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Abstract: For a general inelastic Kac-like equation recently proposed,
this paper studies the long-time behaviour of its probability-valued solu-
tion. In particular, the paper provides necessary and sufficient conditions
for the initial datum in order that the corresponding solution converges to
equilibrium. The proofs rest on the general CLT for independent summands
applied to a suitable Skorokhod representation of the original solution eval-
uated at an increasing and divergent sequence of times. It turns out that,
roughly speaking, the initial datum must belong to the standard domain
of attraction of a stable law, while the equilibrium is presentable as a mix-
ture of stable laws. An entire section is devoted to an application of these
results to the distribution of income. It highlights a strict relationship be-
tween the Arrow-de Finetti local risk aversion index, assumed to be the
same for all agents, and the inequality (concentration) in the stationary
income distribution.

Primary 60F05, 82C40; secondary 91B15.
Keywords and phrases: Central limit theorem, inelastic Kac-like equa-
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1. Introduction

There has been recent interest in some inelastic counterparts of the Kac one-
dimensional Boltzmann-like equation. Particular attention has been paid to the
convergence to equilibrium as, for example, in [4, 5, 6, 8, 9, 11, 30, 39]. See
also [7] and references therein for multidimensional inelastic models. Typically,
one considers suitable initial data (in the form of probability laws) and proves
that the ensuing solutions converge weakly to some distinguished probability
distributions (p.d.’s, for short). Furthermore, remarkable efforts have been made
to discover the rate of approach to equilibrium, exactly as in allied works on
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the classical kinetic equations such as [13, 15, 23, 24, 28, 29, 35, 36] for one-
dimensional models, and [14, 16, 25] for multidimensional ones. New problems
arise in connection with the following natural questions: Can one formulate
necessary conditions on the initial data in order that they produce relaxation
to equilibrium? Can one determine necessary and sufficient conditions for the
same purpose? In the present paper, the former question is solved for a general
form of the model introduced in [6], while the latter is addressed with respect
to a few specific cases including, in any case, the one that has been considered
repeatedly, for example, in connection with applications of an economic nature.

In the aforesaid general model, if (v, w) and (v′, w′) indicate pre-collisional
and post-collisional velocities, respectively, of two colliding particles, one as-
sumes that {

v′ = L̃1v + R̃1w

w′ = R̃2v + L̃2w
(1)

where (L̃1, R̃1) and (L̃2, R̃2) are random vectors in R2 with common p.d. τ . In
the rest of the paper, it is supposed that:
τ has continuous marginals and

(x0, y0) ∈ supp(τ) whenever |x0|α + |y0|α = 1. (2)

Moreover, it is also assumed that the function S defined by

S(p) =
∫

R2

(|l|p + |r|p)τ(dldr) − 1 (p ≥ 0) (3)

satisfies the condition:

The equation S(p) = 0 admits at least one solution on (0,+∞)

and α will denote the smallest root.
(4)

It is worth mentioning that both the Kac equation in [32] and its inelastic direct
counterpart given in [39] satisfy (4)-(2) for suitable α in (0, 2] and τ . At this
stage, the ensuing kinetic equation reads

∂tµt + µt = Q+(µt) (t ≥ 0) (5)

where µt is a time-dependent probability measure (p.m., for short) on the real
line and Q+(µt) is the p.m. specified by the Fourier-Stieltjes transform

Q̂+(µt)(ξ) :=

∫

R2

ϕ(t, lξ)ϕ(t, rξ)τ(dldr)

where ϕ(t, ξ) :=
∫
R
eiξvµt(dv) is the Fourier-Stieltjes transform µ̂t of µt. Fol-

lowing the terminology adopted for kinetic equations, Q+(µt) can be seen as a
sort of 2-fold Wild convolution of µt with itself. See [35]. It is also important
to recall that the Cauchy problem, obtained from the combination of (5) with
any initial p.d. µ0, has a unique solution. The proof of this fact is immediate by
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mimicking the argument used in [6], where the support of τ is assumed to be a
subset of [0,+∞)2.

Returning to the original questions, complete answers have been given, until
now, only for the Kac equation [15, 28] and for its direct inelastic counterpart
[11, 30]. In both these cases, in order that the solution converge, it is necessary
and sufficient that the symmetrized form µ∗

0 of the initial p.d. µ0 characterized,
through the probability distribution function (p.d.f., for short), by

F ∗
0 (x) = µ∗

0(−∞, x] = {µ0(−∞, x] + µ0[−x,+∞)}/2 (x ∈ R),

belong to the standard domain of attraction (s.d.a., for short) of the α-stable
distribution having Fourier-Stieltjes transform ξ 7→ e−kα|ξ|α , for some kα in
[0,+∞). This s.d.a. has to be meant as the class of all the p.m.’s with p.d.f.’s
F satisfying either

lim
x→+∞

xαF (−x) = c1 and lim
x→+∞

xα[1− F (x)] = c2

for some non-negative c1 and c2, if 0 < α < 2,
(6)

or ∫

R

x2dF (x) < +∞ if α = 2. (7)

The limiting behaviour of the solution to (5), when (4) is in force for some α
greater than 2, is considered, for the first time, in Theorem 2.1 of the present
paper. Moreover, in line with the results obtained for the above-mentioned spe-
cial cases, it will be proved that the symmetrized initial datum µ∗

0 for (5) must
satisfy one of the two conditions (6)-(7) − with F replaced by F ∗

0 − in order
that the solution of the Cauchy problem converge weakly. As far as sufficiency is
concerned, it is shown that situations in which that very same statement turns
out to be also sufficient, for example when τ is invariant w.r.t. (π/2)-rotations,
coexist with others in which it is required that µ0 itself belongs to a specific
s.d.a., for example when the support of τ is contained in [0,+∞)2. Of course,
if µ0 is an element of some s.d.a., then µ∗

0 is such, but µ∗
0 can belong to some

s.d.a. even if µ0 does not. See the example in Appendix B.
The rest of the paper is organized as follows. In Subsection 2.1, a probabilistic

representation of the solution to the general Cauchy problem is recalled. The
new results are carefully formulated in Subsection 2.2, while their proofs are
deferred to Section 4. From a methodological viewpoint, it seems appropriate to
highlight Lemma 4.2, since it represents the key point in the proof of the main
results. An application of some of these results is presented in Section 3.

2. Preliminaries and statement of the main results

Before providing a precise formulation for the new results, some facts about a
probabilistic representation of the solution of the Cauchy problem are recalled.
They are useful, on the one hand, to grasp the connections of the issues raised
in the introduction with the central limit problem, and, on the other hand, to
cast new light on some aspects of the application developed in Section 3.
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2.1. Probabilistic representation of the solution to the Cauchy

problem

This representation follows from associating a stochastic model with a system
of many molecules colliding in pairs, in such a way that this very same model
turns out to be consistent with the Wild-McKean representation of the solution
of (5). See (8)-(9) in [6] for this point. All the random elements one is about to
consider are supposed to be defined as measurable functions on some measurable
space (Ω,F), in such a way that their p.d.’s turn out to be images of a p.m. P
supported by (Ω,F). One starts by considering a distinguished molecule, and
defines ν̃t to be the random number of particles that "contribute", according
to the following scheme, to the velocity Vt of the observed molecule at time
t, for any t > 0. Cf. [12]. This idea of "contribution" in now illustrated with
an example. Consider particles 1, 2, . . . , 7 with initial velocities X1, . . . , X7, and
assume that 2 and 3 collide before 2 encounters 1, and 3 disappears; moreover,
assume that 5 and 6 collide before 5 encounters 4, and 6 disappears; to continue,
suppose that 4 collides with 7, 5 disappears and afterwards 4 encounters 1, while
7 disappears. According to (1), due to this specific sequence of collisions, initial
velocities X1, . . . , X7 change as follows: the first collision between 2 and 3 yields
post-collisional velocities X ′

2 = L̃1X2 + R̃1X3 and X ′
3 = L̃2X3 + R̃2X2. Thus,

the velocity of 2 immediately before encountering 1 is given by X ′
2 and, hence,

the post-collisional velocity of 1 is X ′
1 = L̃3X1 + R̃3X

′
2. In the meantime, 5

encounters 6 and changes its velocity X5 into X ′
5 = L̃4X5 + R̃4X6 so that the

velocity of 4 immediately after the collision with 5 is given by X ′
4 = L̃5X4 +

R̃5X
′
5. At this stage, this velocity changes, due to the collision with 7, into X ′′

4 =

L̃6X
′
4 + R̃6X7. Finally, the collision between 1 and 4 occurs with pre-collisional

velocities X ′
1 and X ′′

4 , respectively, and then the post-collisional velocity of 1

is X ′′
1 = L̃7X

′
1 + R̃7X

′′
4 = L̃7L̃3X1 + L̃7R̃3L̃1X2 + L̃7R̃3R̃1X3 + R̃7L̃6L̃5X4 +

R̃7L̃6R̃5L̃4X5 + R̃7L̃6R̃5R̃4X6 + R̃7R̃6X7. This formula clarifies the meaning of
the aforementioned term "contribution": 1’s contribution to Vt is L̃7L̃3X1, 2’s
contribution is L̃7R̃3L̃1X2 and so on up to particle 7, since ν̃t = 7. The above
description can be visualized through the McKean tree of the following figure:
Its leaves are labelled, from left to right, by the labels 1, . . . , 7 of the seven
particles contributing to Vt. This way, the contribution of each particle j can be
read as the product of the L̃’s and R̃’s one finds on the path which connects j
with the root node 0. In general, there is a one-to-one correspondence between
McKean trees and systems of many molecules colliding (in pairs) and changing
their states according to (1). Therefore, both the number and the entities of
the "contributions" to Vt can be easily determined by resorting to trees like in
Figure 1.

In point of fact, for the sake of realism, one thinks of these systems as governed
by probabilistic, rather than deterministic, laws. In particular, ν̃ := (ν̃t)t≥0 is
seen as a pure birth (Yule-Furry) process on {1, 2, . . . } having birth rate λn = n
for every n ≥ 1, and the unit mass at 1 as initial distribution. Then, P{ν̃t = n}
coincides with the probability that the process starting at 1 will be in state n
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Figure 1.

at time t, that is,

P{ν̃t = n} = e−t(1− e−t)n−1 (n = 1, 2, . . . , t ≥ 0)

with the proviso that 00 = 1. As to the McKean trees, i.e., as to all possible
forms of collision systems, one resorts to a discrete-parameter Markov chain
ã = {ãn : n = 1, 2, . . . } defined as follows. The state space of ã is the set of all
McKean trees and, for each value n of the parameter, ãn has to be meant as
a random tree with n leaves. The initial distribution, that is, the p.d. of ã1, is
assumed to be the unit mass at the unique tree with one leaf. The transition
probabilities are specified as

P{ãn+1 = an+1|ãn = an} =
1

n
IG(an)(an+1)

for every an in the set An of all trees with n leaves (n = 1, 2, . . . ), G(an)
denoting the set of the trees in An+1 obtained by attaching a copy of ã2 (which,
of course, is non-random) to a specific leaf of an. To complete the picture, one
introduces a sequence (L̃, R̃) = ((L̃n, R̃n))n≥1 of independent and identically
distributed (i.i.d., for short) random vectors with τ as common p.d. (see (4)-(2))
and a sequence X̃ = (X̃n)n≥1 of i.i.d. random numbers having the initial datum
µ0 as common p.d.. It remains to specify that ν̃, ã, (L̃, R̃), X̃ are supposed to
be stochastically independent random elements. Now, the contribution of each
particle to Vt can be fully described. One considers the random tree ãν̃t , a
particle j in {1, . . . , ν̃t} and the product β̃j,ν̃t of the L̃’s and R̃’s one encounters
on the path that connects j with the root node of ãν̃t (the number of the edges
of such a path will be called depth of j). Then, in the general case,

Vt =

ν̃t∑

j=1

β̃j,ν̃tXj (t ≥ 0). (8)

The connection between this stochastic model and the Cauchy problem attached
to the Boltzmann-like equation (5) lies in the important fact that the p.d. of Vt
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satisfies (5) with initial datum µ0. See Proposition 1 in [6]. Of course, recalling
that ϕ(t, ·) stands for the Fourier-Stieltjes transform of the solution µt, putting
ϕ0(·) := ϕ(0, ·) = µ̂0(·) as a consequence one gets

ϕ(ξ, t) =

∫

Ω

ν̃t(ω)∏

j=1

ϕ0(β̃j,ν̃t(ω)(ω)ξ)P(dω)

providing a disintegration of the solution to the Cauchy problem associated
with (5) into components which are the p.d.’s of weighted sums of i.i.d. random
numbers having common p.d. µ0. It is just this disintegration which connects
the relaxation to equilibrium of the kinetic model with the central limit problem
of the probability theory.

To pave the way for next developments it is worthwhile to recall an interesting
fact about the β̃’s, proved in ([6], Subsection 2.3 and Lemma 2):

∑ν̃t
j=1 |β̃j,νt |α

converges, with probability one, to a non-negative random number M (α)
∞ satisfy-

ing E(M (α)
∞ ) = 1, where E stands for expectation w.r.t. P .

2.2. New results

The new results of the present paper are chiefly concerned with necessary condi-
tions for weak convergence of the solution to the Cauchy problem. The first one
provides an essential justification for the restriction of the admissible values of
α to the interval (0, 2]. In point of fact, this restriction has been conventionally,
rather than substantially, so far accepted, and the next theorem confirms its
reasonableness.

Theorem 2.1. Suppose τ satisfies (4)-(2) with α > 2. If the solution µt to the
Cauchy problem associated with (5), initial p.d. µ0, converges weakly to a p.d.
µ∞, as t → +∞, then both µ0 and µ∞ must be unit masses at points x0 and
x1, respectively.

Moreover:

(i) If x0 6= 0 and τ{(x, y) ∈ R2 : x + y − 1 = 0} = 1, then µ∞ = δx0 .
Conversely, if µ∞ = δx1 with x1 6= 0, then τ{(x, y) ∈ R2 : x + y − 1 =
0} = 1 and x0 = x1.

(ii) If (at least) one of the two following conditions is verified:

(ii1) x0 = 0

(ii2)
∑ν̃t

j=1 β̃j,ν̃t converges in distribution to zero, as t goes to infinity,

then x1 = 0. Conversely, if x1 = 0, then at least one of the conditions
(ii1),(ii2) must be in force.

Proof. See Subsection 4.4.

The lesson of Theorem 2.1 is that, if α > 2, unit masses are the sole ad-
missible stationary distributions. From a logical viewpoint, it is worth noticing
that condition (4) may coexist with (i). Consider, for example the case in which



E. Perversi and E. Regazzini/Convergence of solutions of kinetic equations 7

R̃1 = 1 − L̃1 almost surely and the p.d. of L̃1 is the Gaussian centred at 1/2
with variance σ2. It is easy to show that there is a value of σ2, say σ̄2, so that∫
R
|x|α1/

√
2πσ̄2 exp{−(x− 1/2)2/2σ̄2}dx = 1/2. In the same vein, (4) and (ii2)

may coexist, for example, if L̃1 = R̃1 almost surely and the p.d. of L̃1 is the
Gaussian centred at zero with variance 1/4.

The second, and more significant, group of results is concerned with values
of α in (0, 2], when convergence to the steady state occurs in the presence of
interesting forms of initial data.

Theorem 2.2. Suppose τ satisfies both the moment and support conditions (4)-
(2) for some α in (0, 2]. If the solution µt to the Cauchy problem associated with
(5), initial datum µ0, converges weakly to a p.d., as t→ +∞, then

lim
x→+∞

xα[1− F ∗
0 (x)] exists and is finite. (9)

Proof. See Subsection 4.1.

Like the central limit theorem for weighted sums of i.i.d. summands, one
could expect that the above condition is also sufficient for the convergence of
the solution. On the one hand, this is the case when, for example, τ agrees either
with the Kac model or with its direct inelastic counterpart (see [11, 15, 28, 30]
and the next more general Theorem 2.5). On the other hand, the conjecture
fails, for example, when the support of τ is a subset of [0,+∞)2, which is the
version of (5) most widely studied so far. To deal with this case, some additional
notation is needed together with the following reformulation of (6), where F0 is
taken in the place of F and α belongs to (0, 2],

lim
x→+∞

xαF0(−x) = c1 and lim
x→+∞

xα[1− F0(x)] = c2 (10)

where c1 and c2 are non-negative numbers. Moreover, let m0,i :=
∫
R
xiµ0(dx)

for i = 1, 2 and let ψ̂α(· ;χ, kα, γ) indicate the Fourier-Stieltjes transform of the
stable law ψα(· ;χ, kα, γ), i.e.,

ψ̂α(ξ;χ, kα, η) = exp
{
iχξ − kα|ξ|α

(
1− iγ

ξ

|ξ|ω(ξ, α)
)}

where
ω(ξ, α) = tan(πα/2) α 6= 1

= 2π−1 log |ξ| α = 1

with the proviso that:

• χ := 0, kα := [2Γ(α) sin(πα/2)]−1(c1 + c2)π and γ := I{c1+c2>0}(c2 −
c1)/(c1 + c2), if α ∈ (0, 1) ∪ (1, 2);
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• χ := η−
∫
R\{0}[−I(−∞,−1](y)+ yI(−1,1](y)+ I(1,+∞)(y)− sin y]ν(dy), k1 :=

(c1 + c2)π/2 and γ := 0, when α = 1, η and ν being characteristic pa-
rameters of the Lévy-Khinchin representation of ψ̂α according to Propo-
sition 11 in Chapter 17 and Theorem 30 in Chapter 16 of [27], with
Q1,n = Q2,n = · · · = µ0;

• χ := 0, k2 := (m0,2 −m2
0,1)/2 and γ := 0, if α = 2.

Coming back to the discussion about sufficiency, one starts by giving a more
complete version of Theorems 1-3 in [6] and Theorem 2.3 in [9], viz

Theorem 2.3. Suppose τ satisfies (4) for some α in (0, 2], with supp(τ) ⊂
[0,+∞)2, and

S(p) < 0 for some p > 0. (11)

Then, the solution µt to the Cauchy problem associated with (5), initial datum
µ0, converges weakly to a p.m. µ∞, as t → +∞, if:

condition (10) holds whenever α ∈ (0, 1);

condition (10) along with c1 = c2 are met whenever α = 1;

condition (10) and m0,1 = 0 are in force whenever α ∈ (1, 2);

m0,1 = 0 and m0,2 < +∞ are valid whenever α = 2.

Furthermore, the Fourier-Stieltjes transform of the limiting p.d. µ∞ is given by

∫ +∞

0

ψ̂α(ξm
1/α; 0, kα, γ)να(dm) whenever α ∈ (0, 1) ∪ (1, 2)

∫ +∞

0

ψ̂1(ξm;χ, k1, 0)ν1(dm) whenever α = 1

∫ +∞

0

ψ̂2(ξm
1/2; 0, k2, 0)ν2(dm) whenever α = 2

for every ξ ∈ R, where να is the p.d. of M (α)
∞ for each α in (0, 2], and χ, kα, γ

are the same as in the itemization preceding the theorem.

Proof. See Subsection 4.2.

Before presenting necessary and sufficient conditions, the following miscella-
neous remarks could be in order.

Remark 1. In view of Proposition 2 in [6], one recalls that, when (11) is in
force and α is the unique root of equation (4), the p.d. να admits moments of
any order. Moreover, if a second root θ exists, the only finite moments of να
are those of order strictly smaller than θ/α. Combination of these facts with
the well-known moment properties of the stable laws yields: If α < 2, then µ∞

admits the p-th moment if and only if p < α. If α = 2, then the p-th moment of
µ∞ is finite for p > 2 if and only if p < θ.
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Remark 2. An interesting problem is the search of conditions under which the
limiting law µ∞ is a (pure) stable law. A complete answer can be obtained by
combining Theorems 1, 3 in [6] with Theorem 2.3 in [9] and allied results in [1]
on the fixed points of operators like Q+.

Remark 3. Proposition 3.9 in [9] shows that, whenever α belongs to (0, 2),
the tails of non-degenerate limiting p.d.’s behave like (x0/|x|)α as x → ∞, for
suitable x0. According to [33], these p.d.f.’s can be called weak Pareto laws.
Furthermore, limiting point masses arise when c1 = c2 = 0. These facts are of
importance w.r.t. to the application presented in the next section.

Remark 4. As to the case of α = 2, in view of Remark 1 it is worth distin-
guishing the following two subcases. If α is the sole root of equation (4), since
in this case µ∞ has moments of any order, one can conclude that F∞(−x) =
1− F∞(x) = o(1/xp) for every p > 0, as x→ +∞. On the other hand, if θ > α
is the second root of the equation in (4), then (see Remark 1)

∫
R
|x|pdµ∞ < +∞

for p < θ and
∫
R
|x|θdµ∞ = +∞ so that, from the Markov inequality,

F∞(−x) = 1− F∞(x) ≤ Ap

xp
(x > 0)

for every p < θ and Ap :=
∫
R
|x|pµ∞(dx)/2. To obtain a lower bound for

F∞(−x), one notes that, putting G(y) := [2F∞(y1/θ) − 1]I[0,+∞)(y), one has∫ +∞

0 ydG(y) = +∞. From Proposition 3.3. in [21] one obtains limy→+∞(1 −
G(y))g(y) = +∞ for every function g continuous, strictly increasing and pos-
itive on (a,+∞) for some a > 0 and such that

∫ +∞

a {1/g(y)}dy < +∞. Thus,
choosing, for example, g(y) := y(log y)1+δ for y > 1 and δ > 0, for every positive
M there exists ȳ for which 1 − G(y) ≥ M/[y(log y)1+δ] holds for every y ≥ ȳ.
Finally, from the definition of G, one gets

F∞(−x) = 1− F∞(x) =
1

2
(1 −G(xθ)) ≥ M

2θ1+δ

1

xθ(log x)1+δ

for every x ≥ ȳ1/θ.

Resuming the main line of discussion, the way is paved for presenting neces-
sary and sufficient conditions for the relaxation to equilibrium.

Theorem 2.4. Suppose supp(τ) ⊂ [0,+∞)2 and, for some α in (0, 2], (4)-(2)
and (11) are in force. Then, the solution µt to the Cauchy problem associated
with (5), initial p.d. µ0, converges weakly to a p.m. µ∞, as t→ +∞, if and only
if

condition (10) holds whenever α ∈ (0, 1);

condition (10) along with c1 = c2 are met whenever α = 1;

condition (10) and m0,1 = 0 are in force whenever α ∈ (1, 2);

m0,1 = 0 and m0,2 < +∞ are valid whenever α = 2.

Of course, µ∞ is the same as in Theorem 2.3.
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Proof. See Subsection 4.3.

The next theorem, which includes both the Kac model and its inelastic coun-
terpart, provides an example in which the weaker condition involved in Theorem
2.2 turns out to be sufficient for the convergence.

Theorem 2.5. Suppose τ is invariant w.r.t. (π/2)-rotations and, for some α
in (0, 2], (4)-(2) and (11) are in force. Then, (9) [m0,2 < +∞, respectively] is
necessary and sufficient whenever α belongs to (0, 2) [α = 2, respectively] in
order that the solution µt to the Cauchy problem associated with (5), initial p.d.
µ0, converge weakly to a p.m. µ∞, as t→ +∞.

Proof. See Subsection 4.5.

One notes the redundancy of assumption (2) in the sufficiency part of the
last theorem.

3. Application to the distribution of incomes

The purpose of this section is to show that a suitable reinterpretation of (1)-(5)
justifies weak Pareto laws as distributions for incomes, pointing out, in addition,
a strict connection between risk aversion of agents (assumed to be the same for
all of them) and inequality (concentration) of incomes. Recall that, according to
Mandelbrot [33], weak Pareto laws are those p.d.f.’s in which "the percentage
of individuals with an income (over some fixed period of reference) exceeding
some number x" behaves like (x/a0)

−β , as x → +∞, a0 and β being positive
parameters. It is well-known that Pareto [37] was the first to maintain, on the
basis of empirical observations, "that over a certain range of values of income, its
distribution is not markedly influenced either by the socio-economic structure of
the community under study, or by the definition chosen for income. That is, these
two elements may at most influence the values taken by certain parameters" in
the expression of a p.d.f. whose tails apparently and invariably meet the ones
described above. In particular, it should be recalled that the parameter 1/β plays
the role, within the Pareto laws, of measure of the inequality of incomes, in the
sense that negative increments of the value of β go along with positive increments
of the inequality of incomes. In this part, the term income is meant as surplus
or deficit with respect to subsistence and, consequently, its distribution is seen
as resultant of a great number of transfers of surplus/deficit. These transfers
are supposed to be governed by the p.d. of a suitable stochastic process, whilst
subsistence is assumed to be a quantity (stochastic or not) to be added to the
output of the aforesaid process. In any case, only the surplus/deficit process
is considered in the rest of this section. General inspiring ideas about surplus
theory of social stratification can be found in [2].

3.1. Economic reading of (1)-(5)

As said by Mandelbrot, "there is a great temptation to consider the exchanges
of money which occur in economic interaction as analogous to the exchanges of
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energy which occur in physical shocks between gas molecules". In partial support
of this, one can mention that in recent years also particular versions of model
(1)-(5) have been invoked to explain how and why weak Pareto laws have to do
with social sciences. See, e.g. [17, 18, 19, 20, 34]; cf. also the more recent [40]
and references therein. One of the major restrictions adopted yet in these works
is the supposition that α is equal to 1. This is a real limitation since the model
at issue without such a restriction has interesting implications like, for example,
the fact − consequence of propositions presented in the last section − that
the stationary distributions must vary in the family of weak Pareto laws, their
parameters β depending, through a precise quantitative relationship, on the
agents risk aversion, supposed to be the same for every agent. Of course, these
implications might be of some importance with a view to specific policies towards
a desirable reduction in the inequality of incomes. Their complete formulation
and proof form the core of the rest of this section. At first, one assumes that
exchanges are effected according to a fixed scheme, that is, one of the two
agents, say I1, can produce a random income and, at the same time, can extract
a random income from the other agent, say I2. More precisely, due to each
exchange, initial incomes, v and w respectively, become

v′ = L̃1v + R̃1w

w′ = R̃2v + L̃2w
(12)

where L̃j represents the positive random unitary gain made by Ij from her/his
own income, whilst R̃j indicates the positive random unitary gain drawn by Ij
from Ii’s income (i, j = 1, 2 with i 6= j). Random vectors (L̃1, R̃1) and (L̃2, R̃2)
are assumed to be identically distributed with common p.d. τ . In existing allied
models, specifically in [17], one often adopts L̃1 = λ + (1 − λ)ε̃, L̃2 = λ +

(1 − λ)(1 − ε̃), R̃1 = (1 − λ)ε̃, R̃2 = (1 − λ)(1 − ε̃), with ε̃ random number
whose p.d. is supported by [0, 1] and is symmetrical about 1/2. This way, the
above distributional conditions on (L̃i, R̃i), for i = 1, 2, are plainly met. The
meaning of λ is that of unitary fraction of income each agent puts aside, while
(1−λ)ε̃ [(1−λ)(1− ε̃), respectively] stands for the unitary gain made by I1 [I2,
respectively] both from her/his initial income and from the initial income of I2
[I1, respectively]. Coming back to the general form of the model, it remains to
reinterpret (4) and (5). As to the former, one assumes that

u(x, y) = |x|αsign(x) + |y|αsign(y) (13)

is the utility associated with any couple (x, y) where x stands for the income
produced by an agent on her/his own and y represents the income she/he draws
from the other agent. This utility is the sum of two equal utility functions ū
having the sole argument "wealth" expressed in monetary units, i.e.

ū(s) = |s|αsign(s) (s ∈ R).

For every money utility function ū, λ∗ = λ∗(s) := −ū′′(s)/(2ū′(s)) provides a
local risk aversion index, independently proposed by de Finetti [22] and Arrow
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[3]. In the particular case under consideration, it turns out that

λ∗(s) = (1− α)/(2s) (s ∈ R \ {0}). (14)

In view of (12) and (13), I1’s [I2’s] utility after an exchange is u(L̃1v, R̃1w) =

L̃α
1 |v|αsign(v)+R̃α

1 |w|αsign(w) [u(L̃2w, R̃2v) = L̃α
2 |w|αsign(w)+R̃α

2 |v|αsign(v)].
Then, assuming strong additivity of individual’s utility in expressing group
(joint) preferences, one can read

u(L̃1v, R̃1w) + u(L̃2w, R̃2v)

as joint welfare function of any pair of individuals exchanging money according
to the previous terms. The corresponding utility index (expectation of the above
joint welfare function) is then given by

u(v, w)

∫

(0,+∞)2
(lα + rα)τ(dldr)

in view of the fact that (L̃1, R̃1) and (L̃2, R̃2) are identically distributed with
common p.d. τ . Now, the meaning of (4) is clear: it amounts to considering that
any exchange preserves the value of the utility index.

It remains to reinterpret (5) from an economic viewpoint, which amounts to
giving a sensible explanation for the expression of ∂tµt. To this end consider,
conditionally on {(L̃1, R̃1) = (l, r)}, the incomes ṽ and w̃ of the contracting
parts, immediately before the exchange at time t, as i.i.d. random numbers with
common p.d. µt. Immediately after any exchange, the conditional p.d. of the
income of agent I1 passes from µt to the conditional law of the sum lṽ + rw̃,
that is

A 7→
∫

R

µt(Av,l,r)µt(dv) (A ∈ B(R))

where Av,l,r := {w ∈ R : lv + rw ∈ A}. Whence, passing from conditional to
unconditional distributions,

∫

(0,+∞)2

(∫

R

µt(Av,l,r)µt(dv)
)
τ(dldr) − µt(A)

can be seen as an instantaneous rate of change of µt, at each Borel set A ⊂ R,
yielding

∂tµt(A) =

∫

(0,+∞)2

(∫

R

µt(Av,l,r)µt(dv) − µt(A)
)
τ(dldr)

and its equivalent form (5).

3.2. Significant implications

At this stage, if one adopts the scheme of the previous section to describe the
exchange of incomes, then one must conclude that the resulting law of the income
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of each agent at time t, is the same as the p.d. of the random number Vt in (8).
Of course, therein, exchanges take the place of collisions and any tree can be
seen as picture of an economic state (situation) relative to a specific agent, say
1. By analogy with the example in Subsection 2.1, one considers the situation
in which, during the period (0, t], agents 2 and 3 meet before 2 meets 1 and
3 abandons the market. Suppose that, immediately after, 4 encounters 1 and
then abandons the market. Finally, let 5 and 6 exchange before 5 meets 1, and 6
abandons the market. If X1, . . . , X6 stand for the initial incomes of the agents,
then the income of 2 before the exchange with 1 is X ′

2 = L̃1X2 + R̃1X3. Hence,
the income of 1 after the exchange with 2 is given by X ′

1 = L̃2X1 + R̃2X
′
2

and, thus, after the encounter with 4, it becomes X ′′
1 = L̃3X

′
1 + R̃3X4. On

the other hand, after the exchange between 5 and 6, the income of the former
is X ′

5 = L̃4X5 + R̃4X6, and the income of 1 at t, that is, after the exchange
with 5, turns out to be X ′′′

1 = L̃5X
′′
1 + R̃5X

′
5 = L̃5L̃3L̃1X1 + L̃5L̃3R̃2L̃1X2 +

L̃5L̃3R̃2R̃1X3 + L̃5R̃3X4 + R̃5L̃4X5 + R̃5R̃4X6. Each summand represents the
contribution of each agent to the income of 1 at time t, and gives a precise image
of the formation of each of these contributions.

In view of the main subject of the paper, one concludes by mentioning a few
implications concerning income laws as stationary distributions. As a preamble,
it is useful to dwell upon an economic interpretation, consistent with the rest
of the section, of a few aspects of the function S defined in (3). This function is
involved, e.g., in condition (11) and in the discussion of the form of the tails of
the limiting p.d. when α = 2, etc. In particular, (11) requires that this function
be strictly negative at least for all p’s in a suitable interval (α, α + ε). Clearly,
this behaviour depends crucially on the choice of τ and states a sort of Pareto-
optimality of the point p = α, thanks to the following reformulation of (11):

(a) For a suitable ε > 0 and for any value λ∗(s) of the risk aversion included
in ((1 − α − ε)/(2s), (1 − α)/(2s)) [in ((1 − α)/(2s), (1 − α − ε)/(2s)),
respectively] for positive [negative, respectively] s, exchanges of money
made according to the rules stipulated in Subsection 3.1 diminish [increase,
respectively] the joint expected utility of the agents.

As to the number of roots of equation in (4), assuming that the function S,
besides vanishing at α, vanishes also in θ > α, is equivalent to supposing that:

(b) There is a risk aversion λ∗(s) = (1−θ)/(2s), for every s, according to which
exchanges preserve joint expected utility, although it is strictly smaller
[greater, respectively] than (1−α)/(2s) at positive [negative, respectively]
s.

As already mentioned, (a) and (b) may hold or not according to the form of
τ . Coming back to the tails of the limiting p.d., from Remark 4, if (b) holds
when α = 2, then the percentage of individuals with an absolute value of income
exceeding x satisfies

Kθ

xθ(log x)1+δ
≤ 1− F∞(x) ≤ Ap

xp
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for sufficiently large values of x, where p < θ, δ > 0 and Kθ, Ap are suitable
positive constants. On the other hand, if α = 2 is the sole root of the equation in
(4), then 1−F∞(x) = o(1/xp) for every p > 0, as x→ +∞. When the local risk
aversion λ∗(s) takes values in (−1/(2s), 1/(2s)) [(1/(2s),−1/(2s)), respectively]
at positive [negative, respectively] s, Theorems 2.2, 2.4 and Remark 3, show
that the limit must be weak Pareto with index equal to (1− 2sλ∗(s)), provided
that c1+ c2 > 0 and (a) holds. Finally, Theorem 2.1 states that when agents are
"strong risk lovers" ["strong risk averters", respectively] at positive [negative,
respectively] s, i.e. when the local risk aversion λ∗(s) is strictly smaller [strictly
greater, respectively] than (−1/(2s)), the sole admissible stationary laws are
those which correspond to perfectly egalitarian distributions of income, provided
that the initial datum does the same.

4. Proofs

Some crucial parts of the proofs are based on the Skorokhod representation for
sequences which converge in law. See, e.g., Theorem 6.7 in [10]. It is worth re-
calling such a representation for the sake of expository clarity, even if analogous
descriptions have already been given in [8, 11, 25, 26, 30]. Before proceeding to
apply the Skorokhod theorem, it is useful to introduce some slight changes to
the presentation in Subsection 2.1. In particular, one replaces the probability
space (Ω,F ,P) with the family {(Ω,F ,Pt) : t ≥ 0}. The random elements
(L̃, R̃), X̃ are maintained, while the roles of ν̃ and ã are respectively played by:

• A random number ν̃ taking values in N whose p.d., under Pt, is given by
Pt{ν̃ = n} = e−t(1− e−t)n−1 for every n ≥ 1 and t ≥ 0.

• A sequence ĩ := (̃in)n≥1 of integer-valued random numbers which, under
Pt, are independent, each ĩn being uniformly distributed on {1, . . . , n}, for
every t ≥ 0.

It is easy to verify that each realization of the sequence ĩ specifies a McKean
tree, and that the distributional properties of ĩ agree with the Markov structure
of the law of ã.

According to Subsection 2.1, the random elements ν̃, ĩ, (L̃, R̃), X̃ are assumed
to be stochastically independent under each Pt.

These points accepted, one introduces a random vector W , which contains all
the elements that characterize convergence in agreement with the general form
of the central limit theorem,

W =W (ω) := (ν̃(ω), ĩ(ω), (L̃(ω), R̃(ω)), β̃(ω), λ̃(ω), Λ̃(ω), M̃(ω), ũ(ω))

for every ω in Ω, with:

• The same β̃ = (β̃j,n : j = 1, . . . , n)n≥1 as in Subsection 2.1, that can now
be expressed through the following recursive relation

β̃1,1 = 1

(β̃1,n+1, . . . , β̃n+1,n+1) = (β̃1,n, . . . , β̃ĩn−1,n, β̃ĩn,nL̃n, β̃ĩn,nR̃n,

β̃ĩn+1,n, . . . , β̃n,n) (n ≥ 1).
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• λ̃ = λ̃(ω) := (λ̃1(ω), . . . , λ̃ν̃(ω)(ω), δ0, δ0, . . . ) where, for each j in {1, . . . ,
ν̃(ω)}, λ̃j(ω) is the p.d. determined by the characteristic function ξ 7→
ϕ0(β̃j,ν̃(ω)(ω)ξ), ξ ∈ R.

• Λ̃ =convolution of the elements of λ̃.
• M̃(ω) is the p.d. of

∑ν̃(ω)
j=1 |β̃j,ν̃(ω)|α, where β̃j,ν̃(ω) is the same as β̃j,n with

n = ν̃(ω).
• ũ := (ũk)k≥1, with ũk = max1≤j≤ν̃ λ̃j([− 1

k ,
1
k ]

c) for every k ≥ 1.

Introducing the symbol P(M) to denote the set of all p.m.’s on the Borel class
B(M) of a metric space M , one can say that the range of W is a subset of

S := N× N
∞ × (R

2
)∞ × R

∞ × (P(R))∞ × P(R)× P(R)× [0, 1]∞.

Here, P(R) is metrized consistently with the topology of weak convergence of
p.m.’s so that it can be seen as a separable, compact and complete metric space.
Thus, S can be metrized so that it results in a separable, compact and complete
metric space (Theorems 6.2, 6.4 and 6.5 in Chapter 2 of [38]). Obviously, the fam-
ily of p.m.’s {PtW

−1 : t ≥ 0} is uniformly tight on B(S), and any subsequence
from this family contains a weakly convergent subsequence Qn := PtnW

−1 with
0 ≤ t1 < t2 < . . . and tn ր +∞. Hence, the Skorokhod’s representation theo-

rem can be applied to state the existence of a probability space
(
Ω̂, F̂ , P̂

)
and

of a sequence of S-valued random elements

Ŵn := (ν̂(n), î(n), (L̂(n), R̂(n)), β̂(n), λ̂(n), Λ̂(n), M̂ (n), û(n)), n ≥ 1

defined on Ω̂ so that:

• The p.d. of Ŵn is Qn, for every n.
• Ŵn converges pointwise to a random element Ŵ whose p.d. is the weak

limit of (Qn)n≥1.

From the first point, the equalities

β̂
(n)
1,1 = 1

(β̂
(n)
1,k+1, . . . , β̂

(n)
k+1,k+1) = (β̂

(n)
1,k , . . . , β̂

(n)

î
(n)
k

−1,k
, L̂

(n)
k β̂

î
(n)
k

,k
,

R̂
(n)
k β̂

(n)

î
(n)
k

,k
, β̂

(n)

î
(n)
k

+1,k
, . . . , β̂

(n)
k,k )

(15)

are met for every k and n, with P̂-probability 1. This paves the way for two
preparatory lemmata in which M([1,+∞)) represents the set of all the finite
measures on B([1,+∞)).

Lemma 4.1. If ν : Ω̂ → M([1,+∞)) is a random finite measure, then there
exists a countable subset I of [1,+∞) such that, for every x0 in Ic ∩ (1,+∞),
ν{x0}(ω̂) = 0 for every ω̂ in a subset Ω̂x0 of Ω̂ with P̂(Ω̂x0) = 1.

Proof. See Section A.1 in Appendix A.
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Lemma 4.2. If α agrees with (4)-(2), then for every ε > 0 and every strictly
increasing and divergent sequence (yn)n≥1 such that

yα1 >
1

ε
and yαn+1 >

1

ε

n∑

j=1

(yαj + 1) (n ≥ 1), (16)

there exist:

• a point ω̂0 in Ω̂,
• an integer-valued, strictly increasing and divergent sequence (Nn)n≥0, with
N0 := 1,

• a sequence of sets (Rn)n≥1 with Rn ⊂ {1, . . . , Nn} and |Rn| = Nn−1 for
every n ≥ 1,

• an array (δ
(n)
k )n≥1,k=1,...,n of positive real numbers

for which ν̂(n)(ω̂0) = Nn and

|β̂(n)

j,ν̂(k)(ω̂0)
(ω̂0)| ∈

[ 1

yk + δ
(n)
k

,
1

yk

]
if k is odd

|β̂(n)

j,ν̂(k)(ω̂0)
(ω̂0)| ∈

[ 1

yk
,

1

yk − δ
(n)
k

]
if k is even

(17)

for every n ≥ 1, k = 1, . . . , n and for every j /∈ Rk. Moreover, for every n ≥ 1
and every odd number k in {1, . . . , n},

∑

j∈Rk

|β̂(n)

j,ν̂(k)(ω̂0)
(ω̂0)|α < ε. (18)

Proof. See Section A.2 in Appendix A.

4.1. Proof of Theorem 2.2

With reference to the Skorokhod representation, assuming that µt converges
weakly as t → +∞ is equivalent to saying that the p.d. Λ̂(n)(ω̂) converges
weakly to a p.d., as n → +∞, for every ω̂ in Ω̂. Then, by the central limit
theorem (see, for example, (16.36) in [27]), there exists a random Lévy measure
ν = ν(ω̂) such that

ν(ω̂)[x,+∞) = lim
n→+∞

ν̂(n)(ω̂)∑

j=1

λ̂
(n)
j (ω̂)[x,+∞)

and

ν(ω̂)(−∞,−x] = lim
n→+∞

ν̂(n)(ω̂)∑

j=1

λ̂
(n)
j (ω̂)(−∞,−x]
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hold for every ω̂ in Ω̂ and for every x > 0 such that ν(ω̂){x} = ν(ω̂){−x} = 0.
Now, in view of the definitions given at the beginning of this section,

λ̂
(n)
j (ω̂)[x,+∞)

=
[
1− F0

( x

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

)
+ µ0

{ x

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

}]
I
{β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)>0}

+ F0

(
− x

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

)
I
{β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)<0}

and, analogously,

λ̂
(n)
j (ω̂)(−∞,−x]

= F0

(
− x

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

)
I
{β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)>0}

+
[
1− F0

( x

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

)
+ µ0

{ x

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

}]
I
{β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)<0}

.

Hence, recalling the definition of F ∗
0 ,

λ̂
(n)
j (ω̂)[x,+∞) + λ̂

(n)
j (ω̂)(−∞,−x]

= 2
[
1− F ∗

0

( x

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

)]
+ µ0

{ x

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

}
.

Thus,

ν(ω̂)(−∞,−x] + ν(ω̂)[x,+∞)

= lim
n→+∞

(
2

ν̂(n)(ω̂)∑

j=1

[
1− F ∗

0

( x

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

)]
+

ν̂(n)(ω̂)∑

j=1

µ0

{ x

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

})

is valid for every ω̂ in Ω̂ and for every x > 0 such that ν(ω̂){x} = ν(ω̂){−x} =

0. At this stage, for every x > 1, one defines the random measure ν̄ : Ω̂ →
M([1,+∞)) by

ν̄(ω̂)[x,+∞) := ν(ω̂)(−∞,−x] + ν(ω̂)[x,+∞).

This way, one can apply Lemma 4.1 to state the existence of a countable subset
I of [1,+∞) such that, for every x0 in Ic∩ (1,+∞), there exists a subset Ω̂x0 of
Ω̂ with P̂(Ω̂x0) = 1, such that ν̄(ω̂){x0} = 0 for every ω̂ in Ω̂x0 . Now, keeping x0
fixed, notice that, without real loss of generality (because of (15) combined with
the independence of (L̂(n)

1 , R̂
(n)
1 ), (L̂

(n)
2 , R̂

(n)
2 ), . . . and the continuity assumption

on the marginals of τ) one can suppose Ω̂x0 is contained in {ω̂ ∈ Ω̂ : x ·
|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|−1 /∈ DF0 , ∀j = 1, . . . , ν̂(n)(ω̂), n ≥ 1} where Df denotes the
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discontinuity set of the function f . Hence,

ν̄(ω̂)[x0,+∞) = lim
n→+∞

2

ν̂(n)(ω̂)∑

j=1

[
1− F ∗

0

( x0

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

)]
(19)

for every ω̂ ∈ Ω̂x0 . Going on, one defines I := lim infx→+∞ xα(1 − F ∗
0 (x)) and

S := lim supx→+∞ xα(1 − F ∗
0 (x)). It has to be proved that I = S < +∞. Let

(im)m≥1 and (sm)m≥1 be increasing and divergent sequences of positive real
numbers such that

lim
m→+∞

iαm(1− F ∗
0 (im)) = I and lim

m→+∞
sαm(1 − F ∗

0 (sm)) = S.

Given any ε > 0, one defines

xn := im if n = 2m− 1
:= sm if n = 2m

in such a way that xα1 > 1/ε and xαn+1 >
∑n

i=1 x
α
i /ε for every n ≥ 1. Then, one

puts zn := xn/x0 for every n ≥ 1, x0 being the same as in (19), for the purpose
of bounding

ν̂(n)(ω̂)∑

j=1

[
1− F ∗

0

( x0

|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)|

)]

for every n at the point ω̂ = ω̂0 determined through the application of Lemma
4.2 to (ε, (zn)n≥1). Along the subsequence n = 2m− 1, one gets

lim
m→+∞

ν̂(2m−1)(ω̂0)∑

j=1

[
1− F ∗

0

( x0

|β̂(2m−1)

j,ν̂(2m−1)(ω̂)
(ω̂)|

)]

= lim
m→+∞

( ∑

j /∈R2m−1

+
∑

j∈R2m−1

)[
1− F ∗

0

( x0

|β̂(2m−1)
j,N2m−1

(ω̂)|

)]

≤ lim sup
m→+∞

( ∑

j /∈R2m−1

[1− F ∗
0 (x0z2m−1)] +

∑

j∈R2m−1

[
1− F ∗

0

( x0

|β̂(2m−1)
j,N2m−1

(ω̂)|

)]

× xα0

|β̂(2m−1)
j,N2m−1

(ω̂)|α
·
|β̂(2m−1)

j,N2m−1
(ω̂)|α

xα0

)
(in view of (17))

≤ lim sup
m→+∞

(
[1− F ∗

0 (x2m−1)] · |{1, . . . , N2m−1} \ R2m−1|
)

+
S

xα0
lim sup
m→+∞

∑

j∈R2m−1

|β̂(2m−1)
j,N2m−1

(ω̂)|α

≤ lim sup
m→+∞

xα2m−1[1− F ∗
0 (x2m−1)]

N2m−1 −N2m−2

xα2m−1

+ ε
S

xα0
(in view of (18))
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= lim sup
m→+∞

iαm[1− F ∗
0 (im)]

N2m−1 −N2m−2

xα0 z
α
2m−1

+ ε
S

xα0

≤ I + εS

xα0

where the last inequality holds since (Nn − Nn−1)/z
α
n ≤ 1 for every n ≥ 1, as

shown in the proof of Lemma 4.2. Furthermore,

lim
m→+∞

ν̂(2m)(ω̂0)∑

j=1

[
1− F ∗

0

( x0

|β̂(2m)

j,ν̂(2m)(ω̂)
(ω̂)|

)]

≥ lim sup
m→+∞

∑

j /∈R2m

[
1− F ∗

0

( x0

|β̂(2m)
j,N2m

(ω̂)|

)]

≥ lim sup
m→+∞

∑

j /∈R2m

[1− F ∗
0 (x0z2m)] (in view of (17))

=
(N2m −N2m−1)

xα2m
xα2m[1− F ∗

0 (x2m)]

=
(N2m −N2m−1)

xα0 z
α
2m

sαm[1− F ∗
0 (sm)]

≥ (1 − ε)S

xα0

where the last inequality holds since, as shown in the proof of Lemma 4.2,
(Nn −Nn−1)/z

α
n > 1− ε for every n ≥ 1. Now, as the limit in (19) exists and is

finite,
(1− ε)S

xα0
≤ I + εS

xα0
< +∞

obtains, implying that both I and S are finite and (1− ε)S ≤ I + εS for every
ε > 0, that is I = S.

4.2. Proof of Theorem 2.3

It suffices to prove the theorem for α = 1, since all the other cases are covered
by Theorems 1 and 3 in [6]. Assuming that (10) is in force with α = 1 and
c1 = c2, Theorem 2.6.5 in [31] can be invoked to write

ϕ0(ξ) = exp{iχξ − k1|ξ|(1 + ψ(ξ))} (ξ ∈ R)

where ψ(ξ) = o(1) as |ξ| → 0. It is enough to show that ϕn(ξ) := E[exp{iξ
×∑n

j=1 β̃j,n}] converges pointwise, as n → +∞, to the desired characteristic
function. One starts by noting that, from Lemma 3 in [6], given any subsequence
(n′) of (n), there exists a subsequence (n′′) of (n′) such that maxj=1,...,n′′ β̃j,n′′ →
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0 almost surely. Moreover,

ϕn′′(ξ) = E
( n′′∏

j=1

ϕ0(ξβ̃j,n′′)
)

= E
(
exp

{
iχξ

n′′∑

j=1

β̃j,n′′ − k1|ξ|
n′′∑

j=1

β̃j,n′′ − k1|ξ|
n′′∑

j=1

β̃j,n′′ψ(ξβ̃j,n′′)
})
.

Since ψ(ξ) = o(1) as |ξ| → 0, for every ε > 0 there is a positive δ such that
|ψ(ξ)| < ε whenever |ξ| < δ. Now, for every ξ in R, in view of the aforesaid
property of the maximum of the β̃’s, one can determine the smallest integer
n̄ = n̄(ξ, ω) such that |ξ|β̃j,n′′(ω) < δ holds for every n′′ ≥ n̄ and j = 1, . . . , n′′,
with the exception of a set of points ω of P-probability 0. For such n′′ and j,

∣∣∣− k1|ξ|
n′′∑

j=1

β̃j,n′′ψ(ξβ̃j,n′′)
∣∣∣ ≤ k1|ξ|ε

n′′∑

j=1

β̃j,n′′

and, then,

lim
n′′→+∞

∣∣∣− k1|ξ|
n′′∑

j=1

β̃j,n′′ψ(ξβ̃j,n′′ )
∣∣∣ = 0

holds with P-probability 1. Finally, by the monotone convergence theorem,
limn′′→+∞ ϕn′′(ξ) = E(exp{iχξM (1)

∞ − k1|ξ|M (1)
∞ }) completing the proof since

the limit is independent of (n′).

4.3. Proof of Theorem 2.4

As for sufficiency, one can refer to Theorem 2.3. As for necessity, arguing as at
the beginning of Section 4.1, one has

ν(ω̂)[x0,+∞) = lim
n→+∞

ν̂(n)(ω̂)∑

j=1

[
1− F0

( x0

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)]

where x0 ∈ Ic ∩ (1,+∞) and ω̂ ∈ Ω̂x0 , I be the countable set specified by the
application of Lemma 4.1 to the restriction of ν to [1,+∞). Now, letting

I+ := lim inf
x→+∞

xα(1 − F0(x)) and S+ := lim sup
x→+∞

xα(1− F0(x))

and arguing as in the proof of Theorem 2.2, one concludes that I+ = S+ < +∞.
Analogously, one has

ν(ω̂)(−∞,−x′0] = lim
n→+∞

ν̂(n)(ω̂)∑

j=1

F0

(
− x′0

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)
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where x′0 ∈ Ic ∩ (1,+∞) and ω̂ ∈ Ω̂x′

0
, I be the countable set obtained by

the application of Lemma 4.1 to the measure ν̄1 on B([1,+∞)) such that
ν̄1[x,+∞) := ν(−∞,−x] for every x > 1. Then, resorting once again to the
argument developed in the proof of Theorem 2.2,

lim inf
x→+∞

xαF0(−x) = lim sup
x→+∞

xαF0(−x) < +∞

obtains. Thus, weak convergence of µt implies (10). At this stage, the rest of the
argument is splitted into four points, depending on the value assumed by α.

If α belongs to (0, 1), no further consideration is needed.

Passing to the case of α = 1, one has to prove that c1 = c2 under the as-
sumption that (10) is in force. Resorting to (16.38) in [27] and to the Skorokhod
representation (in fact, µt converges weakly),

lim
n→+∞

ν̂(n)(ω̂)∑

j=1

∫

R

(
− I(−∞,−1](x) + xI(−1,1](x)

+ I(1,+∞)(x)
)
dF0

( x

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)

exists and is finite for every ω̂ in Ω̂. Denoting it by η(ω̂), by the change of
variable y = x/β̂

(n)

j,ν̂(n)(ω̂)
(ω̂) one gets

η(ω̂) = lim
n→+∞

ν̂(n)(ω̂)∑

j=1

[
1− F0

( 1

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)
− F0

(
− 1

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)

+ β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

∫ 1/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

−1/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

ydF0(dy)
]

= lim
n→+∞

ν̂(n)(ω̂)∑

j=1

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

∫ 1/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

0

(1− F0(x) − F0(−x))dx

where the last equality follows from integration by parts. One proceeds to prove
that

lim
R→+∞

∫

(0,R)

(1− F0(x) − F0(−x))dx = +∞ (20)

implies that µt does not converge. Indeed, assuming that (20) is in force, for
every positive M there exists R such that

∫
(0,R)(1 − F0(x) − F0(−x))dx ≥

M for every R ≥ R. Moreover, since maxj=1,...,ν̂(n)(ω̂) β̂
(n)

j,ν̂(n)(ω̂)
(ω̂) → 0, as

n → +∞, there exists n̄ = n̄(ω̂, R) such that 1/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂) ≥ R for every

n ≥ n̄ and for every j = 1, . . . , ν̂(n)(ω̂). Thus, putting M̂
(1)
∞ (ω̂) = limn→+∞
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∑ν̂(n)(ω̂)
j=1 β̂

(n)

j,ν̂(n)(ω̂)
(ω̂), one has η(ω̂) ≥ M · M̂ (1)

∞ (ω̂), a contradiction since M is
arbitrary and η(ω̂) is finite. Analogously, one proves that

lim
R→+∞

∫

(0,R)

(1− F0(x) − F0(−x))dx = −∞ (21)

implies that µt does not converge. Finally, one proves that, if c1 6= c2, then
either (20) or (21) occurs. Indeed, if c1 < c2, taking ε in (0, (c2 − c1)/2), since
(10) is in force, there is x̄ > 0 such that

c2 − c1 − 2ε

x
≤ 1− F0(x) − F0(−x) ≤

c2 − c1 + 2ε

x

for every x ≥ x̄, and
∫

(0,R)

(1− F0(x)− F0(−x))dx

=
( ∫

(0,x̄)

+

∫

(x̄,R)

)
(1− F0(x)− F0(−x))dx

≥
∫

(0,x̄)

(1− F0(x)− F0(−x))dx +

∫

(x̄,R)

c2 − c1 − 2ε

x
dx

=

∫

(0,x̄)

(1− F0(x)− F0(−x))dx + (c2 − c1 − 2ε) log
R

x̄

which goes to +∞ as R → +∞. Analogously, one proves that c1 > c2 entails
(21). Combination of these facts with the inconsistency between (20)-(21) and
weak convergence of µt entails c1 = c2.

Now, the case of α in (1, 2) is taken into consideration. Condition (10) implies
that m0,1 :=

∫
R
xµ0(dx) is finite. The former summand in the RHS of

Vt =

ν̃t∑

j=1

(Xj −m0,1)β̃j,ν̃t +m0,1

ν̃t∑

j=1

β̃j,ν̃t

converges in distribution, as t→ +∞, in view of Theorem 2.3. As to the latter,
one notes that

n∑

j=1

β̃j,n =
n∑

j=1

β̃α
j,n

1

β̃α−1
j,n

≥ 1

(maxj=1,...,n β̃j,n)α−1

n∑

j=1

β̃α
j,n

goes in probability to +∞ as n→ +∞, since
∑n

j=1 β̃
α
j,n converges almost surely

to the random variable M (1)
∞ , satisfying P{M (1)

∞ > 0} > 0, and maxj=1,...,n β̃j,n
converges in probability to zero. Then, m0,1 = 0.
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Finally, if α = 2, in view of the previous argument, (10) holds and m0,1 = 0.
From the Skorokhod representation combined with (16.37) in [27], there exists
σ2 : Ω̂ → R+ such that, for every ω̂ in Ω̂,

σ2(ω̂) = lim
εց0

lim sup
n→+∞

ν̂(n)(ω̂)∑

j=1

[ ∫

[−ε,ε]

x2dF0

( x

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)

−
(∫

[−ε,ε]

xdF0

( x

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

))2]

= lim
εց0

lim inf
n→+∞

ν̂(n)(ω̂)∑

j=1

[ ∫

[−ε,ε]

x2dF0

( x

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)

−
(∫

[−ε,ε]

xdF0

( x

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

))2]
.

(22)

With the change of variable y = x/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂),

lim inf
n→+∞

ν̂(n)(ω̂)∑

j=1

[ ∫

[−ε,ε]

x2dF0

( x

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)

−
(∫

[−ε,ε]

xdF0

( x

β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

))2]

= lim inf
n→+∞

ν̂(n)(ω̂)∑

j=1

(
β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)2[ ∫

[−ε/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂),ε/β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)]

y2dF0(y)

−
( ∫

[−ε/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂),ε/β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)]

ydF0(y)
)2]

≥ lim inf
n→+∞

ν̂(n)(ω̂)∑

j=1

(
β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)2
∫

[−ε/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂),ε/β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)]

y2dF0(y)

− lim sup
n→+∞

ν̂(n)(ω̂)∑

j=1

(
β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)2(∫

[−ε/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂),ε/β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)]

ydF0(y)
)2

.

As for the latter summand of the RHS, since m0,1 = 0, for every δ > 0 there

exists an R̄ such that
∣∣∣
∫
[−R,R]

xdF0(x)
∣∣∣ < δ whenever R ≥ R̄. Let n̄ = n̄(ω̂, R̄)

be a strictly positive integer such that β̂(n)

j,ν̂(n)(ω̂)
(ω̂) ≤ ε/R̄ for every n ≥ n̄ and

for every j = 1, . . . , ν̂(n)(ω̂). For such j’s and n’s one has

−δ <
∫

[−ε/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂),ε/β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)]

ydF0(y) < δ
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and

ν̂(n)(ω̂)∑

j=1

(
β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)2( ∫

[−ε/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂),ε/β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)]

ydF0(y)
)2

≤ δ2
ν̂(n)(ω̂)∑

j=1

(
β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)2

.

Thus, as the last inequality holds for every δ > 0 and
∑ν̂(n)(ω̂)

j=1

(
β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)2

converges, as n→ +∞, to a positive M̂ (2)
∞ (ω̂),

lim sup
n→+∞

ν̂(n)(ω̂)∑

j=1

(
β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)2(∫

[−ε/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂),ε/β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)]

ydF0(y)
)2

= 0.

Finally, one proves that m0,2 :=
∫
R
x2dF0(x) is finite. In fact, if m0,2 = +∞,

for every M > 0 there is R̄ > 0 such that
∫
[−R,R] x

2dF0(x) ≥M holds for every

R ≥ R̄. Then, an application of the same argument as in the previous step gives

lim inf
n→+∞

ν̂(n)(ω̂)∑

j=1

(
β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)

)2
∫

[−ε/β̂
(n)

j,ν̂(n)(ω̂)
(ω̂),ε/β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)]

y2dF0(y)

≥M · M̂ (2)
∞ (ω̂)

which turns out to be an apparent contradiction since M is arbitrary and σ2(ω̂)
is finite.

4.4. Proof of Theorem 2.1

The argument to prove Theorem 2.2 can be plainly extended to the case of
α > 2 to state that limx→+∞ xα(1 − F ∗

0 (x)) exists and is finite, which implies
m0,2 < +∞. An integration by parts followed by the change of variable y =

x/|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)| transforms the sum in the RHS of (22) into

ν̂(n)(ω̂)∑

j=1

∣∣∣β̂(n)

j,ν̂(n)(ω̂)
(ω̂)

∣∣∣
2[ ∫

[−ε/|β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)|,ε/|β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)|]

y2dF0(y)

−
(∫

[−ε/|β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)|,ε/|β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)|]

ydF0(y)
)2]

.

For every δ > 0 there is R̄ > 0 such that m0,i − δ <
∫
[−R,R]

xidF0(x) <

m0,i + δ holds for every R ≥ R̄ and i = 1, 2. Moreover, let n̄ = n̄(ω̂, R̄) be
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a strictly positive integer such that ε/|β̂(n)

j,ν̂(n)(ω̂)
(ω̂)| > R̄ for every n ≥ n̄ and

j = 1, . . . , ν̂(n)(ω̂). Then,

ν̂(n)(ω̂)∑

j=1

∣∣∣β̂(n)

j,ν̂(n)(ω̂)
(ω̂)

∣∣∣
2[ ∫

[−ε/|β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)|,ε/|β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)|]

y2dF0(y)

−
( ∫

[−ε/|β̂
(n)

j,ν̂(n)(ω̂)
(ω̂)|,ε/|β̂

(n)

j,ν̂(n)(ω̂)
(ω̂)|]

ydF0(y)
)2]

≥
ν̂(n)(ω̂)∑

j=1

∣∣∣β̂(n)

j,ν̂(n)(ω̂)
(ω̂)

∣∣∣
2[
m0,2 − δ −

(
m0,1 + δ

)2]
.

Taking lim infn→+∞ in both sides of the above inequality one gets

σ2(ω̂) ≥ M̂ (2)
∞ (ω̂)(m0,2 −m2

0,1).

Since α > 2 implies that M̂ (2)
∞ (ω̂) = +∞, and σ2(ω̂) is finite, the last inequality

holds only if m0,2 −m2
0,1 = 0, i.e. only if µ0 is the point mass at some x0 in R.

Conversely, if µ0 = δx0 ,

ν̃(ω)∑

j=1

∣∣∣β̃j,ν̃(ω)(ω)
∣∣∣
2[ ∫

[−ε/|β̃j,ν̃(ω)(ω)|,ε/|β̃j,ν̃(ω)(ω)|]

y2dF0(y)

−
( ∫

[−ε/|β̃j,ν̃(ω)(ω)|,ε/|β̃j,ν̃(ω)(ω)|]

ydF0(y)
)2]

=

ν̃(ω)∑

j=1

∣∣∣β̃j,ν̃(ω)(ω)
∣∣∣
2

x20

[
I[−ε/|β̃j,ν̃(ω)(ω)|,ε/|β̃j,ν̃(ω)(ω)|](x0)

− I2
[−ε/|β̃j,ν̃(ω)(ω)|,ε/|β̃j,ν̃(ω)(ω)|]

(x0)
]

= 0

which entails

σ2(ω) = lim
εց0

lim sup
n→+∞

ν̃(ω)∑

j=1

[ ∫

[−ε,ε]

x2dF0

( x

β̃j,ν̃(ω)(ω)

)

−
(∫

[−ε,ε]

xdF0

( x

β̃j,ν̃(ω)(ω)

))2]

= lim
εց0

lim inf
n→+∞

ν̃(ω)∑

j=1

[ ∫

[−ε,ε]

x2dF0

( x

β̃j,ν̃(ω)(ω)

)

−
(∫

[−ε,ε]

xdF0

( x

β̃j,ν̃(ω)(ω)

))2]

= 0
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for every ω in Ω. To complete the proof that µ∞ degenerates at some x1, one
can resort to the central limit theorem (cf., e.g., (16.36) in [27]) according to
which one has to check that

ν(I) = lim
n→+∞

n∑

j=1

δxoβ̃j,n
(I) = 0

holds for every I ∈ {(−∞, a], [b,+∞) : a < 0, b > 0}, which can be plainly
verified by recalling that maxj=1,...,n β̃j,n goes to zero in probability.

It remains to characterize the point x1 at which µ∞ degenerates. From
Q+(µ∞) = µ∞ = δx1 one has

eiξx1 = Q̂+(δx1)(ξ) = E
(
δ̂x1(ξL̃1)δ̂x1(ξR̃1)

)
= E

(
eiξ(L̃1+R̃1)x1

)

which implies that L̃1 + R̃1 = 1 almost surely. Moreover, in this case, Vt turns
out to be equal to x0 with probability one since all the Xj ’s are degenerate
at x0, and the condition P{L̃1 + R̃1 = 1} = 1 implies that

∑ν̃t
j=1 β̃j,ν̃t = 1

almost surely. Then, x0 = x1. Conversely, this very same argument proves that
P{L̃1 + R̃1 = 1} = 1 together with x0 6= 0 imply that x1 = x0. Finally, in order
that the solution µt converge weakly to the point mass at zero, it is necessary
and sufficient that Vt = x0

∑ν̃t
j=1 β̃j,ν̃t converge in law to zero, which happens

when (at least) one of the conditions (ii1), (ii2) is verified.

4.5. Proof of Theorem 2.5

The necessity is just Theorem 2.2. In order to prove sufficiency, one should recall
that the Fourier-Stieltjes transform of the solution of (5) has the Wild series
representation

ϕ(t, ξ) =
∑

n≥1

e−t(1− e−t)n−1q̂n(ξ, ϕ0)

where q̂1(ξ;ϕ) := ϕ0(ξ) and, for every n ≥ 2,

q̂n(ξ;ϕ) :=
1

n− 1

n−1∑

j=1

E[q̂j(L̃1ξ;ϕ)q̂n−j(R̃1ξ;ϕ)].

In fact, if ℜz [ℑz] denotes the real [imaginary] part of a complex number z, one
shows that

ϕ(t, ξ) = e−t
∑

n≥1

(1 − e−t)n−1q̂n(ξ,ℜϕ0) + iℑϕ0(ξ)e
−t (23)

and, thus, in order to study the limiting behaviour of ϕ(t, ·), it suffices to study
the Cauchy problem associated with (5) with initial datum given by ϕ∗

0(·) :=
ℜϕ0(·), that is the Fourier-Stieltjes transform of µ∗

0. Assuming (23), in view
of the symmetry of ϕ∗

0, without loss of generality one can think of L̃1 and R̃1



E. Perversi and E. Regazzini/Convergence of solutions of kinetic equations 27

as positive random variables, so that the present theorem would be complete
thanks to Theorem 2.3. In point of fact, it remains to prove (23) that, in turn,
is implied by

q̂n(ξ;ϕ0) = q̂n(ξ;ℜϕ0) for every n ≥ 2. (24)

Proceeding by mathematical induction, one first proves (24) when n = 2. Write

q̂2(ξ;ϕ) = E[ℜϕ0(L̃1ξ)ℜϕ0(R̃1ξ)] + iE[ℜϕ0(L̃1ξ)ℑϕ0(R̃1ξ)]

+ iE[ℑϕ0(L̃1ξ)ℜϕ0(R̃1ξ)]− E[ℑϕ0(L̃1ξ)ℑϕ0(R̃1ξ)]

=: A1 + iA2 + iA3 −A4.

Now,

A2 = E
[
ℜϕ0(L̃1ξ)ℑϕ0(R̃1ξ)I{R̃1>0}

]
+ E

[
ℜϕ0(L̃1ξ)ℑϕ0(−(−R̃1)ξ)I{−R̃1>0}

]

= E
[
ℜϕ0(L̃1ξ)ℑϕ0(R̃1ξ)I{R̃1>0}

]
− E

[
ℜϕ0(L̃

′
1ξ)ℑϕ0(R̃

′
1ξ)I{R̃′

1>0}

]

(where (L̃′
1, R̃

′
1) := (−L̃1,−R̃1))

= 0

the last equality being a consequence of the fact that (L̃′
1, R̃

′
1) and (L̃1, R̃1) have

the same distribution because of the invariance w.r.t. (π/2)-rotations. In the
same way, one can prove that A3 = 0. As for A4, recalling the above definitions
of (L̃′

1, R̃
′
1) and putting (L̃′′

1 , R̃
′′
1 ) := (R̃1,−L̃1) − which, in view of invariance

w.r.t. (π/2)-rotation, is distributed like (L̃1, R̃1) − one has

A4 = E
[
ℑϕ0(L̃1ξ)ℑϕ0(R̃1ξ)I{R̃1>0}

]
+ E

[
ℑϕ0(−L̃′

1ξ)ℑϕ0(−R̃′
1ξ)I{R̃′

1>0}

]

= 2E
[
ℑϕ0(L̃1ξ)ℑϕ0(R̃1ξ)I{R̃1>0}

]

= 2E
[
ℑϕ0(L̃1ξ)ℑϕ0(R̃1ξ)I{R̃1>0,L̃1>0}

]

+ 2E
[
ℑϕ0(−R̃′′

1ξ)ℑϕ0(L̃
′′
1ξ)I{R̃′′

1 >0,L̃′′

1>0}

]

= 0.

Verified that (24) holds true for n = 2, one assumes its validity for every n ≤
m−1 (m ≥ 3) and proves it for n = m. From the definition of q̂n in conjunction
with the inductive hypothesis,

q̂m(ξ, ϕ0) =
1

m− 1

(
E
[
q̂m−1(L̃1ξ,ℜϕ0)ϕ0(R̃1ξ)

+

m−2∑

j=2

q̂m−j(L̃1ξ;ℜϕ)q̂j(R̃1ξ;ℜϕ0) + ϕ0(L̃1ξ)q̂m−1(R̃1ξ;ℜϕ0)
])

= q̂m(ξ;ℜϕ0) +
i

m− 1

(
E
[
q̂m−1(L̃1ξ;ℜϕ0)ℑϕ0(R̃1ξ)

+ ℑϕ0(L̃1ξ)q̂m−1(R̃1ξ;ℜϕ0)
])
.
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For every k ≥ 1, ξ 7→ q̂k(ξ;ℜϕ0) is an even function and then, arguing as

for A2 and A3, one gets E
[
q̂m−1(L̃1ξ;ℜϕ0)ℑϕ0(R̃1ξ)

]
= E

[
q̂m−1(R̃1ξ;ℜϕ0)

ℑϕ0(L̃1ξ)
]
= 0 and hence q̂m(ξ;ϕ0) = q̂m(ξ;ℜϕ0). This completes the inductive

argument and the proof of (24) and hence (23).

Appendix A: Proofs of the lemmata

This Appendix contains the proofs of Lemmata 4.1 and 4.2 which are crucial
for the arguments developed in Section 4.

A.1. Proof of Lemma 4.1

Consider the following p.d.f.’s

Ft(x) := P{ν[t,+∞) ≤ x}, Ft,k(x) := P
(
ν[t,+∞) ≤ x

∣∣∣ν[1,+∞) ≤ k
)

Gt(x) := P{ν(t,+∞) ≤ x}, Gt,k(x) := P
(
ν(t,+∞) ≤ x

∣∣∣ν[1,+∞) ≤ k
)

at each x in R, for every t ≥ 1 and for every k in N. Since ν[1,+∞) is almost
surely finite,

lim
k→+∞

P{ν[1,+∞) ≤ k} = 1

and then

lim
k→+∞

Ft,k(x) = Ft(x) and lim
k→+∞

Gt,k(x) = Gt(x)

for every t ≥ 1 and x in R. Moreover, Gt,k(x) ≥ Ft,k(x) for every t ≥ 1, x in R
and k in N. Now, fix k and suppose that there exists an uncountable subset H
of (1,+∞) such that, for every t in H ,

Gt,k � Ft,k (25)

which means that for every t in H there exists xt,k ≥ 1 such that Gt,k(xt,k) >
Ft,k(xt,k). The p.d.f.’s Ft,k and Gt,k are right-continuous and then for every t
in H there exists a proper interval ∆t,k containing xt,k such that

Gt,k(x) > Ft,k(x) for every x in ∆t,k.

One proves that the intersection of any uncountable family of elements of
(∆t,k)t∈H is empty. Suppose, for the moment, that there is an uncountable sub-
set J of H such that

⋂
t∈J ∆t,k is non-empty; it will be shown that this leads to

a contradiction. If x̄ is an element of such an intersection, then Gt,k(x̄) > Ft,k(x̄)

for every t in J . SinceGt,k ≤ Fs,k whenever s > t, the class
(
(Ft,k(x̄), Gt,k(x̄)]

)
t∈J

consists of pairwise disjoint proper intervals contained in [0, 1], which contra-
dicts, recalling that J is uncountable, the countability of the rationals. Verified
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that
⋂

t∈J ∆t,k = ∅ for every uncountable J ⊂ H , one shows that (25) may be
satisfied only on countable sets of t’s. In the beginning, one notes that, since

Ft,k(x) = Gt,k(x) = 0 (x < 0)
Ft,k(x) = Gt,k(x) = 1 (x > k)

for every t in H , all the elements of the family (∆t,k)t∈H are proper sub-intervals
of [0, k] such that

⋂
t∈J ∆t,k = ∅ for every uncountable J ⊂ H . This last state-

ment implies that with each rational q in [0, k] one can associate a countable
(possibly empty) set Hq ⊂ H such that q ∈ ∆t,k for every t in Hq. Then, the
family {∆t,k : t ∈ ⋃

q∈Q∩[0,k]Hq} is countable and, of course, it is included in
(∆t,k)t∈H . So, to complete the argument, it is enough to show that these fam-
ilies coincide. In point of fact, if there exists some t ∈ H \⋃q∈Q∩[0,k]Hq, then
∆t,k ∩Q = ∅, a patent contradiction. Whence, one can say there is a countable
subset Ik of (1,+∞) such that, for every t in Ic

k ∩ (1,+∞), Gt,k ≡ Ft,k. Denot-
ing the countable set

⋃
k≥1 Ik by I, the identity Gt,k ≡ Ft,k holds for every t in

Ic ∩ (1,+∞) and for every k. Moreover, for all of these t’s,

Ft(x) = lim
k→+∞

Ft,k(x) = lim
k→+∞

Gt,k(x) = Gt(x)

obtains for every x in R, which is tantamount to stating that ν[t,+∞) and
ν(t,+∞) are equally distributed. Then, since two positive and equally dis-
tributed random numbers X and Y such that X ≥ Y must coincide almost
surely, one concludes that ν[t,+∞) = ν(t,+∞) almost surely, which amounts
to ν{t} = 0 almost surely.

A.2. Proof of Lemma 4.2

Following the argument used in the proof of Proposition 1 in [11], there is a
subset Ω̂′ of Ω̂, P̂(Ω̂′) = 1, such that the recursive relation (15) holds true at
each point of Ω̂′. Then, without altering the distribution of Ŵn, one can use
(15) to redefine the β̂(n)’s outside Ω̂′. Let M be the compact space defined by

M := N
∞ ×

(
×j≥1 N

∞

j

)
×
(
×j≥1 (R

2

j)
∞
)

where N1,N2, . . . are copies of N := {1, 2, . . . ,+∞} and R1,R2, . . . are copies
of R. Introduce the mapping Ŷ from Ω̂ to M

Ŷ :=
(
(ν̂(n))n≥1, (̂i

(n))n≥1, ((L̂
(n), R̂(n)))n≥1

)

and put

fk(Ŷ )

:=
(
(ν̂(1), î(1)), . . . , (ν̂(k), î(k)), (L̂(1), R̂(1)), (L̂(2), R̂(2)), . . . , (L̂(k), R̂(k))

)



E. Perversi and E. Regazzini/Convergence of solutions of kinetic equations 30

k = 1, 2, . . . . Recall that the pair (ν̂(k), î(k)) is enough to single out a specific
McKean tree, say âk. The proof aims at the definition of a non-increasing se-
quence (An)n≥1 of non-empty compact subsets of M such that, if Ŷ belongs to
An, then (17)-(18) hold simultaneously for every n ≥ 1. The expression "weight
of a leaf" will be used during the proof to designate the value of the β associated
with that leaf. Since both hypothesis (2) and the thesis of the present lemma
are concerned with the absolute value of the L̃i’s, R̃i’s, β̃’s, with a view to sim-
plifying the notation in the various steps of the proof, these random elements
will be supposed to be positive.
Step 1. This step shows that a node weighted by 1/c (for some c ≥ 1) can be
the root node of a tree with a certain number N of leaves in such a way that each
of (N − 1) of them is weighted by 1/x (for some fixed x > c) and the remaining
one has weight not greater than 1/x. Thus, define N := ⌊(x/c)α⌋+ I{(x/c)α/∈N}

and construct the tree of N leaves in such a way that the depth of the leaf 1 is
(N − 1) and the depth of the leaf j (j = 2, . . . , N) is equal to (N + 1− j). This
amounts to the tree constructed by taking i1 = i2 = · · · = iN−1 = 1. Moreover,
for every k = 1, . . . , N − 1, one sets

Rk :=
c

(xα − (k − 1)cα)1/α
and Lk := (1 −Rα

k )
1/α =

( xα − kcα

xα − (k − 1)cα

)1/α

.

It is easy to verify that Rk = c/(x
∏k

j=1 Lj), for every k = 1, . . . , N − 1, with

the proviso that
∏0

j=1 Lj = 1. This way,

β1,N =
1

c

N−1∏

j=1

Lj , βk,N =
1

c
RN−k+1

N−k∏

j=1

Lj (k = 2, . . . , N)

and, by the definition of (L1, R1), . . . , (LN−1, RN−1),

β1,N =
(xα − (N − 1)cα)1/α

cx
, βk,N =

1

x
(k = 2, . . . , N).

It should be noted that if (x/c)α is an integer, then N = (x/c)α and β1,N = 1/x,
whilst β1,N < 1/x whenever (x/c)α is not an integer: In both cases, β1,N ≤ 1/x.
Step 2. In this step one describes the construction of the sequences (Nn)n≥1

and (Rn)n≥1 by a recursive procedure. For n = 1, by applying Step 1 with c = 1
and x = y1, one obtains a tree a1 with N1 = ⌊yα1 ⌋+ I{yα

1 /∈N} leaves such that

βj,N1 ≤ 1

y1
if j ∈ R1, βj,N1 =

1

y1
if j /∈ R1

with: |R1| = 1 (since R1 = {1}), ∑N1

j=1 β
α
j,N1

= 1 and
∑

j∈R1
βα
j,N1

< ε. Given
the tree an−1 (n ≥ 2) with Nn−1 leaves such that

βj,Nn−1 ≤ 1

yn−1
if j ∈ Rn−1, βj,Nn−1 =

1

yn−1
if j /∈ Rn−1
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and

|Rn−1| = Nn−2,

Nn−1∑

j=1

βα
j,Nn−1

= 1,
∑

j∈Rn−1

βα
j,Nn−1

< ε

one obtains an by applying the construction presented in Step 1 to each leaf
of an−1. More precisely, for each leaf j of an−1, with j = 1, . . . , Nn−1, one
implements Step 1 with c = 1/βj,Nn−1 and x = yn, where, without loss of
generality, yn is assumed to be strictly greater than c. Thus, the tree appended
to leaf j has exactly one leaf with weight not greater than 1/yn, and each of
the remaining leaves with weight equal to 1/yn. Iterating the procedure for
j = 1, . . . , Nn−1, one obtains the tree denoted by an. The symbol Nn stands
for the number of the leaves of an: There are (Nn − Nn−1) leaves weighted by
1/yn and Nn−1 leaves with a weight not greater than 1/yn. This is equivalent
to saying that there exists Rn ⊂ {1, . . . , Nn} such that |Rn| = Nn−1 and

βj,Nn
≤ 1

yn
if j ∈ Rn, βj,Nn

=
1

yn
if j /∈ Rn

where, by construction,
∑Nn

j=1 β
α
j,Nn

= 1. To conclude with this step, it remains
to prove that

∑
j∈Rn

βα
j,Nn

< ε. To this end, it is enough to show that

Nn ≤
n∑

i=1

(yαi + 1) for every n ≥ 1 (26)

since, if (26) holds, then

∑

j∈Rn

βα
j,Nn

≤ Nn−1

yαn
≤ 1

yαn

n−1∑

i=1

(yαi + 1)

< ε (since (yn)n≥1 satisfies (16)).

Coming back to (26), one proceeds by mathematical induction. From the defini-
tion of N1 one gets N1 ≤ yα1 +1, that is the claim for n = 1. One now supposes
that (26) is satisfied for every n ≤ m. Since, for every k ≥ 1, βj,Nk

= 1/yk for
every j /∈ Rk, |Rk| = Nk−1 and

∑Nk

j=1 β
α
j,Nk

= 1, then

Nk −Nk−1

yαk
=

∑

j∈Rk

βα
j,Nk

≤ 1

obtains, entailing Nk − Nk−1 ≤ yαk . Combination of this with the inductive
hypothesis yields

Nm+1 = Nm+1 −Nm +Nm ≤ yαm+1 +

m∑

i=1

(yαi + 1) ≤
m+1∑

i=1

(yαi + 1)

which is (26) for n = m+ 1.
Step 3. After constructing sequences (Nn)n≥1, (Rn)n≥1, (an)n≥1 according to
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Step 2, one now determines suitable proper intervals included in the ranges of
the random elements L̂(n)

i ’s, R̂(n)
i ’s for every n ≥ 1. As far as n = 1 is concerned,

one considers the tree a1 = (ν̂(1), î(1)). To satisfy (17), one can impose that

R̂
(1)
1 ∈ B

(1)
1 (δ

(1)
1 ) :=

[ 1

y1 + δ
(1)
1

,
1

y1

]

where the strictly positive δ(1)1 is determined at a latter time. To specify an
interval C(1)

1 (δ
(1)
1 ) for L̂(1)

1 , with a view to (2) one forces C(1)
1 (δ

(1)
1 ) to satisfy

L̂
(1)
1 ∈ C

(1)
1 (δ

(1)
1 ) :=

[(
1− 1

yα1

)1/α

,
(
1− 1

(y1 + δ
(1)
1 )α

)1/α]

= range of (1− xα)1/α as x varies in B(1)
1 (δ

(1)
1 ).

To single out an interval B(1)
2 (δ

(1)
1 ) for R̂(1)

2 , with a view to (17), L̂(1)
1 · R̂(1)

2 must
belong to [1/(y1+δ

(1)
1 ), 1/y1] for any value of L̂(1)

1 in C(1)
1 (δ

(1)
1 ), which is granted

if

R̂
(1)
2 ∈ B

(1)
2 (δ

(1)
1 ) :=

[ y1

(y1 + δ
(1)
1 )(yα1 − 1)1/α

,
y1 + δ

(1)
1

y1[(y1 + δ
(1)
1 )α − 1)]1/α

]

and this, in turn, allows the following specification

L̂
(1)
2 ∈ C

(1)
2 (δ

(1)
1 ) := range of (1 − xα)1/α as x varies in B(1)

2 (δ
(1)
1 ).

The procedure can be iterated to yield intervalsC(1)
1 (δ

(1)
1 ), B

(1)
1 (δ

(1)
1 ), . . . , C

(1)
N1−1(δ

(1)
1 ),

B
(1)
N1−1(δ

(1)
1 ) in such a way that (17) is met, with n = 1, whenever

(L̂
(1)
k , R̂

(1)
k )k=1,...,N1−1 ∈ ×N1−1

k=1

(
C

(1)
k (δ

(1)
1 )×B

(1)
k (δ

(1)
1 )

)
=: I1(δ

(1)
1 ).

Note that the validity of this last claim is granted by the way followed so far
to construct the above intervals. To complete the construction, it remains to
specify admissible values of δ(1)1 in such a way that (18) holds for n = 1. One
starts by noticing, in the notation of Step 1, that 1 = (

∑
j∈R1

+
∑

j /∈R1
)βα

j,N1
<

ε+(N1 − 1)/yα1 , which entails (N1 − 1)/yα1 > 1− ε. Taking h1 and η1 such that

0 < h1 <
N1 − 1

yα1
− 1 + ε and 0 < η1 < (1 + h1)

1/N1 − 1

one gets (L̂
(1)
k )α + (R̂

(1)
k )α ≤ 1 + η1 for every k = 1, . . . , N1 − 1 and hence∑N1

j=1(β̂
(1)
j,N1

)α ≤ (1 + η1)
N1 whenever δ(1)1 is sufficiently small and, in any case,

satisfies

δ
(1)
1 ∈

(
0,
( N1 − 1

(1 + η1)N1 − ε

)1/α

− y1

)
. (27)
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Moreover, thanks to (17),

∑

j /∈R1

(β̂
(1)
j,N1

)α ≥ |{1, . . . , N1} \ R1|
(y1 + δ

(1)
1 )α

=
N1 − 1

(y1 + δ
(1)
1 )α

whence

∑

j∈R1

(β̂
(1)
j,N1

)α =
(N1−1∑

j=1

−
∑

j /∈R1

)
(β̂

(1)
j,N1

)α ≤ (1 + η1)
N1 − N1 − 1

(y1 + δ
(1)
1 )α

< ε

where the last inequality follows from (27). At this stage, one can say that if

f1(Ŷ ) ∈ {a1} × I1(δ
(1)
1 )× (R

2
)∞

then (17) and (18) hold simultaneously with n = 1. Now, to verify that the
above assumption is non-empty, it is enough to use independence to prove that

P̂
(N1−1⋂

k=1

{
(L̂

(1)
k , R̂

(1)
k ) ∈ C

(1)
k (δ

(1)
1 )×B

(1)
k (δ

(1)
1 )

})

=

N1−1∏

k=1

P̂
{
(L̂

(1)
k , R̂

(1)
k ) ∈ C

(1)
k (δ

(1)
1 )×B

(1)
k (δ

(1)
1 )

}

≥
N1−1∏

k=1

P̂
{
(L̂

(1)
k , R̂

(1)
k ) ∈ Bρk

(xk, yk)
}

> 0 (in view of (2))

holds whenever Bρk
(xk, yk) is a suitable neighbourhood of radius ρk and center

(xk, yk) in Γ∩ (C
(1)
k (δ

(1)
1 )×B(1)

k (δ
(1)
1 )), with Γ := {(x, y) ∈ R2 : |x|α+ |y|α = 1}

and k = 1, . . . , N1 − 1. Coming back to the aim expressed at the beginning of
this section, in view of the previous arguments, the first term of the sequence
(An)n≥1 can be defined to be

A1 := f−1
1

(
{a1} × I1(δ

(1)
1 )× (R

2
)∞

)

which is a closed subset of M since f1 is continuous.
Step 4. This step deals with the case of n = 2. Starting from the same N1, N2,
R1,R2, a1 and a2 = (ν̂(2), î(2)) as in Step 1, one repeats for a1, seen as a subtree
of a2, the same intervals construction made in Step 2 with a suitable δ(2)1 , to be
determined at a latter time, in the place of δ(1)1 in such a way that δ(2)1 ≤ δ

(1)
1 .

As a consequence, one has

(L̂
(2)
k , R̂

(2)
k )k=1,...,N1−1 ∈ I1(δ

(2)
1 ).

Thus, in view of (17), R̂(2)
N1

has to satisfy

R̂
(2)
1 · R̂(2)

N1
∈
[ 1

y2
,

1

y2 − δ
(2)
2

]
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for every value of R̂(2)
1 in B(1)

1 (δ
(2)
1 ), with a positive δ(2)2 to be determined later.

This condition is satisfied if

R̂
(2)
N1

∈ B
(2)
N1

(δ
(2)
1 , δ

(2)
2 ) :=

[y1 + δ
(2)
1

y2
,

y1

y2 − δ
(2)
2

]

holds together with δ
(2)
1 < δ

(2)
2 y1/(y2 − δ

(2)
2 ). Like in Step 2 one forces L̂(2)

N1
to

satisfy

L̂
(2)
N1

∈ C
(2)
N1

(δ
(2)
1 , δ

(2)
2 ) := range of (1 − xα)1/α as x varies in B(2)

N1
(δ

(2)
1 , δ

(2)
2 ).

One can proceed this way to obtain a family of intervals
{
C

(2)
k (δ

(2)
1 , δ

(2)
2 ), B

(2)
k (δ

(2)
1 , δ

(2)
2 ) :

k = N1, . . . , N2 − 1
}

such that (17) is met for n = 2 if

(L̂
(2)
k , R̂

(2)
k )k=1,...,N2−1 ∈ I1(δ

(1)
1 )× I2(δ

(2)
1 , δ

(2)
2 )

with I2(δ
(2)
1 , δ

(2)
2 ) := ×N2−1

k=N1

(
C

(2)
k (δ

(2)
1 , δ

(2)
2 ) ×B

(2)
k (δ

(2)
1 , δ

(2)
2 )

)
. Moreover, argu-

ing as in the previous step, one sees that

P̂
{
f2(Ŷ ) ∈ {a1} × {a2} ×

(
I1(δ

(1)
1 )× (R

2
)∞

)

×
(
I1(δ

(2)
1 )× I2(δ

(2)
1 , δ

(2)
2 )× (R

2
)∞

)}

is strictly positive and whence one can set A2 := f−1
2

(
{a1} ×{a2}×

(
I1(δ

(1)
1 )×

(R
2
)∞

)
×

(
I1(δ

(2)
1 ) × I2(δ

(2)
1 , δ

(2)
2 ) × (R

2
)∞

))
. This way, A2 turns out to be a

closed subset of A1.
Step 5. This step extends the procedure to find An for any n. Here, one confines
oneself to analysing the case of odd n’s. In fact, when n is even, the way of
reasoning reduces to a simplified form of the odd case. Hence, let m be an odd
number and assume that (17) is satisfied for n = m− 1 if

fm−1(Ŷ ) ∈ {a1} × · · · × {am−1} ×
[
×m−1

k=1

(
×k

i=1 Ii(δ
(k)
1 ), . . . , δ

(k)
i )

× (R
2
)∞

)]
.

(28)

Starting from the sameN1, . . . , Nm, R1, . . . ,Rm, a1, . . . , am−1 and am = (ν̂(m), î(m))

as in Step 1, one replaces δ(m−1)
1 , . . . , δ

(m−1)
m−1 with smaller δ(m)

1 , . . . δ
(m)
m−1 in such a

way that, for a suitable δ(m)
m > 0, one may determine intervals C(m)

Nm−1
(δ

(m)
1 , . . . , δ

(m)
m ),

B
(m)
Nm−1

(δ
(m)
1 , . . . , δ

(m)
m ), . . . , C

(m)
Nm−1(δ

(m)
1 , . . . , δ

(m)
m ),

B
(m)
Nm−1(δ

(m)
1 , . . . , δ

(m)
m ) for which (17) holds true also for n = m, whenever

fm(Ŷ ) ∈ {a1} × · · · × {am} ×
[
×m

k=1

(
×k

i=1 Ii(δ
(k)
1 ), . . . , δ

(k)
i )× (R

2
)∞

)]
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with Im(δ
(m)
1 , . . . , δ

(m)
m ) := ×Nm−1

k=Nm−1

(
C

(m)
k (δ

(m)
1 , . . . , δ

(m)
m )×B(m)

k (δ
(m)
1 , . . . , δ

(m)
m )

)
.

At this stage, δ(m)
m has to be determined so that (18) is met. From Step 1, one

has 1 =
(∑

j∈Rm
+
∑

j /∈Rm

)
βα
j,Nm

< ε+ (Nm −Nm−1)/y
α
m. Reasoning like in

Step 2, one considers positive numbers hm and ηm satisfying

hm <
Nm −Nm−1

yαm
− 1 + ε and ηm < (1 + hm)1/Nm − 1

and chooses

δ(m)
m <

( Nm −Nm−1

(1 + ηm)Nm − ε

)1/α

− ym.

One can get (L̂(m)
k )α+(R̂

(m)
k )α ≤ 1+ηm for every k = 1, . . . , Nm−1 by reducing

δ
(m)
1 , . . . , δ

(m)
m if needed, and then

Nm∑

j=1

(β̂
(m)
j,Nm

)α ≤ (1 + ηm)Nm .

In view of (17),

∑

j /∈Rm

(β̂
(m)
j,Nm

)α ≥ |{1, . . . , Nm} \ Rm|
(ym + δ

(m)
m )α

=
Nm −Nm−1

(ym + δ
(m)
m )α

and hence, by definition of δ(m)
m ,

∑

j∈Rm

(β̂
(m)
j,Nm

)α ≤ (1 + ηm)Nm − Nm −Nm−1

(ym + δ
(m)
m )α

< ε.

Thus, (17)-(18) hold for n = m if

fm(Ŷ ) ∈ {a1} × · · · × {am} ×
[
×m

k=1

(
×k

i=1 Ii(δ
(k)
1 ), . . . , δ

(k)
i )× (R

2
)∞

)]
.

After noting that

P̂
{
fm(Ŷ ) ∈ {a1}× · · ·×{am}×

[
×m

k=1

(
×k

i=1 Ii(δ
(k)
1 , . . . , δ

(k)
i )× (R

2
)∞

)]}
> 0

one can choose

An := f−1
n

(
{a1} × · · · × {an} ×

[
×n

k=1

(
×k

i=1 Ii(δ
(k)
1 ), . . . , δ

(k)
i )× (R

2
)∞

)])

which is a closed subset of An−1.
Conclusion. The decreasing sequence (An)n≥1 constructed in the previous
steps is formed of non-empty closed subsets of the compact set M . Hence, as
granted by the finite intersection principle,

⋂
n≥1An is non-empty, and the proof

is completed by noting that Ŷ −1
(⋂

n≥1An

)
6= ∅ and that (17)-(18) hold for

every ω̂0 in Ŷ −1
(⋂

n≥1An

)
.
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Appendix B: Probability measures with symmetrized forms

attracted by a stable law

As told in the second last paragraph of Section 1, here is an example of p.d.f.
which does not belong to the s.d.a. of any α-stable law, whilst its symmetrized
form does. Let I and S be two positive real numbers such that I < S and let
c := (S + I)/2. One puts

GI(x) := 1− Ix−αI(1,+∞)(x)
GS(x) := 1− Sx−αI(1,+∞)(x)

and chooses s1 > 1. A continuous p.d.f. F is now defined as follows. At first, one
sets F (s1) := GS(s1). Then, one considers the derivative function f of F defined
by f(x) = kα/xα+1 for every x in (s1, i1), where k is a fixed number in (S, S+I)
and i1, greater than s1, satisfies F (i1) = GI(i1). Let s2 be the number, greater
than i1, which meets F (i1) = GS(s2), and let f(x) = 0 on (i1, s2). After 2(m−1)
repetitions of the process, one gets the point sm and one defines the derivative
on (sm, im) to be f(x) = kα/xα+1, where im > sm satisfies F (im) = GI(im).
In the next repetition, one sets f(x) = 0 on (im, sm+1), where sm+1 (> im)
meets F (im) = GS(sm+1). This way, F (x) is specified at every x in [s1,+∞)
and iαm(1− F (im)) = I, sαm(1− F (sm)) = S for every m ≥ 1, so that

lim inf
x→+∞

xα(1 − F (x)) = I < S = lim sup
x→+∞

xα(1 − F (x)). (29)

Now, one extends F to (−∞,−s1] by setting F (x) := 2c|x|−α − 1 + F (−x) for
every x ≤ −s1, and one completes the definition of F by interpolating linearly
on (−s1, s1). The resulting function F is a p.d.f. since the derivative of its
restriction to (−∞,−s1] is (2cα/(−x)α+1 − f(−x)) which is always positive.
Indeed, by construction, f(−x) ≤ (S + I)α/(−x)α+1 = 2cα/(−x)α+1 for every
x < −s1. On the one hand, gathering up all these remarks one can say that F
is a p.d.f. which, by virtue of (29), cannot belong to the s.d.a. of any α-stable
distribution. On the other hand, the symmetrized form F ∗ of F satisfies

xα(1− F ∗(x)) = 2c for every x ∈ [s1,+∞)

so that, on the difference of F , F ∗ belongs to the s.d.a. of an α-stable distribu-
tion.
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