Multilingual Text Classification Made Easy

Fabrizio Sebastiani

(Joint work with Andrea Esuli and Alejandro Moreo Fernández)

Istituto di Scienza e Tecnologie dell'Informazione Consiglio Nazionale delle Ricerche 56124 Pisa, IT E-mail: fabrizio.sebastiani@isti.cnr.it

> CICLING 2018, Hanoi, VN March 19–23, 2018

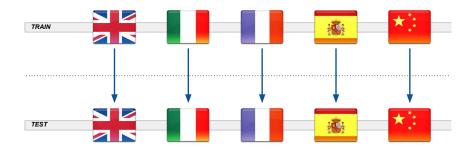
> > (ロ) (日) (日) (日) (日)

- Multilingual text classification (by topic, by sentiment, ...) ...
- ... classifier ensembles ...
- ... and transfer learning

Multilingual Text Classification

- Each document *d* written in one of a finite set $\mathcal{L} = \{\lambda_1, ..., \lambda_m\}$
- Classification scheme ("codeframe") $C = \{c_1, ..., c_n\}$ is the same for all languages
- Scenario common in many multinational organizations (e.g., European Union) / companies (e.g., Vodafone)
- Three "variants" of this task

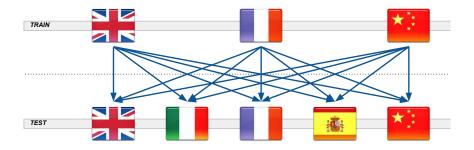
1. Mono-lingual Text Classification



• MLC solved as *m* independent monolingual classification tasks

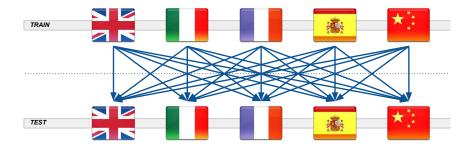
イロト イヨト イヨト イヨト

2. Cross-lingual Text Classification



- Attempts to exploit synergies among languages
- Training examples exist only for the source languages $\mathcal{L}_s \subset \mathcal{L}$ and not for the target languages $\mathcal{L}_t \subset \mathcal{L}$
- \Rightarrow Generate classifiers for languages for which you otherwise could not

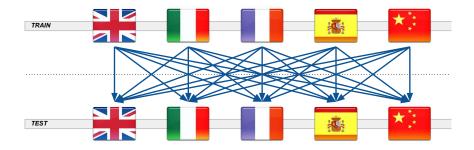
3. Poly-lingual Text Classification



- Attempts to exploit synergies among languages
- Training examples exist for all languages in $\mathcal L$
- \Rightarrow Improve on monolingual classifiers

イロト イヨト イヨト イヨト

Our problem setting



• We tackle 2 variants of polylingual multiclass classification (i.e., $n \ge 2$)

- single-label PLC (1-of-n), which subsumes the binary case
- multi-label PLC (any-of-n)

Classifier outputs n classification scores

イロト イロト イヨト イヨト

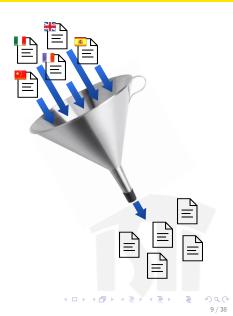
- Both CLC and PLC are instances of (Heterogeneous) Transfer Learning (TL)
- Basic idea of TL: reuse info about a problem in a source domain for solving the same problem in a different target domain
- Useful to address the "training data bottleneck"
- CLC / PLC : problem = classification in C; info = training examples; domain = language
- Useful for under-resourced languages

Transfer Learning

- PLC represents a form of massive TL : all training examples contribute to the classification of all unlabelled examples, irrespectively of language
- How can we achieve that?
- One direction is that of trying to "eliminate the differences between languages"

Transfer Learning

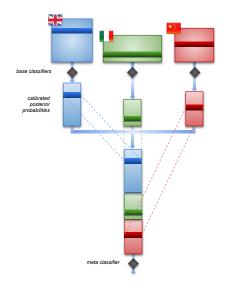
- PLC represents a form of massive TL : all training examples contribute to the classification of all unlabelled examples, irrespectively of language
- How can we achieve that?
- One direction is that of trying to "eliminate the differences between languages"



Transfer Learning

- PLC represents a form of massive TL : all training examples contribute to the classification of all unlabelled examples, irrespectively of language
- How can we achieve that?
- One direction is that of trying to "eliminate the differences between languages"
- Funnelling: a classifier ensemble method for heterogeneous TL

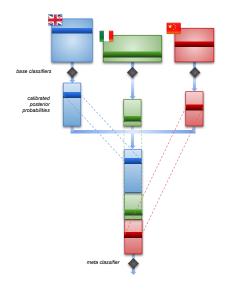
Funnelling: PLC made easy



- Two-level classification architecture
 - Set of language-dependent base classifiers
 - 2 Language-independent metaclassifier
- For the metaclassifier, document *d* represented as vector of *n* classification scores
- Metaclassifier outputs a vector of *n* classification scores

イロト イヨト イヨト イヨト

Funnelling: PLC made easy

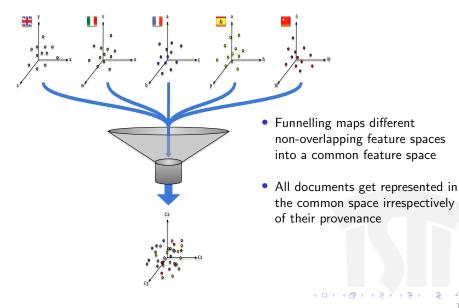


• Easy!

- Learner-independent
- Independent from representation model used in base classifiers
- No requirement that training set should be parallel or comparable
- No requirement for ML dictionaries, ML datasets, MT services

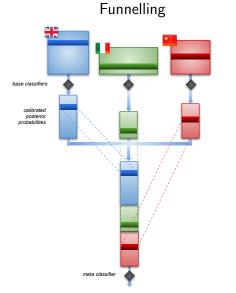
イロト イヨト イヨト イヨト

Funnelling: PLC made easy

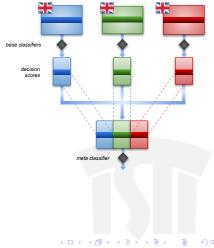


12 / 38

Funnelling vs. Stacking



Stacking



13/38

Fun(TAT) :

- 1 Train base classifiers using monolingual training sets
- 2 Classify training examples via trained classifiers
- 3 Use classification scores of training examples for training metaclassifiers

Fun(TAT) :

- 1 Train base classifiers using monolingual training sets
- 2 Classify training examples via trained classifiers
- 3 Use classification scores of training examples for training metaclassifiers
- Problem: base classifiers generate higher-quality representations for training data than for test data

Fun(TAT) :

- 1 Train base classifiers using monolingual training sets
- 2 Classify training examples via trained classifiers
- 3 Use classification scores of training examples for training metaclassifiers
- Problem: base classifiers generate higher-quality representations for training data than for test data

Fun(kFCV) :

- 1 Train base classifiers using monolingual training sets
- 2 Classify training examples via k-fold cross-validation
- 3 Use classification scores of training examples for training metaclassifiers

14 / 38

< ロ > < 回 > < 回 > < 回 > < 回 >

Fun(TAT) :

- 1 Train base classifiers using monolingual training sets
- 2 Classify training examples via trained classifiers
- 3 Use classification scores of training examples for training metaclassifiers
- Problem: base classifiers generate higher-quality representations for training data than for test data

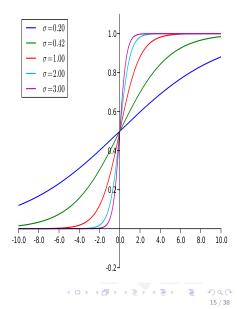
Fun(kFCV) :

- 1 Train base classifiers using monolingual training sets
- 2 Classify training examples via k-fold cross-validation
- **3** Use classification scores of training examples for training metaclassifiers
- Problem: base classifiers generate lower-quality representations for training data than for test data

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Probability calibration

- Problem: metaclassifier receives as input vectors coming from different, incomparable sources
- Solution: make them comparable!, by converting classification scores
 S(c, d) into well calibrated posterior probabilities Pr(c|d)
- Calibration: "90% of items whose Pr(c|d) is 0.9 should belong to c"
- To be performed independently for each generated classifier



Probability calibration

 $\sigma = 0.20$ 1.0- $\sigma = 0.42$ Several calibration methods $\sigma = 1.00$ available off-the-shelf (e.g., "Platt 0.8- $\sigma = 2.00$ calibration") $\sigma = 3.00$ 0.6-Needed for some learners and not • for others; e.g., Outputs Outputs WC Posterior Posterior Probs Probs **SVMs** No No AdaBoost No No Naive Bayes Yes No Logistic Reg Yes Yes -10.0 -8.0 -6.0 -4.0 -2.0 2.0 40 6.0 8.0 10.0 010 -0.2

Training a funnelling system: Fun(TAT)

Fun(TAT):

- 1 Train base classifiers using monolingual training sets
- 2 Classify training examples via trained classifiers
- 3 Map classification scores into well-calibrated posterior probabilities
- **4** Use posterior probabilities of training examples for training metaclassifiers

Fun(kFCV) :

- 1 Train base classifiers using monolingual training sets
- 2 Classify training examples via k-fold cross-validation
- 3 Map classification scores into well-calibrated posterior probabilities
- (4) Use posterior probabilities of training examples for training metaclassifiers

How well does funnelling work?

Datasets and learners

- Datasets:
 - RCV1/RCV2: comparable corpus, 9 languages, 10 samples × ((1000 training + 1000 test) per language), 73 classes
 - JRC-Acquis: parallel corpus, 11 languages, 10 samples \times ((1155 training + 4242 test) per language), 300 classes
- Learners:
 - SVMs w/ linear kernel (base classifiers)
 - SVMs w/ RBF kernel (metaclassifier)

Baselines and evaluation measures

• Baselines:

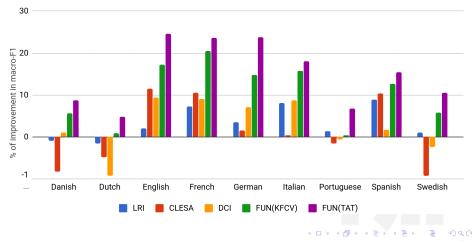
- Naïve (i.e., monolingual classification)
- Cross-Lingual Explicit Semantic Analysis (CLESA – Song & Cimiano, CLEF 2008)
- Distributional Correspondence Indexing (DCI – Moreo et al., JAIR 2016a)
- Lightweight Random Indexing (LRI – Moreo et al., JAIR 2016b)
- Measures (both in micro- and macro-averaged versions):

< ロ > < 回 > < 回 > < 回 > < 回 >

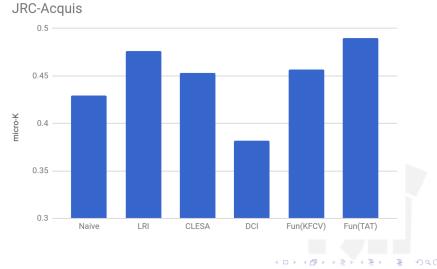
- *F*₁
- K (≈ "balanced accuracy")

Some results

• More consistent improvements over naïve baseline

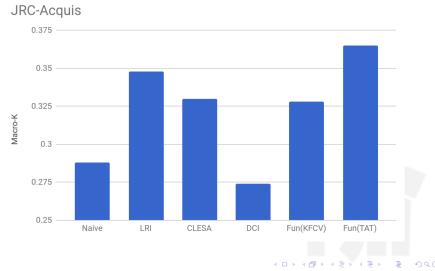


Some results: JRC-Acquis (parallel)



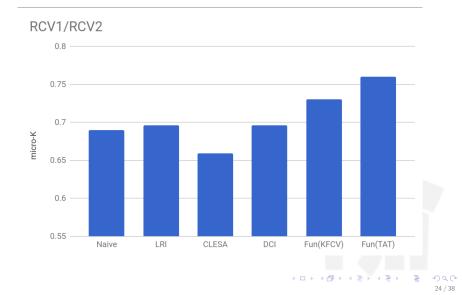
22 / 38

Some results: JRC-Acquis (parallel)

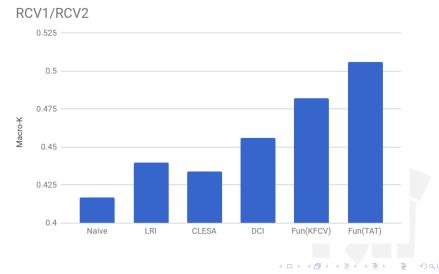


23 / 38

Some results: RCV1/RCV2 (comparable)



Some results: RCV1/RCV2 (comparable)



25 / 38

- Fun(TAT) significantly outperforms all other methods in 6 / 8 cases
- LRI marginally outperforms $\mathrm{Fun}(\mathrm{TAT})$ in 2 / 8 cases
- FUN(TAT) always outperforms FUN(KFCV) while being (k + 1) times cheaper to train
- Results for single-label PLC and multi-label PLC qualitatively similar

イロト イヨト イヨト イヨト

What does funnelling learn, exactly?

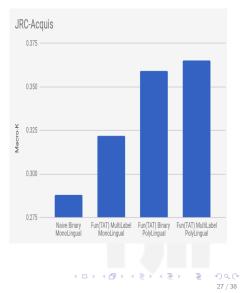
• The metaclassifier learns to combine scores from different classifiers

What does funnelling learn, exactly?

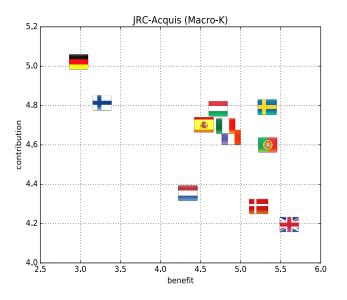
- The metaclassifier learns to combine scores from different classifiers
- The metaclassifier learns to exploit the stochastic dependencies between classes (the multiclass factor)

What does funnelling learn, exactly?

- The metaclassifier learns to combine scores from different classifiers
- The metaclassifier learns to exploit the stochastic dependencies between classes (the multiclass factor)
- The metaclassifier learns to classify documents in any language from training documents of any language (the multilanguage factor)
 - Which factor contributes most?

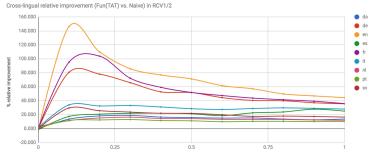


Which languages benefit / contribute most?

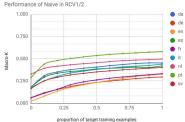


≣ •∕) ৭ (ে 28 / 38

How does this contribution evolve?



proportion of target training examples



How efficient is funnelling?

		NAÏVE	LRI	CLESA	DCI	Fun(kfcv)	Fun(tat)
	RCV1/RCV2	537	5,506	28,508	344	1,041	215
MLPLC		12	138	576	3	15	12
	JRC-Acquis	6,005	67,571	63,497	4,888	13,127	4,987
		39	529	719	8	54	45
	RCV1/RCV2	285	3,533	25,187	130	508	97
SLPLC		6	61	243	2	8	7
	JRC-Acquis	403	6,048	9,327	284	810	468
		2	24	32	1	2	2

30 / 38

Þ

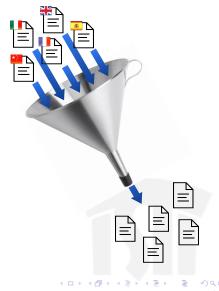
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions

- PLC: an important task for many multinational organizations / companies
- Can massively benefit from transfer learning
- Approach: mapping different language-independent feature spaces into a single feature space
 - "frustratingly" easy;
 - inspired from stacking, different from it;
 - learner-independent;
 - no external resources needed (e.g., MT services, ML dictionaries, ML corpora);

Where can we go from here?

- Different codeframes ("extreme" transfer learning)
- Ordinal / hierarchical (polylingual) classification
- Other classification scenarios (e.g., "multimodal" classification)
- Supervised learning tasks different from classification (e.g., multilingual information extraction)



Questions?

Thank you!

For any question, email me at fabrizio.sebastiani@isti.cnr.it

34/38

イロト イヨト イヨト イヨト

Multi-label PLC results

		NAÏVE	LRI	CLESA	DCI	Fun(kfcv)	FUN(TAT)	UPPERBOUND
F_1^{μ}	RCV1/RCV2	.776	.771	.714	.770	.801†	.802	-
	JRC-Acquis	.559	.594	.557	.510	.581	.587	.707
F_1^M	RCV1/RCV2	.467	.490	.471	.485	.512	.534	—
r_1	JRC-Acquis	.340	.411	.379	.317	.356	.399	.599
K^{μ}	RCV1/RCV2	.690	.696	.659	.696	.731	.760	-
	JRC-Acquis	.429	.476	.453	.382	.457	.490	.632
K ^M	RCV1/RCV2	.417	.440	.434	.456	.482	.506	-
	JRC-Acquis	.288	.348	.330	.274	.328	.365	.547

35 / 38

		NAÏVE	Fun(tat)	Fun(tat)	Fun(tat)
		Binary	MultiLab	Binary	MultiLab
		MonoLin	MonoLin	PolyLin	PolyLin
F^{μ}	RCV1/RCV2	.776	.800††	.801††	.802
F_1^{μ}	JRC-Acquis	.559	.573	.589	.587††
F_1^M	RCV1/RCV2	.467	.527	.532 [†]	.534
Γ_1	JRC-Acquis	.340	.366	.395††	.399
K^{μ}	RCV1/RCV2	.690	.748	.757	.760
<u> </u>	JRC-Acquis	.429	.447	.487††	.490
KM	RCV1/RCV2	.417	.492	.505†	.506
Λ	JRC-Acquis	.288	.322	.359	.365

э

・ロト ・御ト ・ヨト ・ヨト

Single-label PLC results

		NAÏVE	LRI	CLESA	DCI	FUN(KFCV)	FUN(TAT)	UPPERBOUND
F^{μ}_1	RCV1/RCV2	.759	.766	.706	.736	.792	.781	-
Γ_1	JRC-Acquis	.202	.353	.331	.262	.318	.340†	.593
F_1^M	RCV1/RCV2	.538	.558	.543	.543	.584	.596	-
	JRC-Acquis	.362	.407	.400	.374	.382	.389	.570
K^{μ}	RCV1/RCV2	.649	.670	.636	.646	.715	.757	-
<i>Ν'</i>	JRC-Acquis	.115	.222	.215	.163	.205	.253	.463
K ^M	RCV1/RCV2	.503	.522	.521	.527	.559	.594	-
	JRC-Acquis	.358	.400	.396	.380	.389	.407	.570

< ロ > < 団 > < 芝 > < 芝 > ミ シ へ ご > シ へ や

37 / 38

		NAÏVE	LRI	CLESA	DCI	Fun(kfcv)	Fun(tat)
	RCV1/RCV2	537	5,506	28,508	344	1,041	215
MLPLC		12	138	576	3	15	12
	JRC-Acquis	6,005	67,571	63,497	4,888	13,127	4,987
		39	529	719	8	54	45
	RCV1/RCV2	285	3,533	25,187	130	508	97
SLPLC		6	61	243	2	8	7
	JRC-Acquis	403	6,048	9,327	284	810	468
		2	24	32	1	2	2

Table: Computation times (in seconds); 1st rows indicate training times while 2nd rows report testing times.