . . . , Cn be core transformations such that C1 · · ·Cnx = αe1, with |α| = ‖x‖2. Because
of the nature of x, each of the core transformations C`+1, . . . , Cn has the simple active part
F = [0 1

1 0]. If we use the symbol Fj to denote a core transformation with active part F , then
Cj = Fj for j = `+ 1, . . . , n. Let C = C1 · · ·Cn. Then we can write

R = C∗(CY + e1y
T),

where we have absorbed the factor3 α into y. Let B = CY = C1 · · ·CnY . It is easy to check
that C`+1 · · ·CnY = F`+1 · · ·FnY = F`F`+1 · · ·Fn. Thus B = C1 · · ·C`F` · · ·Fn, so we can write
B = B1 · · ·Bn, where B` = C`F`, and Bj = Cj for j 6= `. As a result we get

R = PTC∗
n · · ·C∗

1 (B1 · · ·Bn + e1y
T)P = PTC∗(B + e1y

T)P. (9)

The symbols P and PT are there just to make the dimensions come out right. They add nothing
to the storage or computational cost, and we often forget that they are there.

Remark 7. It was shown in [1] that by adding an extra row and column to the matrix R, preserving
the unitary-plus-spike and the upper triangular structure, that all the information about the rank-
one part is encoded in the unitary part. Thus we will not need to store the rank-one-part explicitly.
We will consider this in more detail in Section 9 when discussing the backward error.

The overall computational complexity for efficiently storing the factored form of the pencil
equals O(dk3) subdivided in the following parts.

The preprocessing step to bring the constant and leading coefficient matrix to suitable triangu-
lar form requires solving a product eigenvalue problem or computing a Schur decomposition which
costs O(k3) operations. Also the other matrices require updating: 2(d − 1) matrix-matrix prod-
ucts, assumed to take O(k3) each are executed. Factoring T and S is for free since no arithmetic
operations are involved. Overall, computing the factored form requires thus O(dk3) operations.

The cost of computing the efficient storage of a single identity-plus-spike matrix is essentially
the one of computing Cx = αe1. This requires computing n = dk core transformations for 2k
matrices. In total this sums up to O(dk2).

4 Operating with core transformations

The proposed factorizations are entirely based on core transformations; we need three basic oper-
ations to deal with them: a fusion, a turnover, and a pass-through operation. To understand the

3In the remainder of the text we will always assume ‖x‖ = 1 and as a consequence that α is absorbed into y.

8

flow of the algorithm better we will explain it with pictures. A core transformation is therefore
pictorially denoted as �� , where the arrows pinpoint the rows affected by the transformation.

Two core transformations Fi and Gi undergo a fusion when they operate on identical rows and
can be replaced by a single core tranformation Hi = FiGi. Pictorially this is shown on the left of
(10). Given a product FiGi+1Hi of three core transformations, then one can always refactor the
product as Fi+1GiHi+1. This operations is called a turnover.4 This is shown pictorially on the
right of (10).

� �� � = �� ,
� ��
�
�

� =
�

�
�
�� � . (10)

The final operation involves core transformations and upper triangular matrices. A core trans-
formation can be moved from one side of an upper triangular matrix to the other side: RGi = G̃iR̃,
named a pass-through operation.

When describing an algorithm with core transformations, typically one core transformation is
more important than the others and it is desired to move this transformation around. Pictorally
we represent the movement of a core transformation by an arrow. For instance

��
��
��
��

,
��
��
��
�� , �� �� ,

(11)

demonstrates pictorially the movement of a core transformation from the right to the left as the
result of executing a turnover (left and middle picture of (11)) and a fusion (right picture of (11)),
where the right rotation is fused with the one on the left. We need pass-through operations in
both directions, pictorially shown as

���� or ���� .

In the description of the forthcoming algorithms we will also pass core transformations through
the inverses of upper triangular matrices. In case of an invertible upper triangular matrix R, this
does not pose any problems; numerically, however, this is unadvisable as we do not wish to invert
R. So instead of computing R−1Gi = G̃iR̃

−1 we compute G∗
iR = R̃G̃∗

i , which can be executed
numerically reliably (even when R is singular). Pictorially

��
G̃i

��
Gi

R−1 is computed as ��
G∗

i

��
G̃∗

i

R .

Not only will we pass core transformations through the inverses of upper triangular matrices,
we will also pass them through sequences of upper triangular matrices. Suppose, e.g., that we have
a product of ` upper triangular matrices R1 · · ·R` and we want to pass Gi from the right to the left
through this sequence. Passing the core transformation sequentially through R`, R`−1, up to R1

provides us (R1 · · ·R`)Gi = G̃i(R̃1 · · · R̃`). Or, simply writing R = R1 · · ·R` we have RGi = G̃iR̃,
what is exactly what we will often do to simplify the pictures and descriptions. Pictorially

4This is proved easily by considering the QR or QL factorization of a 3× 3 unitary matrix. We refer to Aurentz
et al. [1] for more details and to the eiscor package https://github.com/eiscor/eiscor for a reliable implementation.

9

��
G̃i

R1 ��
R2 ��

· · ·
��

R` ��
Gi

is written as ��
G̃i

R ��
Gi

R = R1 · · ·R`

.

One important issue remains. We have described how to pass a core transformation from one
side to the other side of an upper triangular matrix. In practice, however, we do not have dense
upper triangular matrices, but a factored form as presented in (9), which we are able to update
easily. Since the rank-one part can be recovered from the unitary matrices C and B, we can ignore
it; passing a core transformation through the upper triangular matrix R = PTC∗(B+ e1y

T)P can

be replaced by passing a core transformation through the unitary part C∗B only. So RGi = G̃iR̃ is

computed as (C∗B)Gi = G̃i(C̃∗B̃), where Gi =
[
Gi 0
0 1

]
and G̃i =

[
G̃i 0
0 1

]
and thus GiP = PGi and

G̃iP = PG̃i. The pass-through operation requires two turnovers as pictorially shown, for d = 2,
k = 3, and n = dk = 6,

��
G̃i

��
Gi

R
is computed as

��
��
��
��
��
����

��
��
��
��
��

G̃i

��
�� ��

Gi

W ∗

�� .

We emphasize that Gien+1 = G̃ien+1 = en+1 and W ∗e1 = e1 will always hold and these relations
are used in the backward error analysis.

All these operations, i.e., a turnover, a fusion, and a pass-through, require a constant O(1)
number of arithmetic operations and are thus independent of the matrix size. As a result, passing
a core transformation through a sequence of compactly stored upper triangular unitary-plus-rank-
one matrices costs O(k), where k is the number of upper triangular matrices involved. Moreover,
the turnover and the fusion are backward stable operations [1], they introduce only errors of the
order of the machine precision on the original matrices. The stability of a pass-through operation
involving factored upper-triangular-plus-rank-one matrices will be discussed in Section 9.

5 Transformation to Hessenberg-triangular form

The companion matrix S has k nonzero subdiagonals. To efficiently compute the eigenvalues of the
pencil (S, T) via Francis’s implicitly shifted QR algorithm [14, 15] we need a unitary equivalence
to transform the pencil to Hessenberg-triangular form.

We will illustrate the reduction procedure on the Frobenius factorization (5), though it can be
applied equally well on the Gaussian factorization (6). We search for unitary matrices U and V
such that the pencil (U∗SV , U∗TV) is of Hessenberg-triangular form. We operate directly on the
factorized versions of S and T in U∗SV V ∗T−1U and we compute

(U∗S1U1) (U∗
1S2U2) · · · (U∗

k−1SkV) (V ∗T−1
k Vk−1) (V ∗

k−1T
−1
k−1Vk−2) · · · (V ∗

1 T
−1
1 U)

= S̃1 S̃2 · · · S̃k T̃−1
k T̃−1

k−1 · · · T̃−1
1 ,

where S̃1 is Hessenberg and all other factors S̃2, . . . S̃k, T̃1, . . . , T̃k are upper triangular. Every time
we have to pass a core transformation through an n×n upper triangular factor we use the efficient
representation and the tools described in Section 4 to pass it through the product and the inverse
factors.

10

We illustrate the procedure on a running example with k = 3 and d = 2, so the matrices are
of size 6× 6 and the product is of the form

S1 S2 S3 T−1
3 T−1

2 T−1
1

T−1 = T−1
3 T−1

2 T−1
1S = S1S2S3

.

However, we do not work on these Hessenberg matrices, but directly on their QR factorizations.
Pictorially, where for simplicity of presentation we have replaced T−1

3 T−1
2 T−1

1 by T−1 we get

��
��
��
��
��

R1

��
��
��
��
��

R2

��
��
��
��
��

R3 T−1
.

It remains to remove all subdiagonal elements of the matrices S2 and S3, this means that all core
transformations between matrices R1 and R2, and the matrices R2 and R3 need to be removed.
We will first remove all the core transformations acting on rows 1 and 2, followed by those acting
on rows 2 and 3, and so forth. We remove transformations from the right to the left, so first the
top core transformation between R2 and R3 is removed followed by the top core transformation
between R1 and R2.

First we bring the top core transformation in the last sequence to the outer left. The trans-
formation has to undergo two pass-through operations: one with R2 and one with R1, and two
turnovers to get it there

��
��

��
��
��
��
��

��
����

��
��
��
��

��
��
��
��
��

S3 T−1
.

To continue the chasing a similarity transformation is executed removing the rotation from the
left and bringing it to the right of the product. Pictorially

�� ��
��
��
��
��
��

��
��
��
��
��

��
��
��
��

S3 T−1
.

As a result we now have a core transformation on the outer right operating on rows 3 and 4.
Originally this transformation was acting on rows 1 and 2. Every time we do a turnover the core
transformation moves down a row. The operation of moving a core transformation to the outer left
and then bringing it back to the right via a similarity transformation is vital in all forthcoming
algorithms, we will name this a sweep. Depending on the number of turnovers executed in a
sweep, the effect is clearly a downward move of the involved core transformation. Finally it hits
the bottom and gets fused with another core transformation.

We continue this procedure and try to execute another sweep: we move the transformation
on the outer right back to the outer left by 5 pass-through operations (3 are needed to pass the

11

transformation through T−1 = T−1
3 T−1

2 T−1
1) and 2 turnovers. At the end, the core transformation

under consideration operates on the bottom two rows as it was moved down 2 times. The result
looks like

��
��
��
��
�� ��

��
��
��
��
����
��

��
��
��
��

��
�� �� �� .

At this point it is no longer possible to move the core transformation further to the left. We can get
rid of it by fusing it with the bottom core transformation of the first sequence. We have removed
a single core transformation and it remains to chase the others in a similar fashion. Pictorially we
have

��
��
��
��
�� ��

��
��
��
��
��

��
��
��
��

.

The top core transformation in the second sequence is now marked for removal. Pictorially we
have accumulated all steps leading to

��
��
��
��
��

��
�� ������

����
����

�� ������

��
��
��
��
��

��
��
��
��

.

The next core transformation to be chased is the second one of the outer right sequence of core
transformations we are handling. Pictorially all steps of the chasing at once look like

��
��
��
��
��

��
�� ��

����
��
��
�� ��

��
��
��
����
�� �� ��

.

The entire procedure to chase a single core transformation consists of executing sweeps until the
core transformation hits the bottom and can fuse with another core transformation.

At the very end we obtain the factorization

��
��
��
��
��

S̃1

S̃2 S̃3 T̃−1
3 T̃−1

2 T̃−1
1 .

(12)

This matrix is in upper Hessenberg form and on this factorization we will run the product eigen-
value problem.

12

The algorithm annihilates the unwanted core transformations acting on the first rows, followed
by those acting on the second row, and so forth. As a consequence a single full sweep from right
to left always takes k turnovers and 2k pass-through operations, and gets thus a complexity O(k).
To get rid of a single core transformation Gi we need approximately b(dk − i)/kc sweeps leading
to an approximate complexity count

dk∑
i=1

k−1∑
j=1

dk − i
k

k = O(d2k3),

where i runs over the core transformations and j over the sequences.

6 Product eigenvalue problem

The following discussion is a concise description of the actual QR algorithm. It is based on the
results of Aurentz, Mach, Vandebril, and Watkins [1, 29] combined with Watkins’s interpretation
of product eigenvalue problems [30]. For simplicity, we will only describe a single shifted QR step
in the Hessenberg case, for information beyond the Hessenberg case we refer to Vandebril [28].

Suppose we have a Hessenberg-triangular pencil (S̃, T̃), with S̃ = S̃1 · · · S̃k and T̃ = T̃1 · · · T̃k,
where S̃1 is of Hessenberg form and all other factors upper triangular and nonsingular. The
algorithm for solving the generalized product eigenvalue problem can be seen as a QR algorithm
applied on S̃T̃−1. Pictorially, for d = 2, k = 3, and n = dk = 6, this looks as in (12). As before all
upper triangular factors are combined into a single one, where S̃1 = Q̃1R̃1 is a QR factorization
of S̃1. Pictorially we get

S̃T̃−1 =

��
��
��
��
��

Q̃ R̃1S̃2S̃3T̃
−1
3 T̃−1

2 T̃−1
1

.

To initiate the core chasing algorithm we pick a suitable shift µ and form u = (S̃−µT̃)e1. The
initial similarity transformation is determined by the core transformation U1 such that U∗

1u = αe1
for some α. We fuse the two outer left core transformations and pass the core transformation U1 on
the right through the upper triangular matrix to get a new core transformation X1. Pictorially we
get the left of (13). The resulting matrix is not of upper Hessenberg form anymore, it is perturbed
by the core transformation X1. We will chase this core transformation to the bottom. We name
this core transformation X1 the misfit. A turnover will move X1 to the outer left. Pictorially we
get the right of (13).

��
U∗
1

��
��
��
��
��

��
X1

��
U1

��
��
��
��
��

��
X1

��
U2

(13)

Next we execute a similarity transformation with U2. This will cancel out U2 on the left and bring
it to the right. Next pass U2 through the upper triangular matrix. Pictorially the flow looks like
the left of (14). This looks similar to (13), except for the misfit which has moved downward one
row. We can continue now by executing a turnover, a similarity, and a pass-through to move the

13

misfit down one more position. Pictorially we end up in the right of (14).

��
��
��
��
��

��
U2

��
X2

��
U2

��
��
��
��
��

��
X2

��
X3

��
U3

��
U3

(14)

After n − 2 similarities we are not able to execute a turnover anymore. The final core trans-
formation Xn−1 fuses with the last core transformation of the sequence and we are done

��
��
��
��
�� ��
Xn−1

.

In fact we continue executing sweeps until the core transformation hits the bottom and gets
fused. After few QR steps a deflation will occur. Classically a deflation in a Hessenberg matrix is
signaled by subdiagonal elements being relatively small with respect to the neighbouring diagonal
elements. Before being able to utilize this convergence criterion we would need to compute and
accumulate all diagonal elements of the compactly stored upper triangular factors. In this factored
form, however, a cheaper and more reliable [21] criterion is more suitable. Deflations are signaled
by almost diagonal core transformations in the descending sequence preceding the upper triangular
factors. Only a simple check of the core transformations is required and we do not need to extract
the diagonal elements out the compact representation, nor do we need to accumulate them.

Solving the actual product eigenvalue problem requires to compute n = dk eigenvalues, where
on average each eigenvalue should be found in a few QR steps. A single QR step requires the chas-
ing of an artificially introduced core transformation. During each sweep this core transformation
moves down a row because of a single turnover, hence n = dk sweeps are required, each taking 2k
pass-throughs and one turnover operations. In total this amounts to O(d2k3).

7 Removing infinite and zero eigenvalues

Typically the unitary-plus-spike matrices in the factorizations will be nonsingular, but there are
exceptions. If the pencil has a zero eigenvalue, then S will be singular, and therefore one of the
factors Ri will necessarily be singular. If there is an infinite eigenvalue, T will be singular, so
one of the factors Ti must be singular. We must therefore ask whether singularity of any of these
factors can cause any difficulties.

As we shall see, infinite eigenvalues present no problems. They are handled automatically by
our algorithm. Unfortunately we cannot say the same for zero eigenvalues. For the proper func-
tioning of the Francis QR iterations, any exactly zero eigenvalues must be detected and deflated
out beforehand. We will present a procedure for doing this.

7.1 Singular unitary-plus-rank-one matrices

We begin by characterizing singularity of a unitary-plus-spike factor. Suppose R = Ri (7) is
singular. (The same considerations apply to Ti.) There must be a zero on the main diagonal, and
this can occur only at the intersection of the diagonal and the spike, i.e. at position (`, `), where
` = n+ 1− i. R is stored in the factored form R = PTC∗

n · · ·C∗
1 (B1 . . . Bn + e1y

T)P . The validity
of this representation was established in [1], and it remains valid even though R is singular. Let’s
see how singularity shows up in the representation.

14

Recall from the construction of C and B that C`+1, . . . , Cn, all have active part [0 1
1 0]. In other

words Cj = Fj for j = `+1, . . . , n. But now the additional zero element at position ` in x implies
that also C` = F` as well. But then B` = C`F` = F 2

` = I. The converse holds as well: B` is trivial
if and only if R has a zero at the `th diagonal position. All of the other Bj are equal to Cj , and
these are all nontrivial.

This is the situation at the time of the initial construction of R. In the course of the reduction
algorithm and subsequent Francis iterations, R is modified repeatedly by having core transfor-
mations passed through it, but it continues to be singular and it continues to contain one trivial
Bi core transformation, as Theorem 8 below demonstrates. As preparation for this theorem we
remark that Theorems 4.2, 4.3, and 4.7 of [1] remain valid, ensuring that all of the Ci remain
nontrivial.

Theorem 8 (Modification of [1, Theorem 4.3]). Consider a factored unitary-plus-rank-one matrix
R = PTC∗(B + e1y

T)P = PTC∗
n · · ·C∗

1 (B1 · · ·Bn + e1y
T)P , with core transformations C1, . . . ,

Cn nontrivial. Then R is upper triangular. Moreover B` is trivial if and only if the `th diagonal
element of R equals zero.

Proof. Originally we started out with

R =

[
R ×
0 0

]
(15)

where the symbol × represents a vector that is not of immediate interest. The bottom row of R
is zero initially and it remains zero forever. This is so because the core transformations that are
passed into and out of R act on rows and columns 1, . . . , n; they do not alter row n+ 1. Letting
H = B + e1y

T , we have R = C∗H, or equivalently H = CR. Partition this equation as[× ×
H̃ ×

]
=

[× ×
C̃ ×

] [
R ×
0 0

]
, (16)

where H̃ and C̃ are n × n and the vectors marked × are not of immediate interest. We deduce
that

H̃ = C̃R.

H is upper Hessenberg, so H̃ is upper triangular. Since all Ci are nontrivial, C is a proper upper
Hessenberg matrix (ci+1,i 6= 0, i = 1, . . . , n), so C̃ is upper triangular and nonsingular. We have

R = C̃−1H̃. (17)

so R must be upper triangular. Now looking at the main diagonal of the equation H̃ = C̃R, we
find that h`+1,` = c`+1,` r`,`. Since c`+1,` 6= 0 we see that r`,` = 0 if and only if h`+1,` = 0, and
this happens if and only if B` is trivial.

The existence of trivial core transformations in the factors presents no difficulties for the
reduction to Hessenberg-triangular form. In some cases it will result in trivial core transformations
being chased forward, but this does no harm. Now let us consider what happens in the iterative
phase of the procedure.

7.2 Infinite eigenvalues

Behavior of infinite eigenvalues under Francis iterations is discussed in [31]. There it is shown
that a zero on the main diagonal of T gets moved up by one position on each iteration. Let’s
see how this manifests itself in our structured case. Consider an example of a singular Ti with a
trivial core transformation in the third position, B3 = I, as shown pictorially below. Since Ti is in
the “inverted” part, core transformations pass through it from left to right. Suppose we pass G2

through Ti, transforming G2Ti to T̃iG̃2. The first turnover is routine, but in the second turnover

15

there is a trivial factor: F3B2B3 = F3B2I. This turnover is thus trivial: F3B2I = IF3B2. I
becomes the new B2. The old B2 is pushed out of the sequence to become G̃2. Pictorially

G2

��
�� ��

B2

F3

��
��

��
����

��
��
��
�� G̃2

�� ��
B2��

��
��
����

��
��
��
��

.becomes

The trivial core transformation in B has moved up one position.
On each iteration it moves up one position until it gets to the top. At that point an infinite

eigenvalue can be deflated at the top. The deflation happens automatically; no special action is
necessary.

7.3 Zero eigenvalues

In the case of a zero eigenvalue, one of the Ri factors has a trivial core transformation, for example,
B3. During the iterations, core transformations pass through Ri from right to left. One might
hope that the trivial core transformation gets pushed downward by one position on each iteration,
eventually resulting in a deflation at the bottom. Unfortunately this is not what happens. When
a transformation G2 is pushed into Ri from the right, the first turnover is trivial: B2IG2 = IB̃2I,
where B̃2 = B2G2. A trivial core transformation is ejected on the left, and the iteration dies.

It turns out that this problem is not caused by the special structure of our factors but by
the fact that we are storing the matrix in QR-decomposed form. There is a simple general
remedy. Consider a singular upper-Hessenberg A with no special structure, stored in the form
A = Q1 · · ·Qn−1R. If A is singular, then so is R, so rii = 0 for some i. The reader can easily check
that if rii = 0 for i < n, then ai+1,i = 0, so A is not properly upper Hessenberg, and a deflation
should be possible. We will show how to do this below, but first consider the case when rnn = 0.
We have

A = QR =

��
��
��
��
��

××××××
×××××
××××
×××
××

,

where R has a zero at the bottom. Do a similarity transformation that moves the entire matrix
Q to the right. Then pass the core transformations back through R, and notice that when Qn−1

is multiplied into R, it acts on columns n − 1 and n and does not create a bulge. Thus nothing
comes out on the left. Or, if you prefer, we can say that Q̂n−1 = I comes out on the left:

××××××
×××××
××××
×××
××

��
��
��
��
��

=

��
��
��
��

××××××
×××××
××××
×××
××

.

Now we can deflate out the zero eigenvalue.
It is easy to relate what we have done here to established theory. It is well known [31] that if

there is a zero eigenvalue, one step of the explicit QR algorithm with zero shift (A = QR, RQ = Â)
will extract it. This is exactly what we have done here. One can equally well check that if one
does a single Francis iteration with shift ρ = 0, this is exactly what results.

16

Now consider the case rii = 0, i < n. Depicting the case i = 3 we have

A = QR =

��
��
��
��
��

×××××
××××
×××
××
×

×
×

×
×
×

.

Pass Qi+1, . . . , Qn−1 from left to right through R to get them out of the way:

��
��
��
��
��

��
��

×××××
××××
×××
××
×

×
×

×
×
×

.

Since these do not touch row or column i, the zero at rii is preserved. Now the way is clear to
multiply Qi into R without creating a bulge. This gets rid of Qi. Now the core transformations
that were passed through R can be returned to their initial positions either by passing them back
through R or by doing a similarity transformation. Either way the result is

��
��

��
��

×××××
××××
×××
××
×

×
×

×
×
×

,

or more compactly

��
��

��
��

×××××
××××
×××
××
×

×
×

×
×
×

.

The eigenvalue problem has been decoupled into two smaller eigenvalue problems, one of size i×i at
the top and one of size (n− i)× (n− i) at the bottom. The upper problem has a zero eigenvalue,
which can be deflated immediately by doing a similarity transformation with Q1 · · ·Qi−1 and
passing those core transformations back through R as explained earlier. The result is

��

��
��

×××××
××××
×××
××
×

×
×

×
×
×

.

We now have an eigenvalue problem of size (i− 1)× (i− 1) at the top, a deflated zero eigenvalue
in position (i, i), and an eigenvalue problem of size (n− i)× (n− i) at the bottom.

We have described the deflation procedure in the unstructured case, but it can be applied
equally well in the structured context of this paper. Instead of a simple upper-triangular R, we
have a more complicated RT−1, which is itself a product of many factors. The implementation
details are different, but the procedure is the same.

17

8 Computation of eigenvectors

In practice typically only the left or the right eigenvectors are required. We will compute left
eigenvectors since these ones are easier to retrieve than the right ones. If the right eigenvectors
are wanted, one can compute the left ones of P (λ)T .

For w as a left eigenvector corresponding to the eigenvalue λ, i.e., wTP (λ) = 0, we get that

ŵ =


w
λw
...

λd−1w

 ,
will be a left eigenvector of the companion pencil (1). This implies that once an eigenvector ŵ of
the companion pencil is computed, the first k elements of that vector define the eigenvector w of
the matrix polynomial. To save storage and computational cost it suffices thus to compute only
the first k elements of each eigenvector. For reasons of numerical stability, however, we will also
compute the last k elements of ŵ and use its top k elements if |λ| 6 1 and its trailing k elements
if |λ| > 1 to define w.

Suppose our algorithm has run to completion and we have ended up with the Schur form U∗(S−
λT)V = Ŝ − λT̂ , where both Ŝ and T̂ are upper triangular. The left eigenvector, corresponding

to the eigenvalue λ̂ found in the lower right corner of Ŝ − λT̂ equals ŵ = Uen. But since the top
or bottom k elements of ŵ suffice to retrieve w we only need to store the top k and bottom k rows
of U . Let P be of size 2k × dk

P =

[
Ik 0 . . . 0 0
0 0 . . . 0 Ik

]
,

then we see that PUen provides us all essential information. As the matrix U∗ is an accumulation
of all core transformations applied to the left of S and T during the algorithm we can save
computations by forming PU directly instead of U .

Let us estimate the cost of forming PU . Applying a single core transformation from the right to
a 2k×dk matrix costs O(k) operations. Each similarity transformation with a core transformation
requires us to update PU ; it remains thus to count the total number of similarities executed. In
the initial reduction procedure to Hessenberg-triangular form we need at most d similarities to
remove a single core transformation. As roughly dk core transformations need to be removed, we
end up with O(d2k) similarities. Under the assumption that a O(1) of QZ steps are required to get
convergence to a single eigenvalue we have O(dk) similarities for a single eigenvalue, in total this
amounts O(d2k2) similarities for all eigenvalues. In total forming the matrix PU has a complexity
of O(d2k3).

Unfortunately the Schur form allows us only to compute the left eigenvector corresponding to
the eigenvalue found in the lower right corner. To compute other eigenvectors we need to reorder
the Schur form so that each corresponding eigenvalue appears once at the bottom, after which we
can extract the corresponding eigenvector. To reorder the Schur pencil we can rely on classical
reordering methods [31]. In our setting we will only swap two eigenvalues at once and we will use
core transformations to do so. To compute the core transformation that swaps two eigenvalues in
the Schur pencil, we need the diagonal and superdiagonal elements of Ŝ and T̂ , these are obtained
by computing the diagonal and superdiagonal elements of each of the involved factors. We refer
to Aurentz et al. [1] for details on computing diagonal and superdiagonal elements of a properly
stored unitary-plus-rank-one matrix. After this core transformation is computed we apply it the
Schur pencil and update all involved factors by chasing the core transformation through the entire
sequence. After the core transformation has reached the other end it is accumulated in PU .

If all eigenvectors are required, we need quite some swaps and updating. Let us estimate the
cost. Bringing the eigenvalue in the bottom right position to the upper left top thereby moving
down all other eigenvalues a single time requires dk − 1 swaps. Doing this dk − 1 times makes

18

sure that each eigenvalue has reached the bottom right corner once, enabling us to extract the
corresponding eigenvector. In total O(d2k2) swaps are thus sufficient to get all eigenvectors. A
single swap requires updating the 2k upper triangular factors involving 4k turnovers. Also PU
needs to be updated and this takes O(k) operations as well. In total this leads to an overall
complexity of O(d2k3) for computing all the eigenvectors of the matrix polynomial.

9 Backward stability

The algorithm consists of three main steps: a preprocessing of the matrix coefficients, the reduc-
tion to Hessenberg-triangular form, and the actual eigenvalue computations. We will quantify
how the backward errors can accumulate in all steps. The second and third step are dealt with
simultaneously. In this section we use

.
= to denote an equality where some second or higher order

terms have dropped, δX will denote a perturbation of X, and . stands for less than, up to multi-
plication with polynomial in d and k of modest degree. For simplicity we assume the norms to be
unitarily invariant.We make use of the Frobenius norm, but will denote it simply as ‖ · ‖ without
subscripted F.

The preprocessing step brings the matrix polynomial’s leading and trailing coefficients to
triangular form and all other polynomial coefficients are transformed via a unitary equivalence
P̃i = U∗PiV . In floating point arithmetic, however, we get P̂i. Relying on the backward stability
of the QZ algorithm and since both U and V are unitary we get that P̂i = U∗(Pi + δPi)V , where
‖δPi‖/‖Pi‖ . u, where u denotes the unit round-off [18]. Factoring the pencil matrices is free of
errors and provides us unitary-plus-spike matrices

In Section 9.1 we analyze unitary-plus-spike matrices and see that we end up with a highly
structured backward error. In Sections 9.2 and 9.3 we consider the combined error of the reduction
and eigenvalue computations for the Frobenius and Gaussian factorizations. We prove and show
in the numerical experiments, Section 10, that both factorizations have the error bounded by the
same order of magnitude, but the Gaussian factorization has a smaller constant. In Section 9.4
we conclude by formulating generic perturbation theorems pushing the error back on the pencil
and on the matrix polynomial. We show that with an appropriately scaling we end up with a
backward stable algorithm.

9.1 Perturbation results for unitary-plus-spike matrices

We first state a generic perturbation theorem for upper triangular unitary-plus-spike matrices.
This theorem is more detailed compared to our previous error bound [1]. The precise location
of the error is essential in properly accumulating the errors of the various factor matrices in
Theorems 11 and 13. We show that the backward error on an upper triangular unitary-plus-spike
matrix that has undergone some pass-through operations is distributed non-smoothly. Suppose
the spike has zeros in the last ` spots. Then the associated upper triangular matrix will have its
lower ` rows perturbed only by a modest multiple of the machine precision. The other upper rows
will incorporate a larger error depending on ‖R‖, and the upper part of the spike absorbs the
largest error being proportional to ‖R‖2.

Theorem 9. Let R be an n× n upper triangular identity-plus-spike matrix5 factored as

R = PTC∗(B + e1y
T)P = In + (x− e`)yT , ‖C∗e1‖ = ‖x‖ = 1,

with the notational conventions on x, y, x, and y and the rank-one part implicitly encoded in the
unitary part as in Section 3. Let U and V be unitary matrices representing the action of several
pass-through operations through R such that the resulting R̃ = U∗RV is an upper triangular
unitary-plus-rank-one matrix. If R̂ is the result obtained computing R̃ in floating point, operating

5In the setting of the paper n = dk, but the theorem holds for any n. In the remainder we identify n with dk.

19

on the unitary part only (see Section 4) and reconstructing the rank-one part from the unitary
part, we get

R̂ = U∗(R+ δR)V = U∗(Ru + δRu +Ro + δRo)V,

where Ru = PTC∗BP and Ro = PTC∗e1yTP , and δRu stands for the error in the unitary and
δRo in the rank-one part. The error in the unitary part ‖δRu‖ . u, and the error in the rank-one
part

δRo
.
= −δρr xyT + δw1 y

T + x δwT2 ,

with ‖δw1‖ . u, ‖δw2‖ . ‖y‖u, and |δρr| . ‖y‖u.

Proof. The rank-one part of R is stored implicitly in the unitary matrices so, in practice, the
equivalence transformation U∗RV only manipulates the unitary part C∗B. So we execute U∗C∗BV
where, following our notational convention, U = [U 0

0 1] and V = [V 0
0 1]. This operation is imple-

mented as U∗C∗W W ∗BV , first passing core transformations through B and then through C. The
resulting upper triangular R̃ can therefore be factored as

R̃ = PT R̃P = PT C̃∗(B̃ + e1ỹ
T)P,

where

C̃ = W ∗CU, B̃ = W ∗BV .
Letting ρ̃ = (eTn+1C̃∗e1), the vector ỹ is given by

ỹT = −(eTn+1C̃∗e1)−1(eTn+1C̃∗B̃) = −ρ̃−1(eTn+1C̃∗B̃).

Since We1 = e1 and Uen+1 = en+1 we have that ρ̃ = eTn+1C̃∗e1 = eTn+1C∗e1 = ρ, which in turn is
the final element of x.

In floating point, however, we end up with R̂ rebuilt from the computed Ĉ and B̂, which are
the perturbed version of C̃ and B̃, by using

R̂ = PT R̂P = PT Ĉ∗(B̂ + e1ŷ
T)P,

where, for ρ̂ = (eTn+1Ĉ∗e1), the vector ŷ is computed from

ŷT = −(eTn+1Ĉ∗e1)−1(eTn+1Ĉ∗B̂) = −ρ̂−1(eTn+1Ĉ∗B̂).

The matrices Ĉ and B̂ are the result of executing turnovers on C and B. Each turnover
introduces a small backward error of the order u [1] and we have, for ‖δC‖ . u, ‖δB‖ . u,
the relations Ĉ = W ∗(C + δC)U and B̂ = W ∗(B + δB)V . All the individual perturbations are
accumulated in δC and δB, which could be dense, unstructured, in general. It’s worth noting,
however, that the implementation ensures that Ĉ as well as B̂ remain unitary.

Let us focus now on the factor ρ̂. In floating point we compute ρ̂ = ρ + δρa = ρ(1 + δρr)
(subscripts a and r denoting the absolute and relative error respectively). Given that |δρa| . u
we have |δρr| . |ρ|−1u, which can be bounded by |δρr| . ‖y‖u. Under the assumption that δρr is

tiny we get (1 + δρr)
−1 .

= (1− δρr).
Combining these relations and using We1 = e1 and Uen+1 = en+1 leads to

R̂ = U∗(C + δC)∗W
(
W ∗(B + δB)V

+e1(−ρ−1)(1 + δρr)
−1(eTn+1U

∗(C + δC)∗W W ∗(B + δB)V)
)

.
= U∗

(
(C + δC)∗(B + δB)− (C + δC)∗e1ρ−1(1− δρr)eTn+1(C + δC)∗(B + δB)

)
V .

Using x = C∗e1 and yT = −ρ−1(eTn+1C∗B) provides the following approximation of the error

U(R̂− R̃)V ∗ .
= PT

(
δC∗ B + C∗ δB + δC∗e1yT − δρr xyT − ρ−1xeTn+1(δC∗ B + C∗ δB)

)
P

= δRu + δw1 y
T − δρr xyT + x δwT2 ,

where δRu = PT (δC∗ B + C∗ δB)P . The bounds on the norms of δw1 and δw2 follow directly.

20

We can show that ‖y‖ 6 ‖R‖ 6 1 + ‖y‖ and ‖R‖ 6 ‖R‖ 6 1 + ‖R‖. Looking at the four

terms that comprise the backward error, we see that ‖δRu‖ . u, ‖δw1 y
T ‖ . ‖y‖u . ‖R‖u,

‖δρrxyT ‖ . ‖y‖2u . ‖R‖2u, and ‖x δwT2 ‖ . ‖y‖u . ‖R‖u. We can conclude that ‖δR‖ . ‖R‖2u.

Note, however, that only one of the four terms has a ‖R‖2 factor, namely δρrxy
T . This is a

backward error; the rank-one matrix xyT is the initial rank-one matrix, which is in the shape of
the initial spike. It follows that the part of the backward error that depends on ‖R‖2 is confined
to the spike. The regions of dependence can be depicted as follows.

δR1 δR2 δR3
Perturbation
depending on

u

‖R‖u
‖R‖2u

9.2 Gaussian factorization

We first consider the Gaussian factorization, and we write S and T as

S = QR1 · · ·Rk, and T = T1 · · ·Tk.

The structure of T is a particular case of the one of S where we have chosen Q = In. Besides Q
both matrices consist of a product of unitary-plus-spike matrices, and we will use the perturbation
results from Theorem 9 for each of these factors individually. For simplicity we perform the
backward error analysis on S only. The same holds unchanged for T by ignoring Q.

At the end of the algorithm, when S has reached upper triangular form, we will have S̃ = U∗SV .
In floating point we compute a matrix Ŝ such that Ŝ = U∗(S + δS)V . In the Gaussian case we
have that, for j = 1, . . . , k,

Rj = In + (xj − e`)yTj , yj = αje`, (18)

` = n − j + 1. Only the first ` elements of xj can be different from zero. We remark that xj is
normalized such that its enlarged version has norm one: ‖xj‖ = 1. We are interested in bounding
the norm of δS. A simple lemma is required, before stating the main result of the section.

Lemma 10. For j = 1, . . . , k and Rj the factors of the Gaussian factorization (18) we have that
R1 · · ·Rj−1xj = xj and yTj Rj+1 · · ·Rk = yTj .

Proof. Whenever i < j, we have yTi xj = αie
T
n−i+1xj = 0, because of the zero structure of xj . The

relation R1 · · ·Rj−1xj = xj follows from (18). Similar arguments prove the second relation.

Theorem 11. Let Ŝ be the result of the floating point computation of S̃ = U∗SV , where a
Gaussian factorization of S was used. Then we have that

Ŝ = U∗(S + δS)V, with ‖δS‖ . ‖S‖2u.

Proof. The upper triangular matrix S̃ is expressed as the product of upper triangular matrices
R̃j = U∗

j−1RjUj , for j = 1, . . . , k (set Uk = V), with the matrices Rj as in (18):

S̃ = U∗SV = U∗QU0︸ ︷︷ ︸
Q̃=In

U∗
0R1U1︸ ︷︷ ︸
R̃1

U∗
1R2U2︸ ︷︷ ︸
R̃2

· · · U∗
k−1RkV︸ ︷︷ ︸
R̃k

.

Applying Theorem 9 to each of the upper triangular factors gives R̂j = U∗
j−1(Rj +δRj)Uj . For

the unitary part we have U∗(Q + δQ)U0, with ‖δQ‖ . u. Combining the relations for the upper

21

triangular and unitary part yields, up to first order terms:

UŜV ∗ − S .
= δQR1 · · ·Rk +

k∑
j=1

QR1 · · ·Rj−1 δRj Rj+1 · · ·Rk. (19)

Relying on the explicit form of the perturbation from Theorem 9 combined with Lemma 10
allows to rewrite the product of the upper triangular factors as follows

R1 · · ·Rj−1 δRj Rj+1 · · ·Rk .
= R1 · · ·Rj−1 δRj,uRj+1 · · ·Rk − δρj,r xjyTj
+R1 · · ·Rj−1 δwj,1 y

T
j + xj δw

T
j,2Rj+1 · · ·Rk.

Noting that ‖R1 · · ·Rj−1‖ 6 ‖S‖, ‖Rj+1 · · ·Rk‖ 6 ‖S‖, and ‖yj‖ . ‖S‖, we can bound each of

the above terms by a modest multiple of ‖S‖2u. Plugging this bound into (19) and taking into
account that ‖δQR1 · · ·Rk‖ . ‖S‖u gives the result.

As a consequence we immediately know also that the backward error on T is bounded by a
modest multiple of ‖T‖2u.

9.3 Frobenius factorization

The Frobenius factorization is slightly more difficult to analyze. At the start, we factor S as

S = QR1 · · · QRk = S1 · · ·Sk.

We are able to prove roughly the same results, that means an error depending on ‖S‖2 only, but we
will see that the constant could be much larger than in the Gaussian case, due to the intermediate
factor matrices Q. In the Gaussian case there is only a single factor in front the unitary-plus-spike
matrices; here, however, the interlacing unitary factors will spread out the errors more leading to
a higher constant.

According to Section 2.2 each Sj is of the form

Sj = Q(In + xjy
T
j), with yj = αjen, (20)

and Qxj can only have its first n− j + 1 elements different from zero.

Lemma 12. For j = 1, . . . , k and Sj the factors (20) of the Frobenius factorization we have
S1 · · ·Sj−1Qxj = Qjxj and yTj Sj+1 · · ·Sk = yTj Qk−j.
Proof. We know that each Qxj has j − 1 trailing zeros (for 1 6 j 6 k), as a consequence, recall
the structure (4) of Q, we have that Qj−`xj = Qj−`−1Qxj has ` trailing zeros. As a consequence
we have that yT` Qj−`xj = α`e

T
nQj−`xj = 0 as long as ` < j. Using (20) proves the first relation,

the second relation is obtained similarly.

Theorem 13. Let Ŝ be the result of the floating point computation of S̃ = USV ∗, where a
Frobenius factorization of S was used. Then we have that Ŝ = U(S + δS)V ∗ with ‖δS‖ . ‖S‖2u.

Proof. The upper triangular matrix S̃ can be expressed as the product of upper triangular matrices
R̃j and unitary matrices Q̃i = In as follows:

S̃ = U∗SV = U∗QX0︸ ︷︷ ︸
Q̃1

X∗
0R1U1︸ ︷︷ ︸
R̃1

U∗
1QX1︸ ︷︷ ︸
Q̃2

X∗
1R2U2︸ ︷︷ ︸
R̃2

· · ·Uk−1QX∗
k−1︸ ︷︷ ︸

Q̃k

X∗
k−1RkV︸ ︷︷ ︸
R̃k

.

Using again Theorem 9 to bound the perturbation on the upper triangular factors and assuming
that in floating point we have computed U∗

j (Q+ δQj)Xj , for j = 0, . . . , k − 1 (set U0 = U), with
‖δQj‖ . u, yields, up to first order terms:

UŜV ∗ − S .
=

k∑
j=1

S1 · · ·Sj−1 δQj Rj Sj+1 · · ·Sk +

k∑
j=1

S1 · · ·Sj−1Q δRj Sj+1 · · ·Sk.

22

For the left part of the summand we get ‖S1 · · ·Sj−1 δQj Rj Sj+1 · · ·Sk‖ . ‖S‖2u. The right part
can be analyzed similarly as before and by Theorem 9 and Lemma 12 we get

S1 · · ·Sj−1Q δRj Sj+1 · · ·Sk .
= S1 · · ·Sj−1Q δRj,uSj+1 · · ·Sk − δρj,rQjxjyTj Qk−j

+S1 · · ·Sj−1Q δwj,1 yTj Qk−j +Qjxj δwTj,2 Sj+1 · · ·Sk.

All of the terms above can be bounded by ‖S‖2u and the result follows.

Remark 14. Both factorizations yield a quadratic dependency on the norm of S for the back-
ward error. A careful look at the proof reveals, however, that the bound in the Gaussian fac-
torization is smaller than the one of the Frobenius case. In the latter case we have k terms
S1 · · ·Sj−1 δQj Rj Sj+1 · · ·Sk contributing to the quadratic error in ‖S‖, and these terms are not
present in the Gaussian factorization.

The error bounds can be improved significantly by scaling the problem. It is straightforward
to apply a diagonal scaling from the right on the matrix polynomial such that the entire block
column in (1) has norm 1. This scaling is used in the numerical experiments.

9.4 Main backward error results

The generic perturbation results can be summarized into three theorems.

Theorem 15 (Backward error on the block companion pencil). Given a block companion pencil
S−λT , the Schur form computed via the algorithm proposed in this paper is the exact Schur form
of a perturbed pencil (S + δS) − λ(T + δT), where ‖δT‖ . ‖T‖2u, ‖δS‖ . ‖S‖2u, and u is the
unit round-off.

The proof is a combination of the results of this section.

Theorem 16 (Backward error on the block companion pencil in case of scaling). Given a block
companion pencil S−λT and run the algorithm proposed in this paper on the scaled pencil (α−1S)−
λ(α−1T), where α = max(‖T‖, ‖S‖). Then the computed Schur form is the exact Schur form of a
perturbed pencil (S+ δS)−λ(T + δT), where ‖δT‖ . αu, ‖δS‖ . αu, and u is the unit round-off.

Proof. Applying Theorem 15 to (α−1S)−λ(α−1T), we get the following bounds on the backward

errors ‖δ(α−1S)‖ . ‖α−1S‖2u 6 u and ‖δ(α−1T)‖ . ‖α−1T‖2u 6 u of the perturbed pencil
(α−1S + δ(α−1S))− λ(α−1 + δ(α−1T)) whose Schur form we have actually computed.

Mapping this to the original pencil (S+δS)−λ(T +δT) = (S+α δ(α−1S))−λ(T +α δ(α−1T))
proves the theorem.

For our final result we make the assumption that

√
‖[M0, . . . ,Md−1]‖2 + ‖[N1, . . . , Nd]‖2 ≈

√√√√ d∑
i=0

‖Pi‖2.

Theorem 17 (Backward error on the matrix polynomial). Given a matrix polynomial P (λ) =∑d
i=0 Piλ

i, whose eigenvalues are computed via the algorithm in this paper, including a scaling

of the order
√∑d

i=0‖Pi‖
2
. Then we know that these eigenvalues are the exact eigenvalues of a

nearby polynomial

P (λ) + δP (λ) =

d∑
i=0

(Pi(λ) + δPi(λ))λi,

where √√√√ d∑
i=0

‖δPi‖2 . u

√√√√ d∑
i=0

‖Pi‖2.

23

Proof. The eigenvalues and eigenvectors of a matrix polynomial are invariant with respect to
scaling, so we compute the eigenvalues of the scaled matrix polynomial

Q(λ) = α−1P (λ), where α ≈

√√√√ d∑
i=0

‖Pi‖2.

According to Theorem 16 this provides the Schur form of the block companion pencil of Q(λ)
computed with a backward error of the order of the machine precision u. Both the block companion
pencil and the gathered coefficients of Q(λ) have norm about 1. Relying on the work of Edelman
and Murakami [11], or Dopico, Lawrence, Pérez, and Van Dooren [10] this implies that we have

computed the exact eigenvalues of a nearby polynomial Q(λ) + δQ(λ), with
√∑d

i=0‖δQi‖
2 . u.

Therefore, we have computed the exact eigenvalues of P (λ) + δP (λ), with δP (λ) = α δQ(λ), and
δP (λ) satisfies √√√√ d∑

i=0

‖δPi‖2 = α

√√√√ d∑
i=0

‖δQi‖2 . u

√√√√ d∑
i=0

‖Pi‖2.

We remark that the results in this paper provide normwise backward error results on all
coefficients simultaneously and coefficient-wise backward stability cannot be guaranteed by these
theorems.

So far we have not yet discussed the computation of the eigenvectors. The only operations
involved are computing the swapping core transformations, turnovers to move the swapping core
transformations through the upper triangular factors, and updating the matrix PU . These are
all backward stable and as a result retrieving a single eigenvector is backward stable. It must
be said, however, that we can only state that a single eigenpair is computed stably. Stability
does not necessarily hold for the entire eigendecomposition as the perturbation will be eigenvector
dependent. In other words, we do not claim that there is a single small perturbation on the matrix
polynomial such that its exact eigenvectors match all our computed eigenvectors.

10 Numerical experiments

The algorithm is implemented in the software package eiscor, which provides eigenvalue algo-
rithms based on core transformations. The software can be freely downloaded from Github by
visiting https://github.com/eiscor/eiscor/. We examine the computational complexity of
computing only eigenvalues, the backward error on the Schur form, complexity and stability of
computing eigenpairs, and we conclude with some examples from the NLEVP collection.

10.1 Computing eigenvalues: complexity analysis

We verify the asymptotic computational complexity of the method. We proved in Section 5 that
the expected computational complexity is O(d2k3). Two tests were executed.

• We verified the quadratic complexity in d by fixing k = 4 and then computing eigenvalues of
random matrix polynomial eigenvalue problems for different values of d. We compared the
timings with the QZ iteration implemented in LAPACK 3.6.0.

• We verified the cubic complexity in k by fixing d = 4 and running the algorithm for different
values of k ranging between 1 and 1024.

In Figure 3, fixing k, we notice that the current implementation is faster than LAPACK at
about d = 40. In Figure 4 we plotted the complexity as a function of the size of the coefficient ma-
trices. The plot shows that the slope of the curve representing the reduction is well approximated
by 3, indicating a cubic dependency on k.

24

101 102
10−4

10−3

10−2

10−1

100

101

102

103

Degree (d)

R
u
n
ti
m
e
(s
)

Gaussian–Gaussian
Frobenius–Gaussian
Unstructured QZ

Quadratic complexity

Figure 3: Test of the quadratic complexity in the degree d of the matrix polynomial, k = 4, and the
tests were averaged over 10 runs. The runtime is compared with the one of the unstructured QZ
algorithm from LAPACK. The dashed line represents a quadratic dependence of the runtime on
the degree and is added for reference. The runtimes are reported for (Frobenius,Gaussian)-factored
and (Gaussian,Gaussian)-factored pencils, whose timings are almost indistinguishable.

101 102
10−4

10−2

100

102

104

106

Size (k)

R
u
n
ti
m
e
(s
)

Reduction

y = 10−4x3

Figure 4: Test of the complexity in the size of the matrices k. The examples all have degree d = 4
and for each combination of d and k 10 tests were run.

25

100 101 102 103 104 105 106 107
10−15

10−11

10−7

10−3

‖S‖F , ‖T‖F

‖S
−
V
Ŝ
W

H
‖ F

,
‖T

−
V
T̂
W

H
‖ F Backward error on S

Backward error on T

≈ ‖·‖2F · u

Figure 5: Backward error on the computed Schur form for different values of ‖S‖F and ‖T‖F .
We took k = 8, d = 10 and ran 1000 tests. For S a Frobenius factorization and for T a Gaussian
factorization was used. The dashed lines represent a reference line for the quadratic complexity.

10.2 Backward stability of the Schur form

In Section 9 we provided bounds on the backward error of the computed Schur form. In order to
validate these bounds we have measured the backward error on the computed upper triangular
pencil Ŝ − λT̂ by evaluating ‖UŜV ∗ − S‖F and ‖UT̂V ∗ − T‖F , where S − λT is the companion
pencil associated to a matrix polynomial with random coefficients. We have run 1000 experiments
for k = 8 and d = 10. The results are reported in Figure 5 for a (Frobenius,Gaussian)-factored
pencil and in Figure 6 for a (Gaussian,Gaussian)-factored pencil. We see that, even though both
approaches exhibit a quadratic growth in S, the (Gaussian,Gaussian)-factorization provides, for
this test setting, the best backward error. Both plots also show that the bounds that we have
found are asymptotically tight.

10.3 Computing eigenvectors: complexity and stability

Finally, we have computed the eigenvalues and the eigenvectors of random matrix polynomials
of degree d = 4 and size k = 8. We have generated the coefficients drawing the entries from
a normal distribution, and we have randomly scaled each coefficient in order to make them of
unbalanced norms. More precisely, each coefficient is of the form 2αM , where the entries of M are
distributed as Gaussians with mean 0 and variance 1, and α is drawn from the uniform distribution
on [−15, 15].

According to Tisseur [26], the absolute backward error on a computed eigenpair (λ, v) can be
evaluated as

err(P, λ, v) = ‖P (λ)v‖ ·

 d∑
j=0

|λ|j
−1

. (21)

In Figure 7 we report the maximum of the absolute backward errors on the eigenpairs of P (λ)
computed with our algorithm; on the x axis we have reported the norm of the coefficients of P (λ),
computed as the Frobenius norm of [P0, . . . , Pd]. The linear dependence of the backward error on
the norm of the coefficients as predicted by Theorem 17 is clearly visible.

In Figure 8 we have reported the timings for the computation of all the eigenvectors of al matrix
polynomial P (λ) for various degrees and sizes. The numerical results show that the behavior
remains quadratic in d and cubic in k even when the additional work for the computation of the
eigenvectors is required.

26

100 101 102 103 104 105 106 107
10−15

10−11

10−7

10−3

‖S‖F , ‖T‖F

‖S
−
V
Ŝ
W

H
‖ F

,
‖T

−
V
T̂
W

H
‖ F Backward error on S

Backward error on T

≈ ‖·‖2F · u

Figure 6: Backward error on the computed Schur form for different values of ‖S‖F and ‖T‖F . We
took k = 8, d = 10 and 1000 runs. In this example the Gaussian factorization has been used for
both matrices S and T .

10−3 10−2 10−1 100 101 102 103 104 105 106
10−17

10−15

10−13

10−11

10−9

‖[P0, . . . , Pd‖F

B
ac
k
w
ar
d
er
ro
r

Backward error

O(‖P‖) · u

Figure 7: Asolute backward error on the computed eigenpairs of random matrix polynomials P (λ)
of different norms, according to the formula (21).

27

100 101 102 103

10−2

100

102

104

d

T
im

e
(s
)

Time

O(d2)

100 101 102 103

10−3

100

103

106

k

T
im

e
(s
)

Time

O(k3)

Figure 8: Timings for the computation of all the eigenvectors and eigenvalues of a matrix polyno-
mial as a function of the degree and of the size. The expected quadratic and cubic growth of the
complexity are visible.

‖δS‖ (eiscor) ‖δS‖ (polyeig) ‖δT‖ (eiscor) ‖δT‖ (polyeig)
planar waveguide 8.361 e-14 8.336 e-14 8.910 e-14 7.214 e-14
orr sommerfeld 3.855 e-14 5.523 e-14 3.285 e-14 4.475 e-14
plasma drift 6.177 e-14 6.418 e-14 5.705 e-14 4.882 e-14

Table 1: Backward error on the Schur form of the properly scaled companion pencil for some
NLEVP problems. The norms reported are the norms of the perturbations to S and T .

10.4 Nonlinear eigenvalue problems: NLEVP

To verify the reliability of our approach we have tested our algorithm on some problems from the
NLEVP collection [4]. This archive contains realistic polynomial eigenvalue problems. Most of
them do have low degree, however, so we have tested our approach only on problems of degree 4,
namely the orr sommerfeld, the plasma drift, and the planar waveguide problems.

To verify the backward stability, we have reported the backward error on the computed Schur
form in Table 1. The pencil was scaled as in Theorem 16.

In Figure 9 we have reported the backward error on the single computed eigenpairs according
to (21). The results clearly show that the proposed method performs as well as the classical QZ
method.

11 Conclusions

A fast, backward stable algorithm was proposed to compute the eigenvalues of matrix polynomials.
A factorization of the pencil matrices allowed us to design a product eigenvalue problem operating
on a structured factorization of the involved unitary-plus-rank-one factors. Stability was proved
and confirmed by the numerical experiments.

Acknowledgements

The authors would like to express their gratitude to the referees, whose careful reading, error
detection, and questions led to a significantly improved version of this paper.

28

10−18 10−17 10−16 10−15 10−14 10−13

10−18

10−16

10−14

10−18 10−17 10−16 10−15 10−14 10−13

10−18

10−16

10−14

Figure 9: Backward errors on the computed eigenvalues for the orr sommerfeld (on the left) and
plasma drift (on the right) NLEVP problems. Each point in the plot has the backward error
obtained using the QZ algorithm on the (scaled) companion pencil from LAPACK as y coordinate
and the algorithm presented in this paper as the x one.

References

[1] J. L. Aurentz, T. Mach, R. Vandebril, and D. S. Watkins, Fast and backward stable
computation of roots of polynomials, SIAM Journal on Matrix Analysis and Applications, 36
(2015), pp. 942–973.

[2] J. L. Aurentz, T. Mach, R. Vandebril, and D. S. Watkins, A note on companion
pencils, Contemporary Mathematics, 658 (2016), pp. 91–101.

[3] P. Benner, V. Mehrmann, and H. Xu, Perturbation analysis for the eigenvalue problem
of a formal product of matrices, BIT Numerical Mathematics, 42 (2002), pp. 1–43.

[4] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, NLEVP:
a collection of nonlinear eigenvalue problems, ACM Transactions on Mathematical Software,
39 (2013), pp. 7:1–7:28.

[5] D. Bini and B. Meini, On the solution of a nonlinear matrix equation arising in queueing
problems, SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 906–926.

[6] D. A. Bini and V. Noferini, Solving polynomial eigenvalue problems by means of the
Ehrlich–Aberth method, Linear Algebra and its Applications, 439 (2013), pp. 1130–1149.

[7] A. W. Bojanczyk, G. H. Golub, and P. Van Dooren, Periodic Schur decomposition:
algorithms and applications, in San Diego’92, International Society for Optics and Photonics,
1992, pp. 31–42.

[8] T. R. Cameron and N. I. Steckley, On the application of Laguerre’s method to the
polynomial eigenvalue problem. Arxiv:1703.08767, 2017.

[9] S. Delvaux, K. Frederix, and M. Van Barel, An algorithm for computing the eigenval-
ues of block companion matrices, Numerical Algorithms, 62 (2012), pp. 261–287.

[10] F. M. Dopico, P. Lawrence, J. Pérez, and P. Van Dooren, Block Kronecker lin-
earizations of matrix polynomials and their backward errors, Tech. Rep. 2016.34, Manchester
Institute for Mathematical Sciences, School of Mathematics, The University of Manchester,
2016.

[11] A. Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues,
Mathematics of Computation, 64 (1995), pp. 763–776.

29

[12] C. Effenberger and D. Kressner, Chebyshev interpolation for nonlinear eigenvalue prob-
lems, BIT Numerical Mathematics, 52 (2012), pp. 933–951.

[13] Y. Eidelman, I. C. Gohberg, and I. Haimovici, Separable Type Representations of Ma-
trices and Fast Algorithms – Volume 2: Eigenvalue Method, no. 235 in Operator Theory:
Advances and Applications, Springer Basel, 2013.

[14] J. G. F. Francis, The QR Transformation a unitary analogue to the LR transformation–
Part 1, The Computer Journal, 4 (1961), pp. 265–271.

[15] , The QR Transformation–Part 2, The Computer Journal, 4 (1962), pp. 332–345.

[16] F. R. Gantmacher, The Theory of Matrices, Vol II, Chelsea, New York, USA, 1974.

[17] I. Gohberg, P. Lancaster, and L. Rodman, Matrix polynomials, vol. 58, SIAM, Philadel-
phia, USA, 1982.

[18] N. J. Higham, Accuracy and Stability of numerical algorithms, SIAM, Philadelphia, USA,
1996.

[19] N. J. Higham, D. S. Mackey, and F. Tisseur, The conditioning of linearizations of matrix
polynomials, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 1005–1028.

[20] P. Lancaster, Lambda-Matrices and Vibrating Systems, Courier Corporation (Dover Pub-
lications), New York, USA, 2002.

[21] T. Mach and R. Vandebril, On deflations in extended QR algorithms, SIAM Journal on
Matrix Analysis and Applications, 35 (2014), pp. 559–579.

[22] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Structured polynomial eigen-
value problems: good vibrations from good linearizations, SIAM Journal on Matrix Analysis
and Applications, 28 (2006), pp. 1029–1051.

[23] , Vector spaces of linearizations for matrix polynomials, SIAM Journal on Matrix Anal-
ysis and Applications, 28 (2006), pp. 971–1004.

[24] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue prob-
lems, SIAM Journal on Numerical Analysis, 10 (1973), pp. 241–256.

[25] L. Robol, Exploiting rank structures for the numerical treatment of matrix polynomials, PhD
thesis, University of Pisa, Italy, 2015.

[26] F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra
and its Applications, 309 (2000), pp. 339–361.

[27] M. Van Barel, Designing rational filter functions for solving eigenvalue problems by contour
integration, Linear Algebra and its Applications, 502 (2016), pp. 346–365.

[28] R. Vandebril, Chasing bulges or rotations? A metamorphosis of the QR-algorithm, SIAM
Journal on Matrix Analysis and Applications, 32 (2011), pp. 217–247.

[29] R. Vandebril and D. S. Watkins, An extension of the QZ algorithm beyond the
Hessenberg-upper triangular pencil, Electronic Transactions on Numerical Analysis, 40 (2012),
pp. 17–35.

[30] D. S. Watkins, Product eigenvalue problems, SIAM Review, 47 (2005), pp. 3–40.

[31] , The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadel-
phia, USA, 2007.

30

	1 Introduction
	2 Factoring matrix polynomials
	2.1 Matrix polynomials and pencils
	2.2 Frobenius factorization
	2.3 Gaussian factorization
	2.4 Gaussian factorization of the block companion matrix

	3 Structured storage
	4 Operating with core transformations
	5 Transformation to Hessenberg-triangular form
	6 Product eigenvalue problem
	7 Removing infinite and zero eigenvalues
	7.1 Singular unitary-plus-rank-one matrices
	7.2 Infinite eigenvalues
	7.3 Zero eigenvalues

	8 Computation of eigenvectors
	9 Backward stability
	9.1 Perturbation results for unitary-plus-spike matrices
	9.2 Gaussian factorization
	9.3 Frobenius factorization
	9.4 Main backward error results

	10 Numerical experiments
	10.1 Computing eigenvalues: complexity analysis
	10.2 Backward stability of the Schur form
	10.3 Computing eigenvectors: complexity and stability
	10.4 Nonlinear eigenvalue problems: NLEVP

	11 Conclusions

