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KPI Guarantees in Network Slicing
Jorge Martı́n-Pérez, Member, IEEE, Francesco Malandrino, Senior Member, IEEE,

Carla Fabiana Chiasserini, Fellow, IEEE, Milan Groshev, Member, IEEE, Carlos J. Bernardos

Abstract—Thanks to network slicing, mobile networks can now

support multiple and diverse services, each requiring different

key performance indicators (KPIs). In this new scenario, it is

critical to allocate network and computing resources efficiently

and in such a way that all KPIs targeted by a service are met.

Accounting for all sorts of KPIs (e.g., availability and reliability,

besides the more traditional throughput and latency) is an aspect

that has been scarcely addressed so far and that requires tailored

models and solution strategies. We address this issue by proposing

a novel methodology and resource orchestration scheme, named

OKpi, which provides high-quality decisions on VNF (Virtual

Network Function) placement and data routing, including the

selection of radio points of attachment. Importantly, OKpi has

polynomial computational complexity and accounts for all KPIs

required by each service, and for any resource available from

the fog to the cloud. We prove several properties of OKpi and

demonstrate that it performs very closely to the optimum under

real-world scenarios. We also implement OKpi in a testbed

supporting a robot-based, smart factory service, and we present

some field tests that further confirm the ability of OKpi to make

high-quality decisions.

Index Terms—Network slicing, Network function virtualiza-

tion, Service orchestration, multidimensional graphs.

I. INTRODUCTION

Network slicing is a powerful concept that paves the way
to the support of multiple, diverse vertical services in mobile
networks. Vertical industries, such as automotive, e-health, and
smart factories, can define the services to offer to mobile users
through a set of virtual network functions (VNFs), connected
according to the so-called VNF graph, and a set of per-
formance requirements, i.e., the Key Performance Indicators
(KPIs). The mobile network is then in charge of deploying
and running such services, i.e., of placing and connecting the
VNFs using suitable computing and network resources1.

Importantly, the above task implies the selection of the radio
points of attachment (PoAs) and the use of resources that may
span from the cloud to the edge of the network infrastructure
(including multi-access edge computing (MEC)), to the fog
(e.g., connected cars and robots). Also, it is critical that VNFs
are placed and connected, so as to (i) meet the target KPI
values, (ii) make an efficient use of the different available
resources, thus avoiding resource shortage, and (iii) minimize
the service deployment cost, one of the main concerns for both
mobile operators and vertical industries [2]–[5].
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A preliminary version [1] of this work has been presented at the IEEE
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1We focus on computing and networking resources, however our approach
can handle memory and storage as well.

Fig. 1. As per geographical availability requirements, a mobile robot, smart
factory service must be provided within the yellow areas, with high reliability
and low latency. This can be obtained by deploying: (a) service instances
at the robots (fog resources), at lower cost but also lower reliability, hence,
needing redundancy to meet reliability constraints (orange option); (b) three
instances at the points of attachment (PoA), e.g., access points (APs), covering
the target areas (edge resources, blue option); (c) deploying only one instance
in the cloud, but with larger delay (green option).

Although several works have already addressed the VNF
placement problem (see Sec. VII for a detailed discussion),
the variety of KPIs introduced by 5G poses some relevant
challenges that still need to be solved. Such KPIs are indeed
both diverse and heterogeneous over different services, as well
depicted by the ubiquitous ITU “pyramid” [6]: diverse as,
for instance, the latency requirements of different use cases
can vary by several orders of magnitude, while heterogeneous
reflects the fact that 5G introduces several new performance
metrics, including service availability (in both space and time)
and service reliability, as exemplified in Fig. 1. Satisfying
all the relevant KPIs through an efficient resource allocation
thus requires casting the problem into a new formulation and
envisioning a totally new solution.

Additionally, existing studies have tackled to a limited
extent specific aspects of network slicing, including (i) the
possibility that already-deployed VNF instances can be reused
for newly requested services, with [7] only accounting for
cost, (ii) the opportunity of combining cloud- and edge-
based services (with the exception of [8], which however
only deals with caching), and (iii) the need to make decisions
on how to place and connect VNFs, thus jointly addressing
VNF placement and data routing ([9]–[12] do so, but without
considering PoAs or VNF re-usage, and under some limiting
assumptions, e.g., on the number of VNF instances). Overall,
extending existing solutions to account for all 5G KPIs and the
need for an efficient and low-cost resource utilization, would
not be trivial and would, in general, jeopardize the complexity
and/or competitive ratio properties of such solutions.

In this work, we propose a novel methodology to model
the system, as well as the main features of network slicing.
Exploiting such methodology, we develop OKpi, an effi-
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cient solution that can create high-quality, end-to-end network
slices. Specifically, our main contributions are as follows:

(i) we develop a system model that captures the main as-
pects of Network Function Virtualization (NFV)-based
networks and can represent the availability of resources
at different layers of the network topology, namely, cloud,
edge, and fog, as well as the fact that existing VNF
instances can be reused for newly-requested services2;

(ii) we formulate an optimization problem that minimizes
the resource cost, while meeting all target KPIs. We
prove that the problem is NP-hard, and propose the
OKpi solution, which has instead polynomial complexity.
Leveraging a graph-based representation of the available
resources, the possible decisions, and their impact on
the KPIs, our scheme can make joint decisions on VNF
placement and traffic routing that minimize the resources
cost, by applying a shortest path algorithm over a multi-
dimensional graph. Importantly, such a graph can be built
with different levels of detail and size, which results into
a tuneable trade-off between computational complexity
and decision quality;

(iii) we analyze the properties of our solution and, through
numerical results derived under real-world automotive
and robot scenarios, we show that OKpi closely matches
the optimal performance. Furthermore, we show its func-
tionality by implementing it in a testbed supporting a
mobile robot, smart factory service.

The rest of the paper is organized as follows. We introduce
the system model in Sec. II, and the problem formulation
in Sec. III. The OKpi solution and algorithm are described
in Sec. IV, where we also prove several properties of OKpi
and discuss its computational complexity. Sec. V shows the
performance of our solution through simulations in both small-
and large-scale scenarios referring to 5G use-cases, while
Sec. VI presents some field tests obtained through a real-
world testbed. Finally, we review related works in Sec. VII
and conclude the paper in Sec. VIII.

II. SYSTEM MODEL

Our model concisely describes the two main components
of mobile, slicing-based networks: the services they support
(Sec. II-A), and the computing and network resources they
include (Sec. II-B). Each of them is modeled through a graph
– the service graph and the physical graph, respectively. We
then describe how such graphs can be combined in Sec. III-C.
Further, we consider that a monitoring platform is in place,
with the aim to periodically monitor both the service perfor-
mance and the status of the system resources. In the following,
we denote the generic time interval over which the system
metrics are periodically monitored by t, and the set of such
intervals by T . The notations used throughout the paper are
also summarized in Tab. I.

2This is feasible if services share a common subset of VNFs and no service
isolation constraints exist.

TABLE I
NOTATION TABLE

Symbol Type Meaning

T = {t} Set Set of time intervals
S = {s} Set Set of vertical services
V = {v} Set Set of VNFs
A = {↵} Set Set of locations
E = { } Set Set of endpoints
C = {c} Set Set of network nodes
K = {} Set Set of resources
I = {i} Set Set of radio interfaces
L = {(i, j)} Set Set of physical links
W = {w} Set Set of strings/paths
k(, c) Parameter Quantity of  resources at node c

r(v) Parameter Quantity of  resources required by VNF v
to process a unit of traffic

Ri(c) Parameter Whether node c is equipped with
radio interface i

Di,j Parameter Delay of link (i, j)
Ci,j Parameter Traffic capacity of link (i, j)

⌘(c, t), ⌘(i, j, t) Parameter Reliability of node c and
link (i, j) at time interval t

l( , v1, v2) Parameter Traffic originated at ⇡, processed last at v1,
before being processed at v2

�(v1, v2, v3) Parameter Fraction of traffic processed at v1, currently
processed at v2, latter processed at v3

⇢(v, c) Variable Whether node c hosts VNF v

ac( , v,) Variable Quantity of  resources assigned to VNF v
at node c to process traffic from  

f̂c( , v1, v2) Variable Fraction of flow l( , v1, v2) processed at
VNF v in node c

pi,j( , v1, v2) Variable
Traffic from  , traversing link (i, j),
processed at v1, latter processed by
v2 at node j

ti,j( , v1, v2) Variable
Traffic originated at  , last processed at
v1, just transiting link (i, j),
and to be processed by v2

pi,j( , v1, v2, w) Variable Processing traffic pi,j( , v1, v2)
traversing string w

ti,j( , v1, v2, w) Variable Transiting traffic ti,j( , v1, v2)
traversing string w

f( , v1, v2, w) Variable Fraction of service flow l( , v1, v2)
traversing string w

�c( , v)
Auxiliary
Variable

Quantity of traffic originated at  and
processed by v at node c

⌧i,j( , v1, v2)
Auxiliary
variable

Traffic originated at  , traversing
link (i, j), last processed at v1,
and to be processed by v2

⌧i,j( , v1, v2, w)
Auxiliary
variable

Traversing traffic ⌧i,j( , v1, v2)
traveling over string w

A. Services

A vertical service s 2 S is described through a service
graph where vertices are VNFs, v 2 V , and edges specify
in which order the VNFs should process the related data
traffic (i.e., how data shall be routed from a VNF instance
running on a network node to the next). Note that VNFs can
also represent database-related functionalities [13], requiring
storage resources: like other VNFs, they must be placed on a
node and consume resources therein. An example of service
graph for a mobile robot, smart factory use case3 is depicted
in Fig. 2(left).

A service s is associated with one or more KPIs, namely,
• the required bandwidth, or expected traffic load l to be

transferred and handled by the VNFs composing the service;
• the maximum allowed delay D(s);
• the minimum level of reliability H(s);
• the required geographical availability at a subset of lo-

cations, A(s) ✓ A, where A = {↵} represents the set

3http://wiki.ros.org
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Fig. 2. Service (left) and physical (right) graphs corresponding to the example
in Fig. 1. In the mobile robot, smart factory graph, each robot transmits its
sensors data to the LADAR and the the Robot OS (ROS) brain. The former
provides a probabilistic localization of the robots, the latter leverages such a
localization and the sensors data to control the robots. Messages are transferred
through the Mobile Communication Transport (MCT), e.g., a virtual AP. In
the service graph, vertices are endpoints (yellow) or VNFs (purple), edges
are directed and correspond to flows l. In the physical graph, vertices are
endpoints in E or nodes in C, and edges are undirected and represent links
in L. Colors correspond to those in Fig. 1 and refer to the different resource
locations: fog (orange), edge (blue), cloud (green).

of all possible locations in the considered region. As an
example, A(s) can represent the urban intersections where
an automotive vertical wants to provide a safety service,
or the areas where robots should move within a warehouse
(Fig. 1). We refer to the combination of a service and a
location as an endpoint  = (↵, s) 2 E ✓ A⇥ S;

• the lifetime (or temporal availability) '( ) ✓ T , corre-
sponding to a subset of all time intervals T during which
the service must be available at endpoint  .

As foreseen by standards [14], services may be associated with
one or more of these requirements, i.e., not all KPIs have to be
specified for all services. Also, without loss of generality, we
consider that the traffic associated with a service is generated
at endpoint  and has to be processed by the VNFs in
the service graph; in Fig. 2(left), this would correspond to
uplink data transfers. Note however that, as discussed later,
our model is general and can also capture downlink as well
as bidirectional traffic patterns.

The quantity of traffic originated at endpoint  2 E , that
has been processed last at VNF v1, and will be next processed
at VNF v2 is denoted by l( , v1, v2) (with l( , v, v) being
the traffic that will be processed for the first time at v).
After a traffic flow is processed at a VNF, the outgoing
traffic can increase, decrease, or be split among several other
VNFs, according to the service graph. Parameters �(v1, v2, v3)
express the fraction of the traffic that was last processed (or
originated) at v1 2 V [ E , that is currently processed at v2,
and that will next be processed at v3. For instance, if v2 is a
deep packet inspector, �(v1, v2, v3) = 1; but if v2 is a firewall,
then �(v1, v2, v3)  1.

B. Radio coverage and Fog/Edge/Cloud resources
Network nodes, with switching or computing capabilities,

are denoted by c 2 C, while endpoints, which are origins
or destinations of service traffic, are denoted by  2 E .
Nodes may be equipped with different resources, e.g., CPU
or memory; the set of resources is identified by K = {}.
The quantity of resource type  available at node c is specified

through parameters k(, c), hence, k(, c) = 0 8 for pure net-
work equipment like traditional, non-software, switches. Also,
binary parameters Ri(c) express whether node c is equipped
with radio interface i 2 I or not. A radio interface available
at node c determines which locations, hence endpoints, node
c covers – an important feature of fog and edge nodes.

Radio coverage, fog, edge, and cloud resources can then
be represented through a physical graph whose vertices are
the network nodes and the endpoints, and the edges (i, j) 2
L ✓ (C [ E)2 represent the physical links connecting them,
as per the network topology and the coverage provided by the
radio interfaces. Each edge (i, j) is associated with delay Di,j

and traffic capacity Ci,j . Also, we denote the reliability level
of any node c and link (i, j) monitored over a time interval
t 2 T , by ⌘(c, t) and ⌘(i, j, t), respectively. Specifically, these
quantities express the probability that a specific node or link
works as intended by averaging their behavior over t 2 T ,
thus accounting for the time-varying quality of communication
links involving fog nodes, e.g., robots or cars. We remark
that, in general, all the parameters introduced above may differ
across fog, edge, and cloud resources.

C. Service support over the physical graph

To express whether a node c in the physical graph hosts
VNF v, we introduce a binary variable, ⇢(v, c) 2 {0, 1}.
Variables ac( , v,), instead, express the quantity of resources
of type  assigned to that VNF v at node c and used to process
traffic generated at endpoint  .

We also introduce variables ⌧i,j( , v1, v2) representing the
flows over the physical graph, or, more specifically, the
traffic originated at  2 E , traversing (i, j) 2 L, last
processed at v1, and to be next processed at v2. Such traf-
fic can be either processed at j, or just transiting through
j; these two options are described through the two real
variables pi,j( , v1, v2) and ti,j( , v1, v2), and by imposing:
⌧i,c( , v1, v2) = pi,c( , v1, v2) + ti,c( , v1, v2).

Further, to handle the service KPIs more easily, we define
a string, w 2 W , over the physical graph as a sequence of
physical links traversed by a flow, with the first component of
the string being an endpoint. Similarly to [15], the possible
strings can be pre-computed and stored for later usage. Since
a service flow can be split across different strings, we define
f( , v1, v2, w) as the fraction of service flow l( , v1, v2)
traversing string w. Clearly, such fractions must sum to 1.

The string-wise equivalents to ⌧i,j( , v1, v2), ti,j( , v1, v2),
and pi,j( , v1, v2) are then ti,j( , v1, v2, w) and
pi,j( , v1, v2, w), respectively. Specifically, ⌧i,j( , v1, v2, w)
represents the traffic of service flow l( , v1, v2) traversing
link (i, j) on its journey through string w 2 W , and then
we impose ⌧i,j( , v1, v2) =

P
w2W ⌧i,j( , v1, v2, w). Similar

definitions and conditions hold for ti,j( , v1, v2, w) and
pi,j( , v1, v2, w).

Furthermore, the fraction of service flow over a certain
string w must match the physical traffic on the corresponding
links, i.e., for all endpoints, VNFs v1 and v2, links, and strings,
we have: f( , v1, v2, w)l( , v1, v2) = ⌧i,j( , v1, v2)1w(i,j),
where 1w(i,j) denotes that link (i, j) 2 L belongs to w.
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Now that we have defined the string-related variables, we
provide an expression for the latency and reliability KPIs of
a service as set forth below.

The service latency comprises of network delay, due to
traffic traversing links and switches, and processing times
at the nodes hosting VNF instances. Given endpoint  , the
average network delay can be computed as the weighted sum
of the delays associated with the individual strings taken by
the traffic originated at  :

dnet( ) =
X

w2W

X

v1,v22V
f( , v1, v2, w)

X

(i,j)2w

Di,j . (1)

As for the processing time, let f̂c( , v1, v2) be the frac-
tion of the service traffic flow l( , v1, v2) processed at the
instance of VNF v2 located at node c. Then the quantity of
traffic �c( , v2) originating at  and processed at the instance
of v2 in c is:

�c( , v2) =
X

v12V
f̂c( , v1, v2)l( , v1, v2).

Note that such traffic may come from different physical links.
Next, we model VNF instances as M/M/1-PS queues (see,

e.g., [16]–[18]); the choice of the processor sharing (PS) policy
closely emulates the behavior of a multi-threaded application
running on a virtual machine. The total processing time at
the instance of v2 deployed at node c can thus be written as:
1/(ac( , v2, cpu)�rcpu(v2)�c( , v2)), with rcpu(v2) denoting
the amount of CPU needed by VNF v2 to process one unit
of traffic. Summing over all flows, the total processing delay
incurred by traffic originating at  is given by:

dproc( )=
X

v1,v22V,c2C
f̂c( , v1, v2)

1

ac( , v2, cpu)� rcpu(v2)�c( , v2)
.

(2)
Finally, notice that the reliability of a string can be com-

puted as the product between the reliability values of all links
and nodes belonging to it.

III. PROBLEM FORMULATION

In this section, we formalize the problem of creating end-
to-end network slices that meet all the required KPI targets
(Sec. III-E) while minimizing the total cost (Sec. III-F).
First, we introduce the system constraints related to service
processing, data routing, and KPI fulfillment. The problem
complexity is then discussed in Sec. III-G.

A. Flow conservation on the service graph
First, as remarked by the example on the �(·) values, we

note that there is no flow conservation on the service graph.
Instead, the following generalized flow conservation law holds:

l( , v2, v3) =
X

v1: v1 6=v2

l( , v1, v2)�(v1, v2, v3)

+ l( , v2, v2)�( , v2, v3), 8v2, v3 2 V : v2 6= v3 . (3)

The intuitive meaning of (3) is that either traffic traveling from
VNF v2 to VNF v3 must come from another VNF v1 and then
it is transformed in v2 according to the �-coefficients (first
term of the second member), or it has just originated at  and
is processed for the first time at v2 (second term).

B. Flow conservation and link capacity on the physical graph

The traffic going out of node c must be equal to the sum
of that transiting through c and that just processed at c, i.e.,

X

(c,h)2L

⌧c,h( , v2, v3)=
X

(i,c)2L

h
ti,c( , v2, v3)+pi,c( , v2, v2)·

�( , v2, v3) +
X

v12V
pi,c( , v1, v2)�(v1, v2, v3)

i
. (4)

Finally, each physical link (i, j) cannot carry more traffic
than its capacity, i.e.,

P
e

P
v1,v2

⌧i,j( , v1, v2)  Ci,j .

C. Deploying VNFs and assigning resources

Given a set of VNFs, each consuming an amount of re-
sources ac( , v,) of type  at node c, we have to impose
that the node capabilities are never exceeded, i.e., for any c
and ,

P
 2E

P
v2V ac( , v,)  k(, c).

Importantly, for any  2 K, the quantity of traffic pro-
cessed by v at node c cannot exceed the ratio between the
quantity ac( , v,) of resource type  assigned to the VNF,
and the quantity r(v) of resource type k needed by VNF v
to process one unit of traffic, i.e.,

X

(i,c)2L

X

 2E

X

v12V
pi,c( , v1, v2) 

ac( , v2,)

r(v2)
8 2 K .

(5)
Also, node c’s resources can be assigned to a VNF v only
if the latter is deployed therein: ac( , v,)  ⇢(v, c)k(, c),
for any c, , and v. These conditions imply that no traffic is
processed at a node where no instance of a VNF is deployed.

Last, we ensure that VNFs are placed only at nodes where
all the needed radio interface(s) are available, e.g., a Mobile
Communication Transport (MCT) may work only at nodes
equipped with specific radio interfaces. Thus, for any node
c, interface i, and VNF v, we have: ⇢(v, c)ri(v)  Ri(c),
where ri(v) 2 {0, 1} are parameters specifying whether
interface i is needed by VNF v, and Ri(c) specifies whether
such an interface is available at c.

D. Matching service and physical flows

Since our system model includes two graphs, a service graph
and a physical graph, we must ensure that service flows l and
physical flows ⌧ match. To this end, we impose that the flow
entering the first VNF of a service graph corresponds to one
or more traffic flows on the physical graph:

l( , v, v) =
X

( ,c)2L

⌧e,c( , v, v), 8 2 E , v 2 V. (6)

Once (6) is met, then (3) and (4) ensure that the traffic on
subsequent links is processed as specified by the �-parameters.

E. Meeting service KPIs

1) Service latency: the latency experienced by a service
s is given by the sum of the network delay (as in (1))
and the processing time (as in (2)). Recalling that D(s) is
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the maximum target delay for service s, the service latency
constraint for its endpoints can be stated as:

dnet( ) + dproc( )  D(s), 8 2 E .

Note that the relationship between assigned CPU and process-
ing time in the expression of dproc( ) also means that the CPU
has a different role from the other types of resources. Indeed,
for resources other than CPU, we can assign to each VNF
instance exactly the amount needed to honor (5), as a greater
amount would yield no benefit. With CPU, instead, there is
an additional degree of freedom we can play with: assigning
more CPU results in shorter processing times, but higher costs.

2) Service geographical availability: by service availability
requirements, all locations in A(s) ✓ A must be covered by
service s. In other words, for all endpoints  = (↵, s) : ↵ 2
A(s), there must be a link ( , c) on the physical graph to a
node c that is equipped with a radio interface covering ↵ and
that runs (or it is connected to another node running) the first
VNF of the service graph.

3) Service reliability and temporal availability: We can en-
sure that at every monitoring slot the reliability H(s) required
for service s is honored by considering a weighted sum of the
per-string reliability values. In symbols, 8 2 E , t 2 '( ),
Y

v1,v22V

X

w2W
f( , v1, v2, w)

Y

(i,j)2w

⌘(j, t)⌘(i, j, t) � H(s) .

Note that imposing the above constraint for every monitoring
slot during the service lifetime also ensures that the service
target temporal availability is met.

F. Objective

As mentioned in Sec. I, cost is one of the main concerns
related to service virtualization and network slicing. Such cost
mainly comes from using network and computation resources.
To model this issue, we define:
• a fixed cost cc(v), due to the creation at node c of a VNF

instance v; this cost is null if an existing VNF instance can
be reused;

• a cost cc(), incurred when using a unit resource  at node c;
• a cost ci,j , incurred when one unit traffic traverses link (i, j).

Then, upon receiving a request to deploy a service instance
s, we formulate the following cost-minimization problem:

min
X

c

X

v

"
cc(v) +

X

e

X



cc()ac( , v,)

#

+
X

(i,j)

X

e

X

v1,v2

ci,j⌧i,j( , v1, v2)

subject to the constraints reported in Secs. III-A–III-E.
We recall that the endpoints  to consider depend on

the service and on its geographic availability requirements,
while the VNFs are those specified by the service graph.
Furthermore, a solution to the above problem will always opt
for reusing an existing instance of a VNF, whenever possible,
as this would nullify the instantiation cost cc(v).

G. Nature and complexity of the problem

The problem of jointly making VNF placement and data
routing decisions is notoriously hard, even when only one KPI
is considered [5], [16], [19]. We now prove through a reduction
from bin-packing the complexity of the problem described
in Sec. II, showing that directly solving such a problem is
impractical for all but very small instances.

Theorem 1. The VNF-placement and data routing problem
described in Sec. II is NP-hard.

Proof: To prove the thesis, we need to reduce an NP-
hard problem to VNF-placement in polynomial time. Let us
consider bin-packing, which is known to be NP hard [20]:
given a set of items weighting !i each, we have to place them
throughout a set of bins, each having size �b, using as few
bins as possible. We transform a bin-packing instance into a
corresponding VNF placement one, by considering:

• one single VNF v and one single location;
• infinite-capacity, zero-cost, zero-delay, unitary-reliability

links;
• as many nodes as there are bins, also with unitary reliability;
• the CPU available at each node is the same as the size of

the corresponding bin;
• one single location and as many services (hence, endpoints)

as there are items;
• all services include only one VNF, i.e., VNF v;
• the traffic l( , v, v) and the target delay D(s) of each service

are such that it requires !i CPU units to process the service
traffic in time, i.e., 1

!i�l( ,v,v)rcpu(v)
= D(s);

• all costs are set to zero, except for the VNF creation
costs cc(v), which can be set to any positive value.

In this case, VNF placement and bin-packing decisions are
equivalent: the former places VNFs in nodes, the latter places
items in bins. The size of bins corresponds to the capacity
needed by the VNF instances, and minimizing the cost is
tantamount to minimizing the number of bins. The translation
from bin-packing to the above simple VNF placement (with
only one VNF, single-VNF services, and uniformly-priced
nodes) takes polynomial (indeed, linear) time, hence, we
can conclude that VNF placement is (at least) as hard as
bin-packing, i.e., NP-hard. Additionally, due to the infinite-
capacity, zero-cost, zero-delay, unitary-reliability links, any
data routing solution would be optimal. This suggests that, in
practice, solving to optimality the problem described in Sec. II
would be substantially harder than bin-packing.

We also observe that our problem can be seen as a more
complex version of a multi-constrained path (MCP) problem,
where the cost (hence, the weight of the edges in the MCP
graph) changes at every hop. Although known solutions to the
MCP problem, e.g., [21], are not applicable, such a similarity
motivates us to propose an effective and efficient heuristic,
called OKpi, for which we can prove that:

• it provides high-quality VNF placement and data routing
decisions, with guaranteed feasibility;

• such decisions are made in polynomial time;
• under mild homogeneity assumptions, decisions are optimal;
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Fig. 3. The main steps of the OKpi solution concept.

• in the general case, decisions can be arbitrarily close to the
optimum.

IV. THE OKPI SOLUTION

Our solution includes four main steps, as summarized in
Fig. 3. First, we combine the physical graph, the service
graph, and KPI targets into a decision graph eG = ( eN, eE),
summarizing the service deployment decisions that can be
made and their effect on the KPIs (Sec. IV-A). Then we
translate this graph into an expanded graph, and use the latter
to identify a set of feasible decisions as well as to select,
among them, the lowest-cost one (Secs. IV-B and IV-C).

For clarity, we present OKpi in the case where the service
graph is a chain with uplink traffic starting from an endpoint  ,
and including N VNFs v1 . . . vN , each requiring only one
instance. As discussed in Sec. IV-D, all such limitations can be
dropped: OKpi works with arbitrary service graphs requiring
any number of instances for each VNF.

A. The decision graph

Given the physical graph modeling the service endpoints
and the fog, edge, and cloud resources, we build the deci-
sion graph eG with the aim to represent the possible service
deployment decisions and their effects on the service KPIs.

As a preliminary step, we consider the computation-capable
nodes in the physical graph (hence, a subset of C), and
for each of them we create (|V| � 1) replicas. Consistently,
we create auxiliary edges (i) connecting each node c and
its replicas in a chain fashion, and assign them zero delay,
infinite capacity, and reliability 1, and (ii) connecting any
replica of c with any computing node d, for which a link
(c, d) 2 L exists. Crucially, introducing node replicas enables
us to account for the possibility to deploy multiple VNFs at
the same computation-capable node without introducing self-
loops in the decision graph. Indeed, as it will be more clear
later, given that a VNF is placed in c, each replica thereof
represents the possibility to deploy the next VNF again in c.

Let then eG = ( eN, eE) be the decision graph where:
• eN includes the endpoints in E , and the computation-capable

nodes in the physical graph as well as their replicas;
• eE is the set of (i) the aforementioned auxiliary links, and

(ii) the virtual links (i.e., single physical links or sequences
thereof) connecting the vertices in eN .

Every edge (ñ1, ñ2) in eE representing a virtual link has the
following properties:

• its capacity eCñ1,ñ2 is set to the minimum of the individual
capacities of the physical links composing the virtual link;

• its delay eDñ1,ñ2 is set to the sum of the individual delays
of the physical links composing the virtual link;

• its reliability e⌘ñ1,ñ2 is set to the product of the reliability
values of physical links and nodes (both computation and
pure-routing capable) included in the virtual link.
Let us now consider the additive KPIs and, for simplicity,

let us focus on two of them, e.g., delay and reliability. To
any edge (ñ1, ñ2) in the decision graph, we assign a multi-
dimensional weight w̃(ñ1, ñ2), defined as:

w̃(ñ1, ñ2) =

 
eDñ1,ñ2

D(s)
,
log e⌘ñ1,ñ2

logH(s)

!
. (7)

The intuition behind (7) is that the weight of edge (ñ1, ñ2)
corresponds to the fraction of the target delay and reliability
that will be “consumed” by taking that edge, i.e., by deploying
a VNF at ñ1 and the subsequent one at ñ2. We stress that
using logarithms in the second term of the weight allows
us to translate a multiplicative performance index (namely,
reliability) into an additive one4.

We stress that, when some services are already active in the
network, we build the decision graph considering the residual
capabilities of physical links and nodes, i.e., those not assigned
to already-running services. Similarly, in case of virtual links
sharing the same physical links, their capacity is updated as
traffic is allocated to the physical links.

B. The expanded graph: finding decisions honoring availabil-
ity and additive KPIs

Given the decision graph eG, our first purpose is to identify a
set of feasible service deployment decisions that are consistent
with the target KPIs. To this end, as a preliminary step,
we ensure to meet the service geographical and temporal
availability requirements by pruning from eG the vertices and
edges that do not satisfy such constraints.

Next, we take an approach inspired by [21] and build a
multi-dimensional, expanded graph, with as many dimensions
as the number of additive KPIs. Specifically, given a positive
integer value of resolution �:
1) for each vertex ñ in the decision graph, we create as many

corresponding vertices as (� + 1)2, where the exponent 2

4It is easy to see that e⌘ñ1,ñ2e⌘ñ2,ñ3 � H(s) translates into
log e⌘ñ1,ñ2
logH(s) +

log e⌘ñ2,ñ3
logH(s)  1.
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Fig. 4. Decision graph (top) and expanded graph (bottom) when only delay
is considered as a KPI and � = 3. In the decision graph, edges (ñ1, ñ2)
and (ñ2, ñ3) have delay of 1 ms, while (ñ1, ñ3) has delay of 2 ms (vertices
representing replica nodes are omitted for simplicity); the target delay is 3 ms.

corresponds to the number of additive KPIs. We denote
such vertices by ñd where d is a vector with as many
integer elements as the number of additive KPIs and the
value of such elements ranges between 0 and �, i.e., ñd =
ñ0,0, ñ0,1 . . . , ñ0,� . . . , ñ�,� ;

2) for every edge (ñ1, ñ2) 2 eE with capacity eCñ1,ñ2

greater or equal to the amount of traffic to process,
create directed edges from each vertex ñi,j

1 to ver-
tex ñi+d�w(ñ1,ñ2)[0]e,j+d�w(ñ1,ñ2)[1]e

2 (if such a vertex ex-
ists), where the two superscripts refer to delay and reli-
ability, respectively. For example, with � = 1, if edge
(ñ1, ñ2) has weight w̃(ñ1, ñ2) = (0.1, 1.5) and enough
traffic capacity, there will be a directed edge from ñ0,0

1 to
ñ1,2
2 , but not from ñ0,0

1 to ñ0,1
2 .

We stress that the expanded graph has no weights on its
edges: the delay and reliability information that is expressed
by weights in the decision graph is now represented by the
topology of the expanded graph. A one-dimensional (i.e., one-
KPI) example of decision graph and corresponding expanded
graph is depicted in Fig. 4.

Finally, we identify a set of possible service deployments,
i.e., VNF-to-compute node assignments and the corresponding
data routing. We do so by looking for the shortest paths in the
expanded graph that (a) begin at endpoints, and (b) contain
as many edges as there are VNFs to place. We underline that
the latter is trivially required by the need to deploy all VNFs
on the service graph, and by the fact that placing more VNFs
at a physical node is allowed thanks to the replica nodes and
auxiliary edges, as discussed in Sec. II-B.

In the following, we make several fundamental remarks on
the expanded graph and on the paths, hence, the deployment
decisions they correspond to. Given KPI, we define as depth
of a vertex in the expanded graph the value of the element
in the superscript corresponding to the KPI. Note that, by
construction (see point 1 above), the maximum value of depth
is �. Also, let the steepness of an edge be the difference in

depth between its target and source vertices. Considering the
one-KPI example in Fig. 4(bottom), vertex ñ0

1 has depth 0,
vertex ñ2

3 has depth 2, and the edge between the two has
steepness 2� 0 = 2, i.e., equal to d�w(ñ1, ñ3)e.

By construction, for a given KPI, the ratio between the
steepness of an edge and � is greater or equal to the weight
component on the corresponding edge of the decision graph,
which in turn is the fraction of the KPI target values consumed
by making that decision (see (7)). As an example, considering
edge (ñ0

1, ñ
2
3) in Fig. 4(bottom), we have:

steepness
�

=
2

3
� w(ñ0

1, ñ
2
3) =

Dñ1,ñ3

D(s)
=

2

3
. (8)

The observations above allow us to state a very relevant
property of the decisions corresponding to the paths on the
expanded graph.

Lemma 1. The decisions corresponding to any path on the
expanded graph honor all additive KPIs.

Proof: By definition, the depth of a vertex corresponds
to the total steepness of the path required to reach it from
endpoint  . Given that the maximum depth in the expanded
graph is �, there is no path with total steepness5 greater
than �. Thanks to the relation between weight and KPI targets
(exemplified in (8)), this implies that, given a path on the
expanded graph, the sum of the weights of the corresponding
edges in the decision graph cannot exceed 1, i.e., the corre-
sponding decisions honor additive KPIs (including, thanks to
the logarithmic weights, reliability).

Importantly, the smaller the resolution �, the fewer the
possible values of depth and steepness in the expanded graph,
the fewer the levels of consumption of the KPI target values
we are able to distinguish, which corresponds to introducing
an error, akin to quantization. Indeed, �+1 can be seen as the
number of quantization levels6 we admit: in the extreme case
of � = 1, all edges would have a steepness of 1, which also
corresponds to exhausting the whole KPI target in one hop.
Such a quantization error may lead to discarding some feasible
solutions, and thus, in the most general case, may jeopardize
the optimality of OKpi. However, two important facts stand
out: (i) even enumerating all feasible paths in the decision
graph is NP-hard, as proven in [21], hence, quantization is
necessary; (ii) by increasing �, OKpi can get arbitrarily close
to the optimum (at the price of higher complexity).

Last, we remark that all paths on the expanded graph honor
additive KPIs constraints, with the possible exception of delay.
Indeed, unlike other KPIs, whether or not the delay target
is violated depends not only on the network latency, hence,
the VNF placement, but also on the processing time, i.e., the
quantity ac( , v, cpu) of CPU assigned to each VNF, which
in turn impacts the deployment cost. We can account for this
important aspect thanks to the M/M/1-PS model used for
(2). In particular, below we show how to determine, given
a possible deployment, whether there is a CPU assignment
consistent with the target delay, and the cost thereof.

5The steepness of a path should be not confused with the length of a path.
6Using logarithms for reliability values, which are all typically very close

to 1, is akin to performing adaptive quantization.
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C. Minimizing the cost
We now need (i) for every path found in Sec. IV-B, to

identify the minimum-cost CPU assignment, i.e., the optimal
values of the ac( , v, cpu) variables – if such an assignment
exists –, and (ii) to determine the path that minimizes the
overall cost.

To this end, for each path, hence, for a fixed  and for
VNFs v1 . . . vN to be deployed at computing nodes ñ1 . . . ñN ,
respectively, we solve the following problem:

min
X

ñ,v

añ( , v, cpu)cñ(cpu) s.t. (9)

X

ñ1,ñ2

✓
Dñ1,ñ2+

1

añ2( , v2, cpu)�rcpu(v2)�ñ2( , v2)

◆
D(s),

as well as to constraints concerning link capacity, node ca-
pability, and flow conservation, equivalent to those presented
in Sec. III. If the problem above is infeasible for a given
path, then that path (and the corresponding decisions) is
incompatible with the target KPIs and must be discarded.

Once the problem in (9) is solved for all paths identified
in the expanded graph, we compute the total cost associated
with each path (including all components defined in Sec. III-F)
and select and enact the lowest-cost deployment, thus fulfilling
OKpi’s purpose. Importantly, the problem is convex, hence, it
can be efficiently solved in polynomial time [22]. The proof
simply follows from observing that (i) the objective in (9), as
well as the flow conservation and capability constraints, are
linear, and (ii) the second derivatives of the delay constraint,
are positive in the decision variables, hence, the constraint
itself is convex.

D. General scenarios
We now show how OKpi tackles arbitrary scenarios.
1) Arbitrary service graphs: If the service graph is more

complex than a chain, we can proceed by decomposing the
graph into a set of chains (e.g., in Fig. 2(left), one in uplink,
from the MCT to the DB, and one in downlink, from the
detector back to the MCT). OKpi is then applied subsequently
to each chain, and the deployment decisions are cascaded.
The case where multiple endpoints have to be covered, as in
Fig. 2(left), is handled in the same way.

2) Multiple VNF instances: If the problem in Sec. IV-C
is infeasible for all possible paths found in Sec. IV-B, a
reason could be the need to split the processing burden across
multiple instances of the same VNF. This case is handled by
first identifying the bottleneck VNF, i.e., taking the longest
to process the service traffic, and then increasing by one the
number of instances of that VNF in the service graph. OKpi
is then re-run on the modified service graph.

E. OKpi analysis
In this section, we prove several properties about OKpi

(proofs can be found in the Appendices). We start with the
most essential aspect related to its effectiveness, i.e., its ability
to meet all service KPIs (see App.-A for the proof):

robot
master MCT robot

slaveψ

Fig. 5. Service graph specifying the inter-robot communication service.
Yellow and purple vertices denote endpoints and VNFs, respectively.

Property 1. OKpi’s decisions honor all KPI targets.

Next, we address the computational complexity of OKpi
(see App.-B for the proof):

Property 2. The worst-case computational complexity of
OKpi (including the graph generation and the solution of (9))
is polynomial.

Also, in the case where the physical graph is homogeneous,
we can prove that OKpi can return the optimal solution (see
App.-C for the proof):

Property 3. If all links and nodes have the same capabilities
and cost, then the output of OKpi is optimal.

Finally, we consider the expanded graph and show that it
can be built in polynomial time (see App.-D for the proof):

Property 4. The worst-case computational complexity of
building the expanded graph is O

⇣
(� + 1)4 · | eN |2 ·K

⌘
.

V. NUMERICAL RESULTS

Here, we first focus on a small-scale smart factory sce-
nario and an inter-robot communication service (Sec. V-A),
and compare the performance of OKpi against the optimum
obtained via brute force. Then, we move to a large-scale
smart factory scenario (Sec. V-B), and investigate the impact
of the number of robots on the decisions made by OKpi
and the resulting performance. Finally, consider a real-world
automotive service (Sec. V-C), and we characterize how the
quantity of traffic to serve and the maximum delay impact
the decisions made by OKpi in a large-scale scenario. The
KPI requirements of the services under study are presented in
Tab. II.

TABLE II
SERVICE REQUIREMENTS

Requirement Smart-factory

scenarios

Automotive

safety

scenario

Testbed

scenario

bandwidth 1 Mbps 1.5 Mbps [2, 3]Mbps
reliability {.999, .9999, .99999} —-
delay [20, 100]ms [20, 60]ms 15 ms

A. Small-scale, smart factory scenario: comparison against
the optimum

We consider the inter-robot communication service [23],
whose graph is depicted in Fig. 5. A room (hence, an end-
point) contains three robots, with different levels of reliability:
⌘(robot1) = 0.999999, ⌘(robot2) = 0.99999, and ⌘(robot3) =
0.9999. Two of these three robots must be used to perform an
operation, hence, run the robo-master and robo-slave VNFs.
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Fig. 6. Small-scale, smart factory scenario (inter-robot communication service): cost as a function of the maximum delay (left) and of the traffic load (center),
for different values of target reliability; cost breakdown (right) when the target reliability is 0.999, the maximum delay is 50 ms, the traffic multiplier is 1,
and � varies.

TABLE III
SMALL-SCALE SMART FACTORY SCENARIO : POINTS OF ATTACHMENT

AND ROBOT CHARACTERISTICS

Item Reliability Latency Cost

Points of attachment
micro-cell 0.999999 3 ms 40 USD/Mbit
pico-cell 0.99999 2 ms 30 USD/Mbit
femto-cell 0.9994 1.5 ms 15 USD/Mbit

Robots
robot1 0.999999

NA
25.49 USD/Mbit

robot2 0.99999 17.04 USD/Mbit
robot3 0.9999 11.36 USD/Mbit

The communication between the two selected robots can take
place through three types of PoAs, with different levels of
reliability (micro-cell: 0.999999, pico-cell: 0.99999, femto-
cell: 0.9994), and costs as reported in [24] (see Tab. III). The
offered traffic is 1 Mb/s per robot, as specified in [23].

Fig. 6 depicts the results when OKpi’s resolution is set
to � = 10. A first aspect we are interested in is the rela-
tionship between the target KPIs and cost: as we can see from
Fig. 6(left) and Fig. 6(center), a longer allowable delay results
in a lower cost; conversely, a higher traffic load or a higher
target reliability both result in higher costs. Intuitively, this is
due to the fact that cheaper resources (e.g., robot 3) tend to
have lower reliability and/or capacity, hence, it is impossible
to use them when the KPI targets become very strict.

Interestingly, in both Fig. 6(left) and Fig. 6(center), OKpi
matches the optimum in all cases. Indeed, as discussed in
Sec. IV-B, OKpi always matches the optimum if the resolu-
tion � is high enough; in the small-scale scenario we consider
for Fig. 6, � = 10 is sufficient to this end.

Fig. 6(right) shows the effect of setting a lower resolution,
namely, � = 3. As we can see by comparing the left and center
bars, a lower value of � results in suboptimal, higher-cost
decisions. Specifically, the difference is due to the fact that,
when � = 3, a higher-cost PoA is selected, namely, the pico-
cell in lieu of the femto-cell. This happens because, for � =
3, the edges corresponding to the femto-cell in the expanded
graph have steepness

l
� log 0.9994

log 0.999

m
= 2. Considering that (i)

all other edges have steepness 1 and (ii) OKpi seeks for paths
composed of three edges (same as the number of VNFs to
place) with a total steepness not exceeding � = 3, the edges
corresponding to the femto-cell will never be selected, hence,
the corresponding decision is never considered. In summary,
as discussed in the previous sections, using a too-low � made

TABLE IV
ALGORITHM RUN TIMES FOR THE SMALL-SCALE SMART FACTORY

SCENARIO, WHEN THE TARGET RELIABILITY IS 0.999, THE MAXIMUM
DELAY IS 50 MS, AND THE TRAFFIC MULTIPLIER IS 1

� Run time [s]

2 2.1
4 2.4
6 2.7
8 3.1

10 3.8
optimal 284.8

us overlook a feasible – and, in this case, optimal – solution.
In the same settings as for Fig. 6(right), Tab. IV presents the

time taken by the OKpi algorithm for different values of �, as
well as the time it takes to find the optimal solution. OKpi is
implemented in Python, and all tests are run on a server with
40-core Intel Xeon E5-2690 v2 3.00GHz CPU and 64 GB of
memory. We can observe that OKpi run times are very short,
much shorter than the time it takes to find the optimal solution.
Even more interestingly, larger values of � do result in longer
run times, but the increase is substantially slower than the
worst-case complexity derived in Property 4.

B. Large-scale, smart factory scenario: impact of the number
of robots

To demonstrate the scalability of OKpi, we now move to
the scenario depicted in Fig. 1 and the mobile robot, smart
factory service in Fig. 2(left), including a set of N robots. This
scenario is an enriched version of the small-case, smart factory
robotic service, as resource provisioning has to account for
more robots, and the smart factory service graph now includes
additional VNFs that can be placed on servers rather than on
robots.

Different PoAs are considered with different reliability,
latency, and cost values, as reported in Tab. V. The front-
and back-haul network topology is based on [25] and ITU
standard [26], and includes core nodes, aggregation nodes,
and local (i.e., close to the PoAs) nodes, with features as
summarized in Tab. V [27]. Our goal is to study how the
number of users (robots, in this case) impacts the decisions
made by OKpi and the resulting performance. Fig. 7(a) shows
that, as one might expect, a larger number of robots always
results in a higher cost; interestingly, computing nodes and
PoAs account for comparable shares of the overall cost.
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(a) (b) (c) (d)

Fig. 7. Large-scale, smart factory service with a varying number of robots: cost breakdown (a), choice of PoAs (b) and computing nodes (c), usage of
computing resources at different location in the network infrastructure (d).

TABLE V
LARGE-SCALE SCENARIOS: POINTS OF ATTACHMENT AND COMPUTING

NODES CHARACTERISTICS

Item Reliability Latency Cost

Points of attachment
macro-cell 0.99999999 6 ms 1.02 USD/Gbit
micro-cell 0.9999999 3 ms 2.31 USD/Gbit
pico-cell 0.999999 2 ms 3.80 USD/Gbit

Computing nodes
cloud ring (Azure DataBox) 0.99999999 8 ms 2.23 USD/Gbit
aggregation ring (PowerEdge) 0.9999999 3 ms 5.23 USD/Gbit
local ring (small data center) 0.999999 1 ms 10.47 USD/Gbit

Fig. 8. Service graph of the safety automotive service (vehicle collision avoid-
ance). Yellow and purple vertices denote endpoints and VNFs, respectively.

Fig. 7(b) and Fig. 7(c) summarize how much traffic is
handled by different PoAs and computing nodes as the number
of robots grows. Fig. 7(b) is fairly straightforward: the cheap-
est options are always preferred; only after their capacity is
exhausted, more expensive PoAs are exploited. Fig. 7(c), con-
cerning computing nodes, shows instead a different situation.
The intermediate solution, i.e., aggregation rings, is preferred
in most scenarios; edge servers are used for a limited amount
of traffic, thanks to their low latency that allows using cheaper
(albeit slower) PoAs. Cloud servers, thanks to their low cost
and high capacity, are the preferred option when the number
of robots grows, provided the target latency can be met.

Fig. 7(d) depicts the amount of computing resources con-
sumed in the different sections of the network infrastructure.
Interestingly, VMs closer to users (e.g., at the edge) are
consistently used more than further-away ones (e.g., in the
cloud). This is due to two reasons: first, more expensive
computing nodes can be an optimal choice only if it is possible
to fully utilize the VMs therein; second, faster processing times
(hence, as specified in (2), more spare capacity) are required
at farther-away nodes to make up for longer network delays.

Fig. 9. Road topology used in the large-scale scenario. The nine crossings
correspond to endpoints; red, green, and blue circles represent the coverage
areas of macro-, micro- and pico-cells, respectively.

C. Large-scale, automotive scenario: impact of traffic and
delay

We now test OKpi on a large-scale scenario to validate
its performance in presence of more complex service graphs
and under a larger, and more diverse, network infrastructure.
Specifically, we consider a urban environment where a safety
service, namely, vehicle collision avoidance [28], [29], has
to be provided at specific intersections. The service graph is
depicted in Fig. 8: messages sent by vehicles are collected
through the Mobile Communication Transport (MCT), e.g.,
virtual eNBs plus vEPC, then stored in a database and used for
detecting vehicles on a collision course. The latter are warned
by sending them an alert. Based on a real-world road topology
(see Fig. 9), a total of 9 intersections (hence, endpoints) are
covered by a combination of PoAs, namely, macro-, micro-
and pico-cells, whose coverage is shown in Fig. 9.

Fig. 10(left) shows that, as one might expect, a shorter
target delay results in higher costs. It is also interesting to
observe the behavior of the intermediate curve, corresponding
to H(s) = 0.9999: when the target delay is very short, its
associated cost is almost the same as for H(s) = 0.999999
case; as the target delay increases, its cost drops to the same
level as the H(s) = 0.999 case. This bespeaks the complexity
of the decisions OKpi has to make, and their sometimes
counter-intuitive effects.

In Fig. 10(center), the traffic load is multiplied by a factor
ranging between 0.5 and 3. We can again observe that to
a higher traffic corresponds a higher cost, even though the
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Fig. 10. Large-scale, automotive scenario (safety service): cost as a function of the maximum delay (left) and of the traffic load (center), for different values
of target reliability; fraction of traffic (right) traversing different PoAs and computing nodes when the target reliability is 0.999, the traffic multiplier is 1, and
the target delay varies.
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Fig. 11. Illustration of the mobile robot, smart factory testbed: the robot starts
at the bottom end of the corridor and comes back once it has reached the other
end at the top left. Dashed circles highlight possible VNF deployments.

growth is less than linear, owing to the fixed costs described in
Sec. III-F. Also notice how the yellow curve in Fig. 10(center),
corresponding to the highest reliability level, stops at a multi-
plier of 2: for higher traffic demands, the network capacity is
insufficient to provide the service with the required reliability.

Fig. 10(right) shows which PoAs and computing nodes
are selected for the minimum and maximum target delay
values. Interestingly, in the presence of tight delay constraints,
different PoAs and resources are all used (left bars). On the
contrary, for the largest target delay, the cheapest options –
cloud and macro-cells – are preferred.

VI. TESTBED AND VALIDATION

We now present the implementation of OKpi in an experi-
mental testbed where the mobile robot, smart factory service
(depicted in Fig. 2(left)) is deployed in an indoor scenario.

The testbed consists of: (i) 5 ASUS WL500G Premium
v1 APs running OpenWrt 18.06.2 [30]; (ii) 2 MiniPC, with
4 vCPUs and 8GB of RAM each, one used as an AP and
the latter as a local server (i.e., located close to the APs);
(iii) 1 PowerEdge C6220 server with 94GB of RAM and

TABLE VI
TESTBED SCENARIO: AP-SERVER LATENCIES

Cloud Edge Local

AP1, AP2 9 ms 4 ms 3 ms
AP3, AP4 18 ms 8 ms 9 ms
AP5, AP6 27 ms 12 ms 9 ms

16 vCPUS, acting as edge server; and (iv) 1 PowerEdge
R840 Rack Server7 with 94GB of RAM and 16 vCPUs,
acting as cloud server. The six APs and the local server are
deployed along two corridors of the Universidad Carlos III de
Madrid building (see Fig. 11), while the edge and cloud server
are located in different buildings. To emulate different levels
of link congestion, we leverage NetEm [31] to artificially
introduce some latency on the connection between the APs and
the servers, as reported in Tab. VI. Note instead that the latency
on the AP-robot link never exceeds 6 ms. The cost associated
with the APs and servers match those presented in Tab. V,
considering the pico-cell value for the APs. Additionally, we
used a ROS-compatible Kobuki Turtlebot S2 robot equipped
with a laptop with 8-GB RAM and 2 vCPUs, and a RPLIDAR
A2 lidar for 360-degree omnidirectional laser range scanning.

The laptop hosts the robot VNF, which, as mentioned in
Sec. II, (a) probes the robot sensors (e.g., odometry, LIDAR),
(b) transmits the sensors data to the ROS brain, and (c)
executes the navigation instructions received from the ROS
brain. The LADAR and ROS brain VNFs can be hosted at
any of the available servers

The target of the experiment is to ensure that the one-
way, end-to-end (e2e) latency of the service remains within
15 ms [32] during the robot’s trip. The experiment starts with
the robot positioned at the bottom end of the corridor and
connected with AP1 (see Fig. 11). Also, the initial decision
by OKpi is to deploy the ROS brain and LADAR VNFs
in the cloud server. The ROS brain then navigates the robot
along the trajectory shown in Fig. 11 and, as the robot moves,
OKpi determines which AP the robot should connect to7

and which server (cloud, edge, local) should host the ROS
brain and LADAR VNFs. Both the AP and server selection
change according to the robot position and latency of the AP,
respectively. In particular, depending on which AP the robot is
attached to, OKpi decides which server should host the ROS

7As the robot moves, it roams to the selected AP using 802.11r Fast
Transitioning [33].
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Fig. 12. Service latency experienced during the robot’s trip. Different
background colors refer to time intervals in which the robot is connected
to different APs.

TABLE VII
OKPI AND SOA SERVICE LATENCY

Solution Average Std. deviation E2e violations

OKpie 13.63 ms 15.21 ms 7%
SoA 29.61 ms 26.18 ms. 74%

brain and LADAR VNFs by accounting for the latency values
reported in Table VI, in such a way that the overall service
latency remains below 15 ms. During the experiments, OKpi
recomputed the AP selection, ROS brain, and LADAR VNFs
embedding, in less than 1 s. The robot position is reported
to OKpi through MQTT messages transmitted by the robot
itself, while the APs coverage, which may vary over time, is
acquired through locally available channel measurements (e.g.,
signal level).

Fig. 12 compares the temporal behavior of the e2e latency
obtained in the following cases:
• SoA, i.e., when the solution based on [34] and [35] is used.

In this case, the LADAR and ROS brain VNFs are always
placed in the cloud and the robot performs roaming checks
every 20 s in order to ensure connectivity to the AP with
strongest signal. The roaming checks consist of Wi-Fi active
scan to acquire the signal related information, followed by
automatic handover. For our testbed, we discovered that 20 s
was the lowest check frequency that allows the robot to
perform successful roaming along the navigated trajectory.

• OKpit, i.e., when OKpi makes decisions in a simulated
environment that mimics the testbed, using the theoretical
delays that each AP offers.

• OKpie, i.e., when OKpi operates in the developed testbed,
it uses the robot’s real time location and available channel
measurements to trigger the 802.11r roaming. The roaming
message is send via MQTT to the robot. In this case,
the periodic roaming checks are prevented and the robot
is configured to perform handovers only when roaming
message is received.

Fig. 12 compares the service time measured during a single
run execution of the SoA, OKpie, and OKpit solutions.

At the beginning of the experiment, neither the SoA nor
the OKpie violate the target e2e latency of 15 ms, except for

the peaks due to the robot Wi-Fi scans. While under SoA
the robot performs a scan every 20 s, under OKpie it does
so only when it has to connect to a new AP, as per the OKpi
decision. Under SoA, 50 s later the robot connects to AP3, and
the latency jumps above 20 ms because the LADAR and ROS
brain VNFs are still running in the cloud server. In the case of
OKpie, instead, when the robot connects to AP3 at 89 s., the
LADAR and ROS brain VNFs are moved to the edge server, so
that the e2e latency remains below 15 ms. The same behavior
is observed at time 102 s, when the robot connects to AP5 in
the case of SoA and the e2e latency increases up to 29 ms.
On the contrary, OKpie still meets the target e2e latency upon
making the robot connecting with AP5 (at time 156 s), since
it now places the VNFs in the local server. In the rest of the
time elapse, we can observe similar performance, as the robot
returns to its initial position.

As a final remark, Fig. 12 highlights that the performance of
OKpie is always close to the e2e latency exhibited by OKpit.
Furthermore, the target e2e service latency (15 ms) was only
violated the 7% of the times during the experiment by OKpie
(see Table VII), while it was violated the 74% of the times
under SoA.

VII. RELATED WORK

One of the pioneering works on VNF placement is [16],
which casts placement as a generalized assignment problem
(GAP) and proposes a near-optimal solution based on bi-
criteria approximation. Very recent works [10], [12], [19]
focus on the mutual influence of VNF placement and traffic
routing. Others tackle the VNF placement problem through
graph theory [9], [36] and set-covering [5], obtaining very
good competitive ratios (constant in specific cases for [5]).

In the context of edge computing, some works tackle
tasks different from sheer data processing; as an example,
[11], [37] aim at jointly optimizing computation and caching
offloading between cloud-based and edge-based infrastructure.
Others focus on additional decisions that can be made in
slicing scenarios, e.g., priority assignment in [4]. A body of
works considers incremental deployment, i.e., service requests
arriving at different times: in this case, it is possible to share
existing VNF instances [4], [7], [38], augment routing paths in-
stead of computing them from scratch [7], [38], and minimize
the difference between current and future network configura-
tion [38]. Among the few works tackling non-functional re-
quirements, [3] performs resilient VNF placement, to achieve
robustness to equipment failures. More recently, [13] consid-
ered the problem of jointly placing the VNFs and the data
they need.

VNF placement, along with the closely-related problem of
VNF chaining, has been studied in the software-defined net-
working and cloud-computing contexts as well. For instance,
[39] focuses on updating the placement in order to react to
traffic changes, and [40] deals with the parallelization oppor-
tunities offered by VNF graphs. Other works [10], [41] focus
on the choice between edge- and cloud-based computation
resources, while [8] studies which cache storage (i.e., edge- or
cloud-based) to access, balancing miss probability and cost.
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Several works aim at simplifying the problem of VNF
placement by characterizing and/or predicting the traffic de-
mand. In particular, [42] exploits the spatial and temporal
variability of traffic demand to serve it with as little resources
as possible; as for demand prediction, popular approaches
include reinforcement learning [43]. In a similar spirit, [44]
estimates the resources needed by an incoming service request
before deciding whether or not it shall be accepted. A different
body of work instead addresses the slicing of the radio access
network; in particular, [45] proposes solutions that let different
virtual operators use the radio resources without interfering,
while [46] develops a stochastic model to investigate the
throughput and delay of a slice as functions of the cell
parameters. Although such specific aspects are out of the scope
of our work, we do tackle the problem of selecting radio
technologies and points of attachment that honor the required
KPI targets and minimize the cost.

Finally, we mention that a preliminary version of this work
has appeared in our conference paper in [1] where, however,
the experimental implementation of our solutions as well as
some proofs very missing, and performance was showed only
through numerical results and under single-service scenarios.

VIII. CONCLUSIONS

One of the paramount issues in network slicing is to meet
all target KPIs required by vertical services, in spite of the
limited resources that are available in the mobile network.
We addressed this problem by proposing OKpi, an efficient
and effective solution strategy that can jointly make VNF
placement and data routing decisions (including the selection
of the radio points of attachment), while accounting for all
resources that may be available from the fog to the cloud.
OKpi draws on a novel methodology that leverages graph-
based models blended with optimization. We analyzed the
properties and the computational complexity of OKpi, which
turns out to be polynomial, and we evaluated the performance
of the proposed solution both numerically and in a real-world
testbed. Numerical results demonstrate the performance of our
solution in the presence of different relevant applications. In
all performed experiments, OKpi showed to closely match the
optimum. Finally, field tests demonstrated the functionality of
OKpi and its ability to make effective decisions also when a
real-world mobile robot, smart factory service is considered.

Future work will study in more detail how the � parameter
affects the optimality vs. execution time tradeoff, so that the
� parameter can be tuned so as not to not exceed a given
timeout threshold. This is of special interest for use cases in
which fast deployments are required, such as mission critical
services.
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APPENDIX: PROOFS OF OKPI PROPERTIES

A. Property 1

Proof: By Lemma 1, all decisions honor the additive
KPIs. Concerning delay, it is guaranteed that such a KPI
target is met, thanks to the delay constraint imposed while
performing the CPU assignment. As noted in Sec. IV-C,
decisions resulting in an infeasible problem are discarded,
hence, the selected decision honors the delay target. Finally,
the availability constraints are satisfied through the initial
selection of the vertices of the decision graph (see Sec. IV-B).

B. Property 2

Proof: To prove the property, we show that each of
the steps described in Sec. IV has a polynomial runtime.
Specifically,

(i) creating the decision/expanded graph (Sec. IV-B and
Sec. IV-A) requires creating at most �2(|V||C|+ |E|) nodes
and at most �2|V||L| edges, where |V| is the number of
VNFs specifying the service and, given the service, is a
constant.

(ii) Finding the possible decisions (Sec. IV-B) implies comput-
ing the shortest paths between any endpoint (i.e., vertex
meeting the availability constraints) and any other node in
the expanded graph, which, in the worst case, has complex-
ity [47] o(n2.3) with n being the number of nodes in the
expanded graph.

(iii) Computing the optimal CPU assignments (Sec. IV-C) re-
quires solving a convex optimization problem, which has
cubic complexity [22] in the problem size; indeed, convex
problems are routinely solved in embedded computing sce-
narios.

Thus, the overall time complexity of the OKpi approach is
polynomial.

C. Property 3
Proof: There is only one point in the procedure we

described where, in general scenarios, we may overlook the
optimal solution. As remarked in Sec. IV-B, finite � values
may cause a quantization-like error: solutions with different
KPI consumption and/or cost can be associated with the
same path over the extended graph; therefore, the extended
graph may not consider all possible ways to move from one
node of the decision graph to another. In the special case
of homogeneous links and nodes, however, no such different
possibilities exist: taking a finite value of � is enough to
consider all possible choices the system offers and, hence, to
make an optimal decision. Note that restricting our attention to
shortest paths on the expanded graph does not harm optimality,
as adding hops implies consuming a higher (or equal at best)
fraction of KPI targets and cannot decrease the cost.

D. Property 4
Proof: As noted in Sec. IV-B, given that we have two

additive KPIs, the expanded graph has (� + 1)2 nodes for
each node in the decision graph, (with the number of nodes in
the decision graph being | eN |). Therefore, the total number of

pairs in the expanded graph is O

✓h
(� + 1)2| eN |

i2◆
, and we

need to evaluate whether or not an edge shall be created for
each of these pairs. Doing so requires checking each KPI, for
a total of O

⇣
(� + 1)4| eN |2K

⌘
checks, where K is the number

of KPIs. It follows that the global, worst-case complexity
of building the expanded graph is quadratic in the network
topology and polynomial in �.


