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Abstract: Glassy dielectric properties were investigated in lead-free BaZr0.4Ti0.6O3 (BZT40) ceramic
samples using dielectric spectroscopy in the frequency range of 0.003 Hz–1 MHz and at temperatures
of 10 K < T < 300 K. Measurements of the quasistatic dielectric polarization in bias electric fields up
to ~28 kV/cm suggested that a ferroelectric state could not be induced, in contrast to the case of
canonical relaxors such as PMN. The quasistatic dielectric and freezing dynamics results for the above
field amplitudes showed that BZT40 effectively behaves as a dipolar glass. The relaxation spectrum
was analyzed employing a frequency–temperature plot, which showed that the longest relaxation
time obeyed the Vogel–Fulcher relation τ = τ0exp[E0/(T − T0)], with a freezing temperature of 76.7
K. The shortest relaxation time, in contrast, was characterized by a freezing temperature value close
to 0 K, implying an Arrhenius-type behavior. The higher value of the polarization and the nonlinear
third-order dielectric coefficient ε3 indicated a shift from a pseudospin glass behavior observed for
BaZr0.5Ti0.5O3 (BZT50) toward a classical relaxor ferroelectric state.

Keywords: dielectric properties; electronic ceramics; polarization and depolarization; functional
properties; relaxor ferroelectrics; PZT ceramics

1. Introduction

Since the 1960s, relaxor ferroelectrics have remained in the scientific focus because of
their exceptional physical properties [1], such as high dielectric permittivity, large polariza-
tion and pyroelectricity, and significant electromechanical response [2–7]. Recently, it was
shown that they also possess large caloric properties [8–10]. While the former properties
benefit from the electric field-induced long-range ferroelectric order, an inherent property
of relaxors in contrast to dipolar glasses, the electrocaloric response and wide temperature
stability of these properties are enhanced by the disordered glassy nature of these materi-
als [1–4]. Similarly to dipolar glasses at low electric fields, the glassy nature is reflected in
the absence of a long-range ferroelectric order, i.e., spontaneous polarization and symmetry
change at very low temperatures, formation of polar nanoregions (PNRs) appearing at
relatively high temperatures, and broad dispersion of the complex dielectric permittivity.
At the freezing temperature, the longest dipolar relaxation time diverges; hence, ergod-
icity breaking occurs [2,4]. Relaxors such as the disordered perovskite PbMg1/3Nb2/3O3
(PMN) [3] thus exhibit dipolar glass properties below or ferroelectric properties above the
critical field line EC(T) [2–5].

The lead-free BaZrxTi1−xO3 (BZT) solid solution recently came into focus because of
its possible conceptual proximity to magnetic spin glasses; since zirconium is isovalent
to titanium, the random fields should be suppressed [11]. Structural investigations of
BZT ceramics with various Zr concentrations, x, showed relaxor properties for 0.25 ≤ x
≤ 0.75 [12–23]. In a recent review paper, Petzelt et al. [23] presented an infrared-range
broadband dielectric study of a whole concentration range of the (1 − x)BaTiO3−xBaZrO3
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(BZT-x) solid solution. They found different characteristic composition ranges, which
included proper ferroelectric (x = 0), diffuse ferroelectric (0 < x≤ 0.2), relaxor ferroelectric
(0.4 ≤ x ≤ 0.8), dipolar glass (x > 0.8), and the standard dielectric (x = 1) properties. They
concluded that in the relaxor range, the activated hopping process of Ti ions following the
Arrhenius law was behind the broad dielectric relaxation in BaTiO3 clusters. Consequently,
the relatively small polar nano regions with frozen boundaries did not change with temper-
ature. In contrast, the canonical lead-based relaxors exhibit polar nano regions′ growth on
cooling, leading to glass-like freezing.

Theoretical first-principles studies and microscopic modeling [11,24–26] of BZT with
x = 0.50 indicated the formation of PNRs with a negligible contribution of random electric
fields and strains and that BZT could be mapped to a soft pseudospin glass. The concentra-
tion x = 0.50 was experimentally investigated [15,27,28], raising arguments about whether
BZT in the composition range of 0.25 < x < 0.75 exhibits properties of a lead-free isovalent
relaxor or of a dipolar glass.

Our initial BZT50 dielectric spectroscopy study [27], through the Kutnjak or tempera-
ture –frequency plot, demonstrated the asymmetric stretching of the relaxation spectrum in
which different portions of the spectrum followed the divergent Vogel–Fulcher relation;
only the highest frequencies obeyed the Arrhenius equation describing the activated pro-
cess. However, such behavior can be found for both relaxors and dipolar glasses. Several
criteria can be found in the literature to discern between the relaxor and the dipolar glass
states. (i) In dipolar glasses, the distribution of the relaxation times f (τ) is a simple function
with a single peak as a consequence of the fact that PNRs in dipolar glasses will remain
small, on the scale of a few unit cells. In contrast, PNRs in relaxors, due to their larger
size and stronger coupling to the applied electric field, show breathing modes besides
the flipping one. This could result in the second peak in f (τ). The shape of f (τ) can be
extracted from dielectric dispersion data utilizing the so-called Tikhonov regularization
method [29–32]. However, in many cases, both processes could be merged into a single
peak distribution function, in which the lower frequency glassy tail diverges. At the same
time, the high-frequency breathing part follows an activated process. (ii) Another crite-
rion exploits the fact that in canonical relaxors like PMN, the electric field could induce
a ferroelectric phase via a discontinuous transition [6,33], resulting in box-like hysteresis
loops with sharp steps on rising slopes. In contrast, very narrow hysteresis loops can be
found in dipolar glasses, and no critical field line EC(T) can be induced. (iii) The nonlinear
third-order dielectric coefficient ε3 is typically small in dipolar glasses propagating the
linear dielectric response to higher fields. In contrast, classical relaxor systems exhibit a
larger ε3, thus showing the nonlinear dielectric response already at modest electric fields.

To verify the impact of Zr reduction on the pseudospin glass state in BZT, the qua-
sistatic and dynamic dielectric properties of BZT at x = 0.40 were experimentally determined.
BZT40 possesses a lower concentration of Zr compared to the previously studied BZT50
ceramic and is thus closer to the lower limit of the relaxor regime approaching the ferro-
electric one. The standard methods of monitoring the field-cooled quasistatic polarization
on cooling, testing the nonlinearity of polarization loops as well as the possible existence
of the critical field line EC(T), were employed to establish the nature of the ordering in
BZT40 [34].

2. Materials and Methods

Powders of BZT with x = 0.40 were synthesized using the same route as that for
the BZT50 samples, i.e., a solid-state reaction [35]. The precursors were calcinated in
stoichiometric amounts at 1273 K for 4 h [35]. The powder was compacted at 1500 bar using
cold isostatic pressing and sintered at 1773 K for 4 h [35]. The obtained ceramics with a
relative density above 99% had a single-phase perovskite structure and a grain size of a few
microns [18,27]. We cut 0.26 mm thick ceramics samples from pellets of 6 mm diameter,
and gold electrodes of 5 mm diameter were sputtered on the pellet surfaces.
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The complex dielectric permittivity ε ∗ ( f , T) = ε′ − iε′′ was measured in the temper-
ature interval from 10 K to 300 K and in the range of frequencies 0.003 Hz < f < 1 MHz
by a Novocontrol Technologies Beta High Performance Impedance Analyzer capable to
reliably measure the dielectric permittivity in the frequency range from 20 MHz to µHz.
The peak-to-peak amplitude of the measuring AC electric field was 10 V/cm. An Oxford
Instruments Limited continuous-flow cryostat operating between 1.5 K and 500 K and an
ITC4 temperature controller were used to stabilize the temperature within ±0.1 K.

The quasistatic dielectric polarization P(T, E) was measured in field-cooled (FC) and
zero-field-heated (ZFH) runs via the charge-collection technique [27,33]. The induced FC
(or ZFH) polarization charge by various external dc bias fields (from 5 kV/cm to 28 kV/cm)
was collected by a Keithley 6517B programmable Electrometer/High Resistance Meter [36].
The cooling (FC) or heating rate (ZFH) of 1.6 K/min was used. The FC polarization was
measured on cooling in the external field down to 10 K, where the external field had been
removed from the sample, and on heating, the ZFH quasistatic dielectric polarization
was determined.

Virgin P(E) branches were determined by a homemade Sawyer–Tower bridge and a
Keithley 6517B programmable electrometer. The period of the external AC electric field,
changing from 0 kV/cm to 28 kV/cm and back, was approximately 500 s. The P(E)
branches were measured at a specific temperature after annealing the sample at room
temperature in the absence of the electric field to remove any history effects.

3. Results and Discussion

Figures 1 and 2 show the ε′ and ε′′ as functions of the temperature in the range of
frequencies of 0.003 Hz–1 MHz. Such typical variation is found in dipolar glasses or
relaxors with an increasing shift of the temperature position of the peak with decreasing
frequency. Figure 3 shows the frequency f as a function of the temperature T at which
ε′′ ( f , T) achieved its maximum value. The frequency f was found to follow the Vogel–
Fulcher (VF) relation

f = f0exp
[
− E0

T − T0

]
. (1)
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Here, f0 =3.79 × 1010 Hz is the attempt frequency, E0 =870 K represents the VF
activation energy, and T0 = 70.3 K ± 0.8 K is the VF freezing temperature [37]. The
interpretation of T0 as the freezing temperature TF in the static limit is not unique because
ε′ and ε′′ provided a slightly different value for T0, as the temperature positions of ε′′ ( f , T)
and ε′′ ( f , T) diffuse peaks did not match (see Figure 1).

A comparison of the dielectric data observed for BZT50 [27] and BZT40 showed that
these two sets of data were qualitatively quite similar, with the dispersive temperature
dependence of the real and imaginary part of dielectric permittivity whose peaks followed
the Vogel–Fulcher relation. By lowering the Zr content from x = 0.5 to x = 0.4, the dielectric
peaks were shifted to higher temperatures for about 60 K, increasing the dielectric values
by about 50%. Consequently, the T0 increased from 9.5 K to 70.3 K, the attempt frequency
f0 decreased of about three orders of magnitude (4.08 × 1013 Hz to 3.79 × 1010 Hz), while
the VF activation energy E0 decreased from 2255 K to 870 K. These observations indicated
the approach of the ferroelectric regime as the Zr content decreased.

The so-called Cole–Cole diagram (Figure 4) in which ε′′ is parametrically plotted as a
function of ε′ could reveal the static and high-frequency limits of the dielectric relaxation as
well as the asymmetry of the relaxation spectrum. The increasing asymmetric shape and
strong suppression of the dispersion with the decreasing temperature indicated a strong
asymmetric broadening of the relaxation spectrum. The Havriliak–Negami (HN) function
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was employed to extract the static dielectric permittivity, εS, and the high-frequency limit,
ε∞,

ε ∗ (ω, T) = ε∞ +
εs − ε∞[

1 + (iωτ)α] β
, (2)

where ω = 2π f , and τ is the characteristic relaxation time. Examples of the fits are shown
in the inset of Figure 4, with the fitting parameters presented in Table 1.
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Table 1. The fitting parameters for the fitting curves shown in the inset of Figure 4.

T (K) εS ε∞ α β f = 1/τ (s−1)

140 4482.9 121.1 0.198 34.4 1.2 × 1014

120 4768.5 115.7 0.147 5.34 7.5 × 1010

100 5036.4 109.3 0.095 5.0 1.6 × 1010

80 5192 103.6 0.073 4.9 5.2 × 107

Figure 5 shows the static εS and high-frequency limit ε∞ fitting parameters as functions
of the temperature. As the dielectric dispersion could not be covered with experimentally
available frequencies, the fitting procedure allowed the estimation of the temperature
dependence of εs, ε∞, and τ in a relatively narrow range of temperatures. Fortunately, it
was shown before that the static dielectric permittivity εS coincides with the quasistatic
dielectric value εFC, determined in the FC run at a low electric field [27,37,38].
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The temperature–frequency plot introduced in Ref. [37] allows the observation of how
various segments of the relaxation times distribution function vary with the temperature.
The data analysis procedure via the temperature–frequency plot is described in detail
in Refs. [37–39]. The temperature–frequency plot exploits a special presentation of the
real part of the complex dielectric permittivity that provides direct information on the
temperature evolution of the relaxation spectrum. In this method, it is presumed that the
relaxation spectrum is broad but limited, i.e., constrained between the upper and the lower
relaxation time cut-offs. The special presentation of the real part of the complex dielectric
permittivity is introduced through the parameter δ = δ(ω, T) or the reduced dielectric
permittivity, defined as

δ(ω, T) =
ε′(ω, T)− ε∞

εs − ε∞
=
∫ z2

z1

g(z)dz

1 + (ω/ωa)
2exp(2z)

, (3)

where z = log(ωaτ), ωa is an arbitrary unit frequency, and z1 and z2 represent the limits
of the distribution of the relaxation times [38,39]. The right part of Equation (3) can be
considered the filter 1/1 + (ω/ωa)

2exp(2z) acting upon the distribution of the relaxation
times g(z) that opens at z ≈ ln(ωa/ω). In the case of a broad distribution of the relaxation
times, the value of the integral in Equation (3) is determined for low values of ε′(ω, T)
or δ ≈ 0 by contributions stemming from the short τ (high-frequency) part of g(z). In
contrast, for values of ε′ close to the static dielectric permittivity εs or δ ≈ 1, the whole
distribution of the relaxation times g(z) contributes to the integral in Equation (3); thus,
the frequency filter probes the shape of g(z) near its long relaxation time (low frequency)
cut-off z2. Therefore, by scanning δ from 0 to 1, the filter in the second part of Equation (3)
probes the distribution of the relaxation times g(z) by shifting its position in τ space. The
position of the frequency filter can be used as a probe to discern the changes in the shape or
polydispersity of the relaxation spectrum. Consequently, δ, which can be estimated directly
from the dielectric permittivity data, actually represents contributions of g(z) for relaxation
times below 1/ω. In the analysis, δ is taken as an independent parameter whose value is
set to some fixed values between 0 and 1. Technically, for the chosen set of fixed values
of δ at a given temperature, the corresponding set of frequency values f = ω/2π was
determined by a suitable interpolation technique between the discrete experimental points
at which a given ε′ was realized. It should be stressed again that scanning ε′ between εS
and ε∞ changed uniquely δ from 1 to 0. The set of frequencies can also be determined from
Figure 1 as cross sections between the experimental data ε′(ω, T) curves and the ε′ = const
( δ = const) lines. Figure 6 presents ln( f ) vs. 1/T for δ values in the range of 0.05 < δ < 0.98.
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of the distribution of the relaxation times, measured by the reduced dielectric permittivity δ top to
bottom, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.98. The temperature evolution of
each relaxation spectrum segment denoted by δ was fitted to a VF ansatz (solid lines).
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The temperature variation of different parts of the relaxation spectrum related to
various δ could be extracted by fitting each curve with a VF ansatz

fδ = f0δexp
[
− Eδ

T − T0δ

]
, (4)

where δ runs over values representing each curve in Figure 6 [37]. Thus, the obtained
freezing temperatures for different parts of the relaxation spectrum, i.e., the different
values of δ are depicted in Figure 7. The longest 1/ f2 and the shortest relaxation time
1/ f1 correspond to the limiting cases δ→ 1 and δ→ 0, respectively. Figure 7 also shows T0
vs. δ in BZT50 [27]. The fitting parameters for the relaxation spectrum cut-off frequencies
f1 and f2 are listed in Table 2 for both BZT40 and BZT50 ceramics. It should be noted that,
according to the experimental time scale, the value T0 = 70.3 K obtained from the dispersion
of ε′′ ( f , T) peaks (see Figure 3) roughly matched the freezing temperature denoted by
δ ≈ 0.95. It should be noted that the above analysis was possible only in the temperature
range in which εS and ε∞ were well established.
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Figure 7. Freezing temperature T0 vs. δ for BZT40 (red circles). The solid line is an extrapolation to
δ→ 1, corresponding to the limit of the longest relaxation times. The blue circles represent T0(δ) in
BZT50 [27].

Table 2. The fitting parameters for the relaxation spectrum cut-off frequencies f1 and f2 for BZT40
and BZT50 ceramics.

Sample Cut-off
Frequencies T0 (K) E0 (K) f0 (Hz)

BZT40
f1(δ→ 0) 11.6 910 7.78 × 1011

f2(δ→ 1) 74.4 2790 5.67 × 1014

BZT50
f1(δ→ 0) ≈0 1330 2.17 × 1014

f2(δ→ 1) 48.1 725 3.65 × 105

The impact of freezing dynamics is best manifested in the stark difference between
FC and ZFH polarization [2,37]. The splitting of the quasistatic FC and ZFH (after field-
cooling) polarization is shown in Figure 8, measured at the dc electric field of 28 kV/cm.
The difference between the FC and the ZFH curves at the lowest temperatures is due to
the fast high-frequency relaxation of the polarization, i.e., to fast processes contributing to
ε∞. From ε∞ = (PFC − PZFH)/ε∞E, the dielectric dispersion high-frequency limit ε∞ = 90
could be estimated in agreement with the HN function analysis value (see Figure 5). PZFH
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or the remanent polarization Pr was detected after removing the external electric field at
10 K, after the FC experiment.
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Figure 8. The quasistatic FC (blue curve) and ZFH (or Pr measured after a field-cooled run) (red curve)
polarization as a function of temperature. The FC curve was obtained in the 28 kV/cm electric field.
The temperature T02 = 74.4 K corresponds to the temperature of the knee in the Pr(T) slope variation.

Figure 8 shows that PZFH or Pr were almost unchanged to the temperature TF ≈ 50 K,
after which the Pr rapidly started to decrease because, above 50 K, most of the relaxation
spectrum shifted back into the experimental time window. Pr relaxed fast toward the
longest relaxation time’s freezing temperature T02 = 74.4 K, at which the steepest slope
in Pr(T) variation changed, followed by a slowly decreasing shoulder, which vanished at
≈225 K (see Figure 8). In contrast to T02, the freezing temperature TF ≈ 50 K depends on the
experimental time scale and cannot be considered a true static quantity. The shift of T02 to
higher temperatures and the long polarization tail persisting to high temperatures (Figure 8)
indicated the shift of the BZT40 state from a pseudospin-glass state [9] toward the classical
relaxor-type behavior. A similar shift was found recently in another isovalent relaxor
system, BaTi1-xCexO3, where the composition x = 0.30 showed dipolar glass properties in
contrast to the composition x = 0.20 with relaxor ferroelectric properties [40,41].

To investigate the nonlinear properties of the induced polarization P(E), the quasistatic
electric external field was cycled from 0 kV/cm up to 28 kV/cm at a low frequency
of ≈0.002 Hz. In a typical relaxor, like PMN, “slim” nonlinear polarization loops with
negligibly small remanent polarization are usually observed in a portion of the electric
field–temperature (E− T) phase diagram near or for temperatures above the freezing line
(dashed line in Figure 9) [33].
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At temperatures below the freezing line, “square” loops were observed at fields above
the critical threshold to induce the ferroelectric phase [33]. In the region above the freezing
temperature line TF(E) (dashed line in Figure 9), polar nanoclusters appeared as fluctuating
entities, and Pr remained nearly zero; however, P(E) remained strongly nonlinear [33,42].
By contrast, the field could not induce large domains in dipolar glasses, and single dipoles
or very small dipolar clusters remained the only relaxing entities. Such a state resembled
a paraelectric state characterized by linear properties, with a small third-order nonlinear
dielectric coefficient, ε3. The remanent polarization resembled frozen polar clusters oriented
in the external electric field, which, below the freezing temperature, remained ordered even
after the field was turned off.

Figure 10 shows the induced polarization P(E) as a function of the applied field at
different temperatures above the freezing temperature of 74.4 K. The polarization was
measured by increasing and subsequently decreasing the field from 0 to 28 kV/cm within
the 500 s experimental time scale. The application of a negative electric field reproduced
symmetric negative polarization branches. The experimental time scale could be considered
quasistatic in the temperature range above 80 K. Here, quasistatic “loops” did not show
any hysteresis, as shown in Figure 10, where both up and down P(E) data lie on the same
curve, i.e., the remanent polarization is zero. Due to the increasing longest relaxation
times at lower temperatures, the data obtained when decreasing the field could not relax
within the experimental time scale back to the initial values, resulting in artificial dynamic
hysteresis. It was verified that this dynamic hysteresis disappeared if the time scale of
the experiment increased. Verification was carried out up to the 2000 sec time scale. The
observed maximum polarization of 10 µC/cm2 at 28 kV/cm exceeded almost by a factor
of 2 the polarization observed in the same field of 28 kV/cm in BZT50 (5.5 µC/cm2). The
nonlinearity of the P(E) = ε0ε1E + ε3E3 + ε5E5 was strong, with the absolute value of the
otherwise negative third-order nonlinear dielectric coefficient −ε3 = 2×10−21 AsV−3m
at 225 K increasing toward −ε3 = 4×10−21 AsV−3m at 80 K, i.e., with the temperature
approaching the freezing temperature. The absolute value of the third-order nonlinear
dielectric coefficient ε3 for BZT40 was about one order of magnitude larger than that
for BZT50 [27]. The nonlinearity increased with the decreasing temperature, indicating
the approaching onset of the long-range ferroelectric order. The experimentally limited
maximum field of 28 kV/cm was insufficient to induce a ferroelectric phase, and the
question remains whether a long-range ferroelectric order could be induced in BZT40.
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Figure 10. The nonlinearity of P(E) in BZT40 at various temperatures above the freezing temperature.
The figure shows data from both 0-to-28 kV/cm and reverse runs.

Figure 11 shows the temperature dependence of the linear dielectric permittivity
ε′′ ( f , T) determined in the range of frequencies from 0.1 Hz to 1 MHz in a low electric field
of 10 V/cm and εFC, obtained in an FC run with a dc field of 5 kV/cm, below which P(E) is
still linear (see Figure 10), thus allowing the calculation of the linear dielectric permittivity
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εFC = PFC/ε0E from the measured PFC. The static dielectric permittivity obtained from
HN function fits (red circles) agreed well with the quasistatic εFC obtained from the FC
experiments, thus allowing the determination of the static dielectric permittivity at tem-
peratures below the freezing temperature, i.e., in the temperature range experimentally
inaccessible by established dielectric techniques.
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Figure 11. Temperature variation of the dielectric permittivity ε′′ ( f , T) (open blue circles),
εFC = PFC/ε0E, obtained in a field-cooled (FC) experiment (solid blue line) and εS (solid red
circles) obtained from the Cole–Cole plots (c.f. Figure 5). The red curve represents ZFH or Pr

measured after a field-cooled run.

4. Conclusions

This dielectric spectroscopy study was performed to verify the dynamic and quasistatic
dielectric properties of isovalent relaxor BZT40 ceramics. Dielectric spectroscopy in the
frequency range 0.003 Hz–1 MHz and at temperatures of 10 K < T < 300 K revealed,
via temperature–frequency plot analysis, that different parts of the relaxation spectrum
followed the Vogel–Fulcher law. Only the very high-frequency part behaved according to
the Arrhenius-activated process. The maximum relaxation time was found to diverge at the
freezing temperature of 74.4 K. Such features were observed in both pseudospin glass and
relaxor ferroelectric systems. The quasistatic dielectric polarization P(E) measured in an FC
experiment was about two times larger than that of BZT50, measured in the same field of
28 kV/cm. Consequently, the quasistatic dielectric permittivity εFC = 5300, measured in
the linear regime, was also twice larger than in BZT50. In addition, the polarization field
dependence P(E) was more strongly nonlinear than in BZT50, with the absolute value of the
third-order nonlinear dielectric coefficient ε3 = −4 × 10−21 AsV−3m being ten times larger
than that of BZT50. Up to 28 kV/cm, however, no transition to a ferroelectric-ordered state
could be induced.

The higher dielectric permittivity P(E) and the third-order dielectric nonlinearity ε3
suggest that BZT40 ceramics exhibit a crossover from the incipient relaxor state, i.e., the state
closer to the pseudospin glass found in BZT50 ceramics, towards the diffuse ferroelectric
(relaxor) state observed in BZT compositions with 0 < x ≤ 0.2. The high values of the
above physical quantities observed in BZT40 are typical properties of classical relaxors
like PMN. In contrast to PMN and similar to BZT50, the electric field could not induce the
ferroelectric state and had no substantial influence on dipolar dynamics in BZT40 ceramics.
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