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A B S T R A C T   

Extreme climatic conditions, like heat waves or cold spells, associated to high concentrations of air pollutants are responsible for a broad range of effects on human 
health. Consequently, in the recent years, the question on how urban and peri-urban forests may improve both air quality and surface climate conditions at city-scale 
is receiving growing attention by scientists and policymakers, with previous studies demonstrating how nature-based solutions (NBS) may contribute to reduce the 
risk of population to be exposed to high pollutant levels and heat stress, preventing, thus, premature mortality. In this study we present a new modeling framework 
designed to simulate air quality and meteorological conditions from regional to urban scale, allowing thus to assess the impacts of both air pollution and heat stress 
on human health at urban level. To assess the model reliability, we evaluated the model’s performances in reproducing several relevant meteorological, chemical, 
and biological variables. Results show how our modeling system can reliably reproduce the main meteorological, chemical, and biological variables over our study 
areas, thus this tool can be used to estimate the impact of air pollution and heat stress on human health. As an example of application, we show how common heat 
stress and air pollutant indices used for human health protection change when computed from regional to urban scale for the cities of Florence (Italy) and Aix en 
Provence (France).   

1. Introduction 

In the recent years, the question on how urban and peri-urban forests 
may modify both air quality and surface climate conditions within the 
cities is receiving growing attention by scientists and policymakers (e.g., 
Sicard et al., 2023a,b; Manzini et al., 2023). In fact, it is well known how 
the exposure to high concentrations of air pollutants, mainly tropo
spheric ozone (O3), nitrogen dioxide (NO2) and fine particulate matter 
(PM2.5), leads to premature mortality, with millions of people dying 
every year from cardiovascular and pulmonary diseases caused by 
exposure to high levels of these pollutants (Zhang et al., 2017). 
Furthermore, extreme weather events such as heat waves or cold spells 
are accountable for a wide array of health impacts, spanning from 

dehydration to heatstroke, and more broadly, exacerbating preexisting 
cardiovascular and respiratory conditions that could result in fatal 
outcomes, particularly among the elderly (WHO, 2021). As it is expected 
that by 2050 nearly 70% of the world’s population will live in urban 
areas, nature-based solutions (NBS) may contribute to reduce the risk of 
population to be exposed to high pollutant levels and heat stress, pre
venting, thus, premature mortality (Iungman et al., 2023; Kondo et al., 
2020). 

Among different removal processes at the Earth’s surface, the 
removal of gases by dry deposition is the main sink for many atmo
spheric trace gases (e.g., Monks et al., 2015; Clifton et al., 2020). The dry 
deposition mainly occurs through plant stomata (Paoletti et al., 2019; 
Sun et al., 2022), i.e., small pores on leaves controlling vapor and gas 
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exchange, but also other plant surfaces (branches, trunks, and canopies) 
and soil are also able to capture trace gases (Clifton et al., 2020). Dry 
deposition plays a crucial role in the removal of surface O3, with sto
matal uptake representing a significant component of this process. At 
global scale, it has been estimated that the annual sink of surface O3 
through dry deposition is 800–900 Tg O3 yr− 1 (Hardacre et al., 2015). 
Plant surfaces also contribute to capture the aerosol, with gravitational 
settling affecting deposition of particles, especially those larger than a 
few micrometers in diameter (Wesely and Hicks, 2000). Urban and 
peri-urban forests not only contribute to capturing air pollutants but also 
aid in mitigating urban heat island effects. They achieve this by 
providing shading to building surfaces and streets, deflecting and 
absorbing radiation from the sun, and releasing moisture into the at
mosphere (Akbari et al., 2001). 

It has been estimated that shaded surfaces can be 11–25 ◦C cooler 
than the maximum temperatures of unshaded materials (Akbari et al., 
1997), while the evapotranspiration, combined with shading, can help 
reduce maximum summer temperatures by 1–5 ◦C (Akbari et al., 1997; 
Iungman et al., 2023; Schwaab et al., 2021). 

Despite successful legislation on emissions regulation started in the 
1990s, a large part of the European population is still exposed to poor air 
quality, with air pollution levels exceeding both the European standards 
(Sicard et al., 2021a) and the World Health Organization air quality 
guidelines for the protection of human health (Sicard et al., 2023a,b). In 
particular, mainly in the Southern Europe, the warm and sunny climate 
conditions combined with road traffic, industrial and biogenic emissions 
promote the O3 formation (Badia et al., 2023). Consequently, although 
the stringent regulation, air pollution is still a major environmental 
concern (Sicard et al., 2023a,b). 

In the last decades chemistry transport models (CTMs) have been 
developed and used to estimate the concentration of gases in atmosphere 
at global, regional and local scale (e.g. Askariyeh et al., 2020; De Marco 
et al., 2022). Moreover, CTMs have been used to assess changes in air 
quality due to different policies of emissions reduction (e.g., Wilson 
et al., 2012) and assess the capacity of different tree species to absorb gas 
and particles (e.g., Mircea et al., 2023). Within the AIRFRESH project 
(LIFE19 ENV/FR/00086), which aims to estimate the air pollution 
removal capacity of urban forests by planting some selected trees species 
in two cities, i.e., Florence (Italy) and Aix-en-Provence (France), we 
have developed a modeling framework which allows simulating air 
quality from coarse regional scale (i.e., Europe) to urban scale (1 × 1 
km) and assess changes in urban air quality and meteorological condi
tions due to different reforestation strategies. However, before drawing 
up surveys on the impacts of climate and air pollution on human and 
ecosystems health, it is important to evaluate how the models simulate 
the space-time variability of air pollutants and meteorological variables. 
Several studies already demonstrated how CTMs faithfully reproduce 
spatial distribution of different chemical species along with their tem
poral variability (e.g., Karlický et al., 2017; Sicard et al., 2021b). To 
carefully evaluate the effects of different reforestation strategies, the 
model should be able not only to reproduce the spatial and temporal 
variability of meteorological variables, trace gases and aerosols, but also 
the biological activities related to stomatal conductance, as they affect 
emissions of Biogenic Volatile Organic Compounds (BVOCs) and depo
sition of gaseous and particulate pollutants processes. 

This paper introduces a numerical approach for simulating meteo
rological conditions and air quality across regional to local scales, 
employing the Weather Research and Forecasting model coupled with 
Chemistry (WRF-Chem) model (Grell et al., 2005). By integrating both 
meteorological and air quality components within a coupled model 
framework, consistency is ensured through shared transport schemes, 
horizontal and vertical grids, and physics schemes for subgrid-scale 
transport. The primary objective of this study is to evaluate the reli
ability of various physical, chemical, and biological components within 
the modeling system and illustrate how this integrated framework can 
be utilized to assess the impact of air pollutants on human health. 

2. Materials and Methods 

2.1. Model description 

The Weather Research and Forecasting (WRF) model, integrated 
with atmospheric chemistry capabilities (WRF-Chem), facilitates the 
comprehensive simulation of trace gas and aerosol dynamics alongside 
meteorological phenomena (Grell et al., 2005). In this investigation, a 
nested domain approach was adopted to refine spatial resolution from 
regional to city scales. Initially, a broad domain (d01) covering Europe 
was configured with a 15 km horizontal resolution on a Lambert 
conformal grid. Subsequently, a finer domain (d02) centered on the 
Western Mediterranean Sea was established at 5 km resolution (see 
Fig. 1). Finally, air quality simulations were conducted at a 1 km reso
lution for two urban areas: Florence (Italy) and Aix-en-Provence 
(France). Vertically, the model utilizes 35 hybrid vertical levels from 
the surface to 50 hPa. The simulation period corresponds to 2019, rep
resenting pre-COVID-19 conditions. Meteorological inputs, including 
time-varying sea surface temperature, were obtained from the European 
Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis 
project, with approximately 31 km horizontal resolution every 3 h 
(Hersbach et al., 2020). Chemical boundary conditions were provided 
by CAM-Chem, a component of the NCAR-CESM, offering global 
tropospheric and stratospheric composition data (Tilmes et al., 2015). 
Anthropogenic emissions were sourced from CAMS-GLOB-ANT data 
(Soulie et al., 2023), while fire emissions were obtained from the Fire 
Inventory from NCAR (FINN; Wiedinmyer et al., 2011; 2023), and 
biogenic emissions were calculated online using the MEGAN model 
within WRF-Chem (Guenther et al., 2006, 2012). Land cover data were 
adapted from the CORINE dataset at a 100 m resolution, mapped to 
MODIS classes for compatibility with WRF preprocessing (Pineda et al., 
2004). 

The WRF-Chem model provides various physical and chemical 
schemes for atmospheric simulation. Key physical parameterizations 
include the RRTM (Rapid Radiative Transfer Model) for radiation 
(Mlawer et al., 1997), YSU (Yonsei University) for boundary layer pro
cesses (Hu et al., 2013), and the Noah-MP Land Surface Model for 
surface-atmosphere interactions (Li et al., 2022). For atmospheric 
chemistry, MOZART (Model for OZone And Related chemical Tracers) 
simulates gas-phase reactions (Emmons et al., 2010), while MOSAIC 
(Model for Simulating Aerosol Interactions and Chemistry) accounts for 
aerosol dynamics (Zaveri et al., 2008; Chapman et al., 2009). 

2.2. Observational data and site description 

Different observational-based datasets are used to evaluate the 
physical, chemical, and biological components of WRF-Chem. The 
ability of the WRF-Chem model to reproduce realistic spatio-temporal 
patterns of relevant surface meteorological variables is assessed by 
comparing seasonally averaged temperature and precipitation against 
ERA5-Land reanalysis (Muñoz-Sabater et al., 2021). In addition to 
spatial patterns, we also computed root mean square error (RMSE) and 
domain-averaged bias to provide a measure of the model’s skills. 

To assess the performances of WRF-Chem in reproducing surface 
NO2, O3 and PM2.5 mean concentrations, we compared model outputs 
with in-situ observations from several background monitoring sites 
belonging to the Airbase network (https://www.eea.europa.eu/en). 

Terrestrial plants fix atmospheric carbon dioxide (CO2) as organic 
compounds through the photosynthesis process. In addition to the CO2, 
required for the photosynthesis, plant leaves can uptake other trace 
gases through stomata (Paoletti et al., 2019). Like production of organic 
compounds and deposition of air pollutants are highly correlated (Anav 
et al., 2018), both depending on stomatal opening, we focused on the 
validation of the gross primary production (GPP) to assess the reliability 
of the model in reproducing this biological process. We used both 
MODIS satellite retrievals (MOD17A2 product; Masuoka et al., 1998) 
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and in-situ eddy covariance data (Pastorello et al., 2020) coming from 
12 monitoring stations (Table 1), representative of the main European 
vegetation types, from the ICOS Ecosystem station network (http 
s://www.icos-cp.eu/): Evergreen needleleaf forests (Davos, Bilos, Pue
chabon, Hyltemossa, Norunda), Grasslands (Grillenburg, Torgnon), 
Deciduous broadleaf forests (Hainich, Hohes Holz, 
Fontainebleau-Barbeau), Croplands (Klingenberg) and Open shrublands 
(Lison), respectively. 

2.3. O3 exposure and thermal stress indices for human health 

Ozone exposure relevant to health impacts is quantified using the 
Sum of Ozone Means Over 35 ppb (SOMO35). Worldwide, this metric is 
widely used to assess the health impact of ozone exposure, as recom
mended by the World Health Organization (WHO). It represents the 
yearly cumulative total of daily maximum 8-h running average ozone 
concentrations that exceed 35 ppb (parts per billion), over the entire 
year (Paoletti et al., 2007; Malley et al., 2015). 

Similarly, to quantify the thermal stress to human health, we 
computed the Universal thermal climate index (UTCI) (e.g. Martilli 
et al., 2023; Di Napoli et al., 2018); it is a human biometeorological 
parameter used to assess the relationship between the external envi
ronment and human well-being. This index quantifies the combined 
effects of temperature, wind, radiation, and humidity on the interaction 
between the human body and the surrounding thermal environment. 
Further details can be found into Martilli et al. (2023) 

3. Results and discussion 

3.1. Validation of meteorological variables 

Considering the surface air temperature (Fig. 2), WRF-Chem dis
plays, in all the seasons, a fairly good agreement with the reanalysis in 
both the parent and nested domains, with a typical meridional gradient 
and notably lower air temperatures over the Alps, Pyrenees and Car
pathian mountains than the flatter continental Europe. Looking at the 
mean bias (Table 2), results highlight a minimal underestimation of the 
2 m temperature during winter (− 0.27 and − 0.13 ◦C for d01 and d02, 
respectively) and a minimal overestimation during summer months 
(0.19 and 0.52 ◦C for d01 and d02, respectively), while the largest bias, 
occurring during spring, is systematically lower than 1 ◦C in both the 
domains (0.4 and 0.8 ◦C). 

Compared to other studies performed with the same regional climate 
model over Europe (e.g., Mooney et al., 2013; Katragkou et al., 2015), 
our simulations show better performances in reproducing the surface air 
temperature. In particular, the cold bias occurring in North-Eastern 
Europe during winter, exceeding the 8 ◦C in some configurations 
(Mooney et al., 2013), does not appear in our results. Similarly, the 
summer warm bias, exceeding 5 ◦C over the whole continental Europe 
(Mooney et al., 2013), noticeably decreased in magnitude in our 
simulations. 

In addition to the mean seasonal cycle, Fig. S1 suggest how the model 
correctly reproduces the diurnal variability of temperature, over the 
prudence sub-regions (Christensen and Christensen, 2007), during both 
winter and summer. 

Besides to surface air temperature, we compared the mean seasonal 
precipitation computed by WRF-Chem against ERA5-Land reanalysis 
(Fig. 3). Although in the European domain the location of maximum 

Fig. 1. Domains used for the simulations as defined by the black solid lines. The external European domain (d01) has a horizontal resolution of 15 km, the in
termediate Mediterranean domain (d02) has a resolution of 5 km, while urban domains over Florence and Aix en Provence have a resolution of 1 km. 
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precipitation is in agreement between WRF-Chem and ERA5-Land, 
WRF-Chem remarkably underestimates land precipitation during all 
the seasons, with the most pronounced dry bias (− 0.52 mm day− 1) 
occurring during fall (Table 2). In addition to a more resolved pattern 
around the mountains, the nested domain over the Western Mediterra
nean Sea does not show any relevant underestimation of precipitation, 
and the bias is lower than its parent domain. The effect of aerosols in the 
formation of condensation nuclei as well as their effects on cloud cover 
and precipitation are widely known (Alma and Knote, 2014; Brasseur 
and Roeckner, 2005; Menon, 2004). As aerosols have a substantial 
impact on the hydrogeological cycle (Wu et al., 2013), the dry bias found 
in the parent domain could be due to differences in the time-varying 
aerosols used by ERA5-Land and those simulated by WRF-Chem. 

3.2. Validation of chemical variables 

Fig. 4 shows the seasonal averages concentrations for NO2 as simu
lated by WRF-Chem and in-situ measurements provided by European 
Environment Agency database (EEA). Overall, we found a general good 
agreement between model results and observations in all the seasons 
and domains, with results of Table 3 highlighting a systematic under
estimation of NO2 both in the parent and nested domain, with the largest 
bias occurring over the Mediterranean domain during winter (− 9 ppb). 

Despite the general good agreement with in-situ measurements, in some 
urban sites there is a large mismatch likely due to the poorly repro
ducibility of urban air quality because of the coarse resolution of our 
domains, i.e., 15 and 5 km, respectively (Tuccella et al., 2012). In 
addition, the lack of local emission inventories does not allow to capture 
the local scale variability, especially in the cities. This is confirmed by 
several studies which demonstrated how increasing the spatial resolu
tion of the anthropogenic emission inventory can help WRF-Chem to 
better capture the local variability of air pollutants (e.g. Zhong et al., 
2016; López-Noreña et al., 2022). 

As the NO2 concentrations are directly linked to non-industrial 
combustion, road traffic and other mobile source emissions, the high
est concentrations are located over urban areas and along ship tracks. 
Fig. 4 shows how the model correctly reproduces this pattern with the 
higher NO2 concentrations observed over the densely populated Euro
pean cities (e.g., London, Paris) as well as in the major Italian cities such 
as Milan, Turin, Rome and Naples, and in the whole Po Valley, where the 
atmospheric inversion, taking place during winter and fall, contributes 
to the stagnation of air masses making this region one of the most 
polluted areas of Italy (Petritoli et al., 2003). Besides, the main ship 
tracks of Mediterranean Sea and Atlantic Ocean are clearly visible. 

Considering the O3, during cold period it is characterized by 
decreasing concentrations due to NOx titration, while during warm 

Fig. 2. Mean seasonal mean near-surface air temperature (◦C) as simulated by WRF-Chem and ERA5-Land over European domain (d01) and Mediterranean domain 
(d02) for boreal winter JFM (January-February-March), spring AMJ (April-May-June), summer JAS (July-August-September), and autumn OND (October- 
November-December). 
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periods the higher photolysis rates promote the O3 formation (Monks 
et al., 2015; Sicard et al., 2016). In addition, over the Mediterranean Sea 
the lower dry deposition rates and lower boundary layer heights lead to 
higher concentrations (Terrenoire et al., 2015; Sicard et al., 2016). The 
model well reproduces the expected seasonal variability as well as the 
spatial pattern, this latter characterized by higher concentrations in the 
south-east part of the domain, reaching up to 52 ppb during winter and 
more than 60 ppb during summer (Fig. 5). Compared to in-situ data, in 
general WRF-Chem overestimates the observations near the major Eu
ropean cities with the largest mismatch observed in the southern regions 
of our study area. The largest biases are found during fall both for the 
parent (9.6 ppb) and nested (14.6 ppb) domains. This overestimation of 
O3 concentrations by WRF-Chem may be partly linked to the underes
timation of NO2 but could also be due to the condition of the monitoring 
stations which are at lower height than the first model layers. Another 
possible explanation for the overestimation of O3 may be due to the 
common underestimation of the volatile organic compound (VOC) 
emissions. The discrepancy between the predicted concentrations of O3 
and NO2, where O3 tends to be overestimated and NO2 tends to be 
underestimated throughout the year, may be attributed to several fac
tors. According to Zhang et al. (2017), one contributing factor could be 
the inadequate titration of O3 by NO, resulting in an overestimation of 
O3 levels and an underestimation of NO2 levels. 

During warmer periods when plant activity is heightened, the WRF- 

Chem model tends to overestimate surface O3 concentrations. This 
discrepancy can be partially explained by two main factors. Firstly, Wu 
et al. (2013) suggest that the model may inadequately parameterize dry 
deposition to vegetation, leading to underestimated dry deposition ve
locities. Consequently, this reduces the capacity of plants to remove O3 
from the atmosphere. Secondly, Ryu et al. (2018) propose that the 
model’s underestimation of cloud optical depth and overestimation of 
photolysis rates could further contribute to the discrepancy, exacer
bating the overestimation of O3 concentrations. Fig. 6 shows how PM2.5 
concentrations are well reproduced by the model in both the parent and 
nested domains. Highest concentrations are observed during colder 
seasons (i.e. winter and fall) because of the combustions of domestic 
heating systems, such as wood or pellet stoves, which emit particles into 
the air (Perrino et al., 2019). Furthermore, during winter, temperature 
inversion can cause an accumulation of fine particles in the air (Nidz
gorska-Lencewicz et al., 2020), as clearly visible in the norther part of 
Italy (Po Valley) where stable meteorological conditions associated to 
vehicular traffic, industry, agriculture and domestic use of fossil fuels 
emission promote the formation of PM2.5 (Fig. 6). The model generally 
overestimates the PM2.5 concentrations in all the domains (from about 3 
μg m− 3 to 5 μg m− 3), except in JFM where the model tends to slightly 
underestimate (from about − 1.15 μg m− 3 to − 2 μg m− 3) the PM2.5 
(Table 3). The largest bias, corresponding to about 5 μg m− 3 are found 
during fall. These results are consistent with other evaluation and 

Fig. 3. Precipitation (mm day–1) as simulated by WRF-Chem and ERA5-Land over European domain (d01) and Mediterranean domain (d02) for boreal winter JFM 
(January-February-March), spring AMJ (April-May-June), summer JAS (July-August-September), and autumn OND (October-November-December). 
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sensitivity studies of WRF-Chem over Europe (Stern et al., 2008; Tuc
cella et al., 2012) which showed biases ranging from − 13.50 μg m− 3 to 
+7.64 μg m− 3. 

In addition to mean seasonal averages, in Fig. S2 we also present the 
validation of the mean winter (PM2.5 and PM10) and summer (NO2 and 
O3) daily cycle as simulated by WRF-Chem and measured through the 
Airbase network. 

3.3. Validation of main biological variables 

Total annual GPP maps, for the year 2019, are shown in Fig. 7, as 
simulated by WRF-Chem and compared with satellite observations (i.e., 
MODIS). Results suggest that WRF-Chem is generally able to capture the 
observed GPP spatial distribution, with a good spatial correlation of 0.97 
for both domains. However, results also display a large underestimation 
(>200 gC m− 2 y− 1) of the GPP peak, mostly in the parent domain. The 
underestimation of the peak in the GPP affects the total spatial integral, 
which is 9.4 PgC for WRF-Chem and 9.7 PgC for MODIS in the parent 

Fig. 4. Seasonal averages concentrations for NO2 [ppb] modeled by WRF-Chem for the European domain overlapped by measurement stations (dots).  
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domain, and 1.8 PgC and 2.0 PgC in the nested domain. However, it 
should also be considered that MODIS tends to overestimate the GPP (up 
to 20–30%) when compared to flux tower data (e.g., Wang et al., 2017; 
Dalmonech et al., 2024). The reasons rely on the overestimation of the 
fractional photosynthetically active radiation (FPAR): being 
satellite-based GPP computed from a light use efficiency (LUE) 
approach, the photosynthesis does not saturate at increasing FPAR, but 
increases linearly at increasing radiation. 

Therefore, to better characterize the simulated GPP and assess how 

well the timing of the beginning (budbreak) and the end (leaf fall) of the 
growing season are reproduced, we present the annual GPP cycle as 
represented by WRF-Chem and measured over different forest sites 
across Europe (Fig. 8). Considering the European deciduous forest, at 
mid-latitude the growing season generally starts in April (CLRTAP, 
2017) with the leaf-out, and, consequently, the photosynthetic activity 
begins to rise (Fig. 8). Then, the GPP reaches its maximum value in July 
and starts to decrease thereafter because of scarce soil water availability 
(Peng et al., 2021). In fall, leaves start to fall-out and photosynthetic 

Fig. 5. Seasonal averages concentrations for O3 [ppb] modeled by WRF-Chem for the European domain overlapped by measurement stations (dots).  
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absorption of CO2 gradually decreases. This pattern is well captured in 
the three beech sites (DE-Hai, DE-Hoh and FR-For), although in DE-Hai 
and DE-Hoh the model simulates earlier onset and senescence dates 
compared to eddy covariance data. In contrast, in FR-For the model has 
a good agreement with measurement both in terms of the timing of 
phenological events and amplitude of seasonal cycle. In the sites where 
evergreen trees are the dominant vegetation, WRF-Chem shows 
different responses. In particular, in CH-Dav the model is not able to 

reproduce both the observed seasonal cycle and amplitude; this seems to 
be more likely related to differences in the representation of land cover 
types in this complex mid-mountain area (Bo et al., 2022) rather than to 
the poor representation of physical or biological processes. This is 
partially confirmed by the performances of the model in the other 
evergreen sites, where WRF-Chem shows a remarkable agreement with 
eddy covariance data in SE-Nor and FR-Pue and a slight underestimation 
of summer GPP peak in SE-Htm, while in FR-Bil, except during fall, the 

Fig. 6. Seasonal averages concentrations for PM2.5 [μg m− 3] modeled by WRF-Chem overlapped by measurement stations (dots).  
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model systematically underestimates the GPP, although the seasonal 
cycle is well reproduced. Besides, it is worth noting how well the model 
reproduces the typical heat stress and drought conditions of FR-Pue, 
characterized by a sharp GPP reduction during the beginning of the 
summer followed then by a secondary GPP peak at the beginning of the 
autumn. Considering the shrubland site, WRF-Chem shows a good 
agreement with eddy covariance data, despite it predicts a remarkable 
high GPP values during spring, as it does in IT-Tor too. Finally, in DE-Gli 
there is a strong agreement with measurements despite the sudden GPP 
drop observed at the end of May and June is not apparently captured by 
the model. Nonetheless, as highlighted in earlier research by Martinez 
et al. (2019), the dynamics of this site are significantly shaped by 
management practices, notably the grassland being harvested two to 
four times annually, a factor not currently considered by the model. This 
oversight helps elucidate the sudden decline observed in GPP. 

3.4. Human health protection indicators from regional to city-scale 

The previous analysis helps to assess the performances of the model 
in reproducing different meteorological, chemical and biological vari
ables. In this section, as possible application of our modeling framework, 
we present how common heat stress and air pollutant indices, used for 
human health protection, change when computed from regional to 
urban scale for the cities of Florence (Italy) and Aix en Provence 
(France). 

To assess the impact of O3 on human health, according to the World 
Health Organization (WHO), we use the SOMO35 (see Materials and 

Methods). Considering the SOMO35 (Fig. 9, panel A), because of the 
coarse resolution the parent domain shows homogeneous SOMO35 
levels, while the kilometer-scale simulation displays a detailed spatial 
fragmentation. 

Looking at the thermal stress, in Fig. 9 (panel B) we present the UTCI 
computed as the summer mean (JJA) of daily maxima. In the parent 
domain the heat stress has a clear latitude gradient, with UTCI values 
generally increasing towards the south. The intermediate Mediterranean 
domain is characterized by high insolation patterns and temperatures 
except over the mountainous regions, with UCTI reflecting this pattern. 
In the kilometer-scale simulations, around the two analyzed munici
palities the UTCI shows values ranging between Strong and Very Strong 
Heat, highlighting the relevance of such indicator in determining heat- 
related mortality in Mediterranean region. 

4. Conclusions 

We presented a modeling framework designed to simulate air quality 
from regional to urban scale and assess the impacts of air pollution and 
thermal stress on human health at city-scale. To assess the model reli
ability, we evaluated its performances in reproducing several relevant 
meteorological, chemical, and biological variables. Results showed that 
the WRF-Chem model simulates satisfactory well the main spatio- 
temporal characteristics of the analyzed meteorological variables. 
Considering the surface air temperature, the mean bias ranged from 
− 0.27 ◦C to +0.40 ◦C in the European domain and from − 0.13 ◦C to 
+0.79 ◦C in the nested domain. Compared to other simulations 

Fig. 7. Annual gross primary productivity (GPP) [gC m− 2y− 1] for 2019 simulated with WRF-Chem compared with MODIS dataset for the European domain (upper 
boxes) and Western Mediterranean Sea domain (bottom boxes). 
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performed over the same region we found a substantial reduction in the 
well-known winter and summer bias (Mooney et al., 2013). Similarly, 
the precipitation is in good agreement with previous studies (e.g., 
Katragkou et al., 2015), although locally some large biases, related to 
the aerosols-radiation-precipitation feedback, still emerge. In this case, 
the mean bias ranges from − 0.52 mm day− 1 to +0.44 mm day− 1 in the 
European domain and from − 0.04 mm day− 1 to − 0.40 mm day− 1 in the 
nested domain. 

Considering the main trace-gases, despite an underestimation of NO2 
and overestimation of O3 concentration mainly over the main European 
cities, the model is able to correctly reproduce their spatial and temporal 
variability. Stations located into large cities or close to traffic roads often 
record very high concentrations of pollutants which cannot be repro
duced by the atmospheric model (Sicard et al., 2021b, c), unless it is 
properly fed with local emission inventories. For instance, Georgiou 
et al. (2018), comparing WRF-Chem simulated NO2 concentrations with 
a local station close to a large highway which was not captured by the 
anthropogenic emission inventory, showed how the high NOx concen
trations, resulting from traffic, were not correctly simulated by the 
model. In a study by López-Noreña et al. (2022), it was demonstrated 

that aggregating coarse anthropogenic emissions within a city results in 
the model producing a sizable and uniform pollutant plume that grad
ually dissipates towards suburban regions. Conversely, when the emis
sion inventory incorporates detailed spatial data, the model reveals 
distinct local pollution hotspots and spatial patterns that align with 
specific emission sources and highway networks (López-Noreña et al., 
2022). Despite, the limitations arising from the lack of local emission 
inventories, the PM2.5 concentrations are well simulated in both the 
domains. 

The GPP comparison with satellite data revealed a fair agreement 
with observation and a general underestimation of the maxima. 
Nevertheless, it is well known how the satellite-based data tend to 
overestimate the GPP maxima (Zhu et al., 2023). On the other side, the 
comparison with in-situ measurements showed a good agreement on 
both the timing of phenological events and magnitude of GPP in most of 
the sites. Results highlighted how the model simulates earlier leafing-out 
in the spring in some sites; this result is consistent with Ma et al. (2017) 
who showed earlier beginning of the growing season over several sites 
located in central and eastern areas of continental United States. 

Overall, the model validation revealed how the WRF-Chem is able to 

Fig. 8. The WRF-Chem simulated monthly cycle of GPP [gC m− 2d− 1] (green line) against tower-derived values across the 12 selected sites (red line).  

A. Anav et al.                                                                                                                                                                                                                                    



Environmental Research 257 (2024) 119401

11

reliably reproduce the main meteorological, chemical, and biological 
variables over our study areas, therefore model output can be used to 
feed urban domains without introducing large biases through the 
boundary conditions. 

To conclude, this work showed how results from this modeling 
framework can be used to estimate the impact of both air pollution and 
meteorological conditions on human health. As climate change and poor 

air quality are expected to be a primary cause of death in the next future 
our approach could be applied to other cities to quantify present and 
future impacts on health effects of climate change and air pollution. This 
could potentially allow to identify concrete adaptation measures, espe
cially for the most vulnerable cities. 

Fig. 9. Maps of SOMO35 (upper panel) and thermal heat stress (UTCI, lower panels) over the different domains as simulated by WRF-Chem for the year 2019.  
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Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., 
Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De 
Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., 
Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., 
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