
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Introduction

Formal methods and automated verification of critical
systems

Maurice H. ter Beek1, Stefania Gnesi1, Alexander Knapp2

1 Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy
e-mail: {terbeek,gnesi}@isti.cnr.it

2 Institute for Software and Systems Engineering, Universität Augsburg, Augsburg, Germany
e-mail: knapp@informatik.uni-augsburg.de

Received: date / Revised version: date

Abstract Critical (software) systems are all around us.
These systems are typically characterised by stringent
dependability requirements and demand elevated levels
of robustness and fault tolerance. To assure that they
function as intended and provide a number of quality
guarantees, formal methods and automated verification
techniques and tools have been in use in the engineering
of such critical systems for many years now. In this intro-
duction to the special issue FMICS-AVoCS on “Formal
Methods and Automated Verification of Critical Sys-
tems”, we outline a number of recent achievements con-
cerning the use of formal methods and automated ver-
ification techniques and tools for the specification and
analysis of critical systems from a variety of applica-
tion domains. These achievements are represented by six
selected papers: five were selected from the joint 21st
International Workshop on Formal Methods for Indus-
trial Critical Systems and 16th International Workshop
on Automated Verification of Critical Systems (FMICS-
AVoCS 2016), while one of them was selected after an
open call for papers.

Key words: formal methods – automated verification –
critical systems

1 Introduction

We are surrounded by a fair amount of critical (soft-
ware) systems with stringent dependability requirements
and necessitating elevated levels of robustness and fault
tolerance. It is of paramount importance that such sys-
tems (e.g. safety-critical, business-critical, performance-
critical, etc.) function as intended and provide a number
of overall quality guarantees. Thus, the main causes of
software failures—such as requirements defects, design

faults and incorrect implementations—need to be ex-
cluded with the highest levels of assurance. To this aim,
formal methods and automated verification techniques
and tools have been in use in the engineering of such
critical (software) systems for many years now [1,2] and
their use is currently a hot topic in numerous application
domains [3–10].

Formal methods are specification languages for de-
scribing the behaviour of a (software) system as a model
with a precise semantics, thus allowing their associated
formal verification tools to perform analyses over these
system models [11]. Similar to other engineering disci-
plines, the envisioned advantage of their use is the ex-
pectation that appropriate mathematical modelling and
analysis can contribute to the correctness of the de-
veloped systems by eliminating flaws during the initial
(software) development phases, i.e. well before imple-
mentation, and by ensuring robust and fault-tolerant
systems that perform as specified even in uncertain or
inconsistent environments.

This special issue dedicated to “Formal Methods and
Automated Verification of Critical Systems” contains a
total of six papers. Five of them are extended versions of
selected papers from the joint 21st International Work-
shop on Formal Methods for Industrial Critical Systems
and 16th International Workshop on Automated Verifi-
cation of Critical Systems (FMICS-AVoCS 2016), while
one of them was selected after an open call for papers.

The 21st International Workshop on Formal Meth-
ods for Industrial Critical Systems and the 16th Inter-
national Workshop on Automated Verification of Critical
Systems (FMICS-AVoCS 2016), which were organised as
a joint event from 26 September to 28 September, 2016,
in Pisa, Italy, called for contributions on the following,
non-exhaustive, topics of interest:

– Design, specification, refinement, code generation and
testing of critical systems based on formal methods.



2 Maurice H. ter Beek et al.: Formal methods and automated verification of critical systems

– Methods, techniques and tools to support the au-
tomated analysis, certification, debugging, learning,
optimisation and transformation of critical systems,
in particular distributed, real-time systems and em-
bedded systems.

– Automated verification (e.g. model checking, theo-
rem proving, SAT/SMT constraint solving, abstract
interpretation, etc.) of critical systems.

– Verification and validation methods addressing short-
comings of existing methods with respect to their
industrial applicability (e.g. scalability and usability
issues).

– Tools for the development of formal design descrip-
tions.

– Case studies and experience reports on industrial ap-
plications of formal methods, focussing on lessons
learnt or on the identification of new research direc-
tions.

– Impact of the adoption of formal methods on the
development process and associated costs.

– Application of formal methods in standardisation and
industrial forums.

The proceedings of FMICS-AVoCS 2016 have been pub-
lished in Springer’s Lecture Notes in Computer Science
series [12].

Shortly after the joint event, in November 2016, an
open call for papers devoted to “Formal Methods and
Automated Verification of Critical Systems” was issued.
According to the call, research papers containing novel,
previously unpublished results in all areas related to the
topics of the FMICS and AVoCS workshop series were
sought for. This resulted in the submissions of 14 papers.
Based upon a thorough reviewing process, the editors
decided to accept nine papers; three of them appeared
in a dedicated special issue on “Formal Methods for
Transport Systems” of Springer’s International Journal
on Software Tools for Technology Transfer (STTT) [10],
due to their explicit focus on transport systems, while
six papers are included in this special issue.

In the remainder of this introduction, we will briefly
present and contextualise the contributions of the papers
contained in this special issue, followed by a discussion
of the overall impact of this special issue.

2 Selected Papers

The first paper of this special issue, Qualitative and
quantitative analysis of safety-critical systems with S#
by Leupolz et al. [13], presents an integrated, uniform
framework for simulating and verifying safety-critical sys-
tems. This framework S# is directly based on the C#
programming language and development tools, for user-
friendliness, practicality, and versatility. For safety-crit-
ical systems, dedicated support for fault-modelling is
added. Both qualitative analysis, based on linear tem-

poral logic, and quantitative analysis using fault prob-
abilities can be conducted. The S# approach utilises
the LTSmin tool [14] for state space generation, feed-
ing LTSmin with state data directly computed from the
C# program. On the one hand, LTSmin can then be used
for explicit-state model checking for qualitative analysis,
like direct-cause-consequence analysis (DCCA). On the
other hand, a Markov chain can be derived for qualita-
tive analysis when the faults are labelled with probabili-
ties. The effectiveness and the efficiency of the approach
are demonstrated on several case studies.

The second paper of this special issue, Runtime veri-
fication of autopilot systems using a fragment of MTL-

∫
by de Matos Pedro et al. [15], introduces a novel ap-
proach to runtime verification of hard real-time systems
involving explicit time and duration. The approach uses
the three-valued restricted metric temporal logic with
durations RMTL-

∫
3
. As “bare-metal” real-time embed-

ded systems running on X86 and ARM processors are
targeted, monitor synthesis delivers C++11 code. A hi-
erarchy of monitors is synthesised that provide hard tim-
ing guarantees on each level. The expressiveness of the
logic and the synthesis approach is first discussed on
two uses cases: The first demonstrates an application
to resource models exhibiting under- and over-loading
conditions for task. The second use case evaluates the
likelihood of tasks remaining unscheduled based on the
overload of another task. This use case is feasible as also
conditional probabilities can be represented in the logic
and the synthesised monitors. The overall framework is
then successfully evaluated on the PixHawk platform for
an autopilot system showing its applicability in practice.

The third paper of this special issue, High-level frame-
works for the specification and verification of schedul-
ing problems by Chadli et al. [16], contributes to the
highly interesting and timely issue of schedulability of
Cyber-Physical Systems. Leveraging on a model-based
rather than analytical approach, Chadli et al. present
so-called “simplicity-driven” high-level specification and
verification frameworks, based on variants of (probabilis-
tic) timed automata and supported by the well-known
Uppaal (SMC) toolset [17], to describe and analyse
scheduling problems (in particular correctness, optimi-
sation and monitoring). These frameworks can more-
over be constructed by a domain-specific tool generator
through meta-modeling, thus facilitating the task of de-
signing systems. A convincing feature is the adoption of a
user-friendly (graphical) approach: The high-level spec-
ifications are automatically translated to formal mod-
els (thus hiding the latter from practitioners) to enable
for the formal verification, and the analysis results are
transformed back to the high-level specification language
to facilitate their interpretation (graphically). The effec-
tiveness of the proposed approach is showcased by exper-
imenting with high-level frameworks for two scheduling
case studies.



Maurice H. ter Beek et al.: Formal methods and automated verification of critical systems 3

In the fourth paper of this special issue, Integrated
formal verification of safety-critical software by Ge et
al. [18], a formal verification process based on the com-
mercial Systerel Smart Solver (S3) toolset1 [19] for the
development of safety-critical embedded software sys-
tems is presented. The reader is guided through this pro-
cess by means of an Automatic Rover Protection system
implemented onboard a robot, which is a fitting exam-
ple of a non-trivial safety-critical embedded system, with
distributed components, some amount of central control
and some amount of independence. Furthermore, the pa-
per offers a solution to the use of floating-point arith-
metics on bit level, which—in spite of some scalability
issues—nicely shows the limits of what is feasible with
current technology. This paper is of particular interest to
practitioners in the field of safety-critical systems, as Ge
et al. provide detailed guidance on how to apply which
techniques under what circumstances, and they do so
from system requirements down to code.

The fifth paper of this special issue, Model-based test-
ing strategies and their (in)dependence on syntactic mod-
el representations by Huang and Peleska [20], presents
a fresh look at model-based testing, shifting the focus
from the apparent syntactic representation to the true
semantic contents of models. In fact, classical model-
based testing relies on the concrete syntactical form of
a model for test case generation. This may lead to test
suites of different strength for different syntactical mod-
els which, however, have the same semantics. The prob-
lem particularly arises when higher-level modelling lan-
guages like UML are used. The new approach for test
case generation just relies on the language of the model
described, i.e., its semantics. In particular, it is shown
how to lift the traditional Wp-method for conformance
testing to the language setting.

The sixth and final paper of this special issue, As-
sessing SMT and CLP approaches for workflow nets ver-
ification by Bride et al. [21], assesses the verification of
workflow nets against specifications expressed in a modal
logic for two symbolic approaches: One is based on Satis-
fiability Modulo Theories (SMT) and the other is based
on Constraint Logic Programming (CLP). Workflow nets
are a particular class of Petri nets suitable for describing
the behaviour of business processes and workflows, and
they are effectively used in industry. Therefore, the focus
of the assessment is on the efficiency and scalability of
the two resolution methods, which is highly relevant for
technology transfer. In fact, the case studies used in the
paper stem from industrial workflows obtained through
collaborations with industrial partners.

The extensive experimental assessment of the two
methods is performed over a huge set of several thou-
sands of workflow nets. Two solvers are used as anal-
ysis back-ends. These are Z3 [22] (based on SMT) and

1 S3 is developed, maintained and distributed by Systerel.

SICStus Prolog2 [23] (based on CLP). Their respective
performance is thoroughly analysed and compared us-
ing four classes of workflow nets of increasing expres-
siveness (namely state machines, marked graphs, free-
choice and ordinary workflow nets) and all combinations
of valid/invalid may/must modal specifications. Based
on this assessment, Bride et al. propose concrete veri-
fication strategies for modal specifications of workflow
nets based on the specific features of the nets under ver-
ification and the modal specification to be verified. Their
results empirically demonstrate that these methods are
efficient and scalable to workflow nets consisting of up
to 1000 nodes.

3 Discussion

We have briefly presented the six selected papers that
constitute this special issue. The topics discussed in these
papers cover a broad range of formal methods and au-
tomated verification techniques and tools, ranging from
the formal verification of concrete systems like the Auto-
matic Rover Protection system, through the modelling
of safety-critical systems—including probabilistic fault
modelling in the high-level programming language C#
and runtime verification of embedded systems with hard
timing requirements based on RMTL-

∫
3
—to semantic

issues in model-based testing.
As could be expected from a special issue born out

of the FMICS-AVoCS workshop series, the focus is on
industry-relevant case studies, targeting practical prob-
lems related to scheduling, real-time or workflows, and
on automated techniques for their modelling and verifi-
cation. Consequently, oftentimes the formal details are
hidden from the users, by employing high-level mod-
elling languages and by applying automated tools that
are complemented with usage guidance for practitioners.
We also observe a trend in the use of real-time and proba-
bilistic modelling. On the other hand, practical support
for testing safety-critical systems remains an issue, in
particular when it comes to real-time properties.

Acknowledgements. We would like to thank all authors for
their contributions and the reviewers of FMICS-AVoCS 2016
and in particular those of this special issue for their reviews.

References

1. Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and
John S. Fitzgerald. Formal methods: Practice and expe-
rience. ACM Comput. Surv., 41(4):19:1–19:36, 2009.

2. Stefania Gnesi and Tiziana Margaria, editors. Formal
Methods for Industrial Critical Systems: A Survey of Ap-
plications. John Wiley & Sons, Inc., Hoboken, 2013.

2 http://sicstus.sics.se/



4 Maurice H. ter Beek et al.: Formal methods and automated verification of critical systems

3. Maurice H. ter Beek, Dave Clarke, and Ina Schaefer. Ed-
itorial preface for the JLAMP Special Issue on Formal
Methods for Software Product Line Engineering. Jour-
nal of Logical and Algebraic Methods in Programming,
85(1):123–124, 2016.

4. Maurice H. ter Beek, Alexei Lisitsa, Andrei P. Nemy-
tykh, and António Ravara. Automated verification of
programs and Web systems. Journal of Logical and Al-
gebraic Methods in Programming, 85(5):653–654, 2016.

5. Maurice H. ter Beek and Alberto Lluch Lafuente. Au-
tomated specification and verification of Web-based ap-
plications. Journal of Logical and Algebraic Methods in
Programming, 87:51, 2017.

6. Matthias Güdemann and Manuel Núñez. Preface of the
special issue on formal methods in industrial critical sys-
tems. International Journal on Software Tools for Tech-
nology Transfer, 19(4):391–393, 2017.

7. Necmiye Ozay and Paulo Tabuada. Guest editorial: spe-
cial issue on formal methods in control. Discrete Event
Dynamic Systems, 27(2):205–208, 2017.

8. Gudmund Grov and Andrew Ireland. Preface of the
special issue on Automated Verification of Critical Sys-
tems (AVoCS 2015). Science of Computer Programming,
148:1–2, 2017.

9. Maurice H. ter Beek and Michele Loreti. Guest Ed-
itorial for the Special Issue on FORmal methods for
the quantitative Evaluation of Collective Adaptive Sys-
Tems (FORECAST). ACM Transactions on Modeling
and Computer Simulation, 28(2):8:1–8:4, 2018.

10. Maurice H. ter Beek, Stefania Gnesi, and Alexander
Knapp. Formal methods for transport systems. Interna-
tional Journal on Software Tools for Technology Trans-
fer, 20(3), 2018.

11. José Bacelar Almeida, Maria João Frade, Jorge Sousa
Pinto, and Simão Melo de Sousa. An Overview of Formal
Methods Tools and Techniques. In Rigorous Software
Development: An Introduction to Program Verification,
pages 15–44. Springer, 2011.

12. Maurice H. ter Beek, Stefania Gnesi, and Alexander
Knapp, editors. Critical Systems: Formal Methods and
Automated Verification—Proceedings of the Joint 21st
International Workshop on Formal Methods for Indus-
trial Critical Systems and 16th International Workshop
on Automated Verification of Critical Systems (FMICS-
AVoCS 2016), volume 9933 of Lecture Notes in Computer
Science. Springer, 2016.

13. Johannes Leupolz, Alexander Knapp, Axel Habermaier,
and Wolfgang Reif. Qualitative and quantitative analysis
of safety-critical systems with S#. International Journal
on Software Tools for Technology Transfer, 2018. In this
issue.

14. Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de
Pol, Stefan Blom, and Tom van Dijk. LTSmin: High-
Performance Language-Independent Model Checking. In
Christel Baier and Cesare Tinelli, editors, Proceedings
of the 21st International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems
(TACAS 2015), volume 9035 of Lecture Notes in Com-
puter Science, pages 692–707. Springer, 2015.

15. André de Matos Pedro, Jorge Sousa Pinto, David Pereira,
and Lúıs Miguel Pinho. Runtime verification of autopilot
systems using a fragment of MTL-

∫
. International Jour-

nal on Software Tools for Technology Transfer, 2018. In
this issue.

16. Mounir Chadli, Jin H. Kim, Kim G. Larsen, Axel Legay,
Stefan Naujokat, Bernhard Steffen, and Louis-Marie
Traonouez. High-level frameworks for the specification
and verification of scheduling problems. International
Journal on Software Tools for Technology Transfer, 2018.
In this issue.

17. Alexandre David, Kim G. Larsen, Axel Legay, Marius
Mikučionis, and Danny Bøgsted Poulsen. Uppaal SMC
tutorial. International Journal on Software Tools for
Technology Transfer, 17(4):397–415, 2015.

18. Ning Ge, Eric Jenn, Nicolas Breton, and Yoann Fonte-
neau. Integrated formal verification of safety-critical soft-
ware. International Journal on Software Tools for Tech-
nology Transfer, 2018. In this issue.

19. Mathieu Clabaut, Ning Ge, Nicolas Breton, Eric Jenn,
Rémi Delmas, and Yoann Fonteneau. Industrial Grade
Model Checking—Use Cases, Constraints, Tools and Ap-
plications. In Proceedings of the 8th European Congress
on Embedded Real Time Software and Systems (ERTS2

2016), pages 85–92, 2016.
20. Wen ling Huang and Jan Peleska. Model-based testing

strategies and their (in)dependence on syntactic model
representations. International Journal on Software Tools
for Technology Transfer, 2018. In this issue.

21. Hadrien Bride, Olga Kouchnarenko, Fabien Peureux, and
Guillaume Voiron. Assessing SMT and CLP approaches
for workflow nets verification. International Journal on
Software Tools for Technology Transfer, 2018. In this
issue.

22. Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient
SMT Solver. In C. R. Ramakrishnan and Jakob Rehof,
editors, Proceedings of the 14th International Conference
on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2008), volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer,
2008.

23. Mats Carlsson and Per Mildner. SICStus Prolog—The
first 25 years. Theory and Practice of Logic Program-
ming, 12(1-2):35–66, 2012.


