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The paper presents a novel approach for aerodynamic shape optimization problems using the parametric model 
embedding (PME) method. PME reduces the design-space dimensionality while maintaining a connection to 
the original design parameters, addressing the curse of dimensionality. The optimization of an airfoil’s drag in 
transonic conditions demonstrates the method, using the RAE-2822 airfoil at Mach 0.734 and a Reynolds number 
of 6.5 million. Employing the covariance matrix adaptation evolution strategy, the process is performed with 
1,000 function evaluations in both original and PME-reduced design spaces. Moreover, statistical criteria based on 
advanced risk function are introduced to characterize and study the evolution of the optimization process. Results 
show that PME effectively retains essential design space characteristics, capturing at least 95% of the geometric 
variance associated with the original design space. This leads to significant aerodynamic improvements, including 
reduced drag and smoother pressure distributions. Additionally, the statistical analysis helps to understand the 
advantages and disadvantages of different levels of parameter space compression.
1. Introduction

Despite significant advancements in computational capabilities over 
the past decade, shape design remains challenging, especially when re-

lying on high-fidelity computational solvers. The pursuit of unique and 
innovative designs often leads to exploring larger design spaces, but 
this exacerbates the curse of dimensionality (CoD) [3], a well-known 
problem in global optimization where the performance of optimization 
algorithms and surrogate models deteriorate as the design space dimen-

sion increases. In industrial design, where time is a limited resource, 
techniques that reduce the computational demands of simulation-based 
design optimization (SBDO) [35] are essential for improving efficiency 
and meeting tight deadlines. Among the others, design-space dimension-

ality reduction approaches [33] are those methods capable of alleviating 
the CoD, while preserving an accurate representation of the original de-

sign parameterization.

The easiest method for reducing the design-space dimensionality is 
through the so-called indirect methods, such as factor screening [22], 
which involves identifying the most significant variables for the de-

sign problem and fixing the remaining ones to constant values dur-

ing optimization. However, this approach can be limiting as it does 
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not consider the impact that fixed variables could have when com-

bined with other variables. A more comprehensive evaluation can be 
done through variance-based sensitivity analysis using, e.g., Sobol in-

dices [36]. However, this method operates within a probabilistic frame-

work and requires a large number of design space samples, which can 
be computationally expensive. Additionally, the number of indices in-

creases with the design space dimensionality. For this reason, direct 
approaches, that address the dimensionality reduction process through 
re-parameterization, have increased their popularity, especially in the 
aeronautic domain [33]. Leveraging on machine learning principle [18], 
direct design-space dimensionality reduction approaches are classified 
as representation learning methods [4], that can identify important 
structures in the design-space parameterization.

One such method, based on the proper orthogonal decomposition 
(POD), equivalent to Karhunen-Loève expansion (KLE) [8], was devel-

oped to assess shape modification variability and create a reduced-

dimensionality model of the shape modification vector. This method 
does not require objective function evaluations or gradients. It operates 
by applying POD/KLE to the shape modification vector only, and after 
discretizing the equations, it reduces to the principal component anal-

ysis (PCA) of discrete geometrical data. The method enhances shape 
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Nomenclature

𝐝 shape modification vector

𝐠,𝐠′ original, deformed shape/geometry

𝐮 design variables vector/original parameterization

�̌� reconstructed design variables vector

𝐱 reduced design variables vector/reduced paramaterization

𝐲 operational conditions

𝐯𝑘 PME eigenvector component associated to 𝐮
𝐳𝑘 PME eigenvector component associated to 𝐝
�̃�𝑘 PME eigenvector

 manifold identifying the original shape/geometry

𝛼 angle of attack

𝜹 shape modification function

𝜆𝑘 PME eigenvalues

𝜎2 geometric variance

𝜏 trailing edge angle

𝝃 curvilinear coordinates on 

𝐏 PME data matrix

𝐖 PME weights matrix

𝑐 airfoil chord length

𝑟 leading edge radius

𝑡, 𝑡85 airfoil thickness, thickness at 85% of 𝑐
𝐶𝐷 drag coefficient

𝐶𝐿 lift coefficient

𝐶𝑀 pitching moment coefficient

𝐶𝑝 pressure coefficient

CVaR conditional value-at-risk

𝐿 shape discretization size

𝑀 number of original design variables

𝑁 number of reduced design variables

𝑆 number of Monte Carlo items⟨⋅⟩ ensemble average
optimization efficiency through re-parameterization and dimensional-

ity reduction, providing a better understanding of the design space 
and shape parametrization before optimization or performance anal-

ysis. This method, also known as modal parameterization [18], has 
been crucial in enhancing the design of airfoils and wings, streamlin-

ing external aerodynamic optimizations in subsonic [6,17,46], transonic 
[2,19,21,24–26,38–40,42,45], and hypersonic [20] regimes of airfoils 
and wings, as well as for internal aerodynamics of compressors [44,47], 
turbines [13], and nozzles [43].

However, the standard POD/PCA-based dimensionality reduction 
approaches have a significant limitation: they cannot explicitly recon-

struct the original parameterization. This limitation, known as the pre-

image problem [9], arises because when shape data is reduced into a set 
of principal components, the resulting low-dimensional representation 
lacks a direct mapping to the original shape parameters that designers 
use. In industrial design, the original shape parameters (e.g., airfoil co-

ordinates or wing section definitions) have a clear geometric meaning, 
which is preferred for ease of interpretation and adjustment. Unfor-

tunately, traditional POD/PCA methods do not preserve this original 
parameterization in the reduced space, making it difficult to reverse the 
dimensionality reduction process and recover the exact original shape 
from the principal components. This disconnect complicates the use of 
these methods in industrial applications, where designers need the abil-

ity to interpret and modify designs in terms of their original parameters.

The parametric model embedding (PME) [32] technique was re-

cently developed by the authors and aims to enhance the efficiency of 
shape optimization processes. PME can reduce the size of the design 
space while maintaining an explicit connection to the original parame-

ters, such as the geometric and design variables that define the shape. 
Specifically, these parameters could include control points of a spline, 
airfoil coordinates, or any other parameters that directly describe the 
geometry or configuration of the design in question. The explicit con-

nection refers to the fact that PME does not lose or obscure these original 
geometric descriptors during the dimensionality reduction process, un-

like standard POD/PCA approaches. The PME method creates a reduced 
design space that still retains a direct link to these original shape and de-

sign variables, which allows for both an efficient optimization process 
and an intuitive understanding of how the shape modifications affect 
the design in the original parametric space. It achieves this by incorpo-

rating a more comprehensive feature space that includes both the shape 
modification vectors and the design variables themselves. PME uses a 
generalized inner product to properly resolve the prescribed design vari-

ability, selecting a latent dimensionality that best captures the essence 
of the shape changes while preserving the interpretability of the orig-
2

inal parameters. This enables designers to manipulate the design in a 
reduced space while still understanding its impact on the physical ge-

ometry or configuration.

The primary objective of this work is to introduce and validate a 
novel approach to aerodynamic shape optimization by leveraging PME 
for design-space re-parameterization. This involves the application of 
statistical criteria based on advanced risk functions to characterize and 
study the evolution of the optimization process, highlighting that a very 
effective parameter compression does not necessarily lead to a more 
efficient optimization procedure.

To achieve a meaningful statistical analysis, significant computa-

tional resources were invested. The analysis was performed on a sta-

tistical sample, requiring multiple runs of the optimization process with 
different initial conditions of the evolutionary algorithm. Each optimiza-

tion process utilized Reynolds-averaged Navier-Stokes (RANS) solvers 
on a converged mesh, demanding substantial computational power.

Another novelty of this paper is that the computational chain used 
is entirely based on open-source components (see gitlab.com/qudo046/

avt-331-l-2-aero-benchmarks.git). This allows other researchers to ex-

amine the results or verify their algorithms on problems similar to those 
of industrial interest.

The remainder of the article is organized as follows: section 2

presents the PME formulation; section 3 is devoted to introducing the 
aerodynamic shape optimization problem, with details on the shape 
parametrization methods, the numerical solver, and the computational 
grid, as well as a description of the optimization algorithm; the results 
are presented and discussed in section 4 and 5; finally, section 6 pro-

vides conclusions and future perspectives.

2. Parametric model embedding

Design-space dimensionality reduction using POD or PCA has 
demonstrated its effectiveness in reducing dimensionality prior to the 
optimization loop, thereby mitigating the CoD associated with the op-

timization problem [33]. However, when the dimensionality reduction 
procedure relies solely on the shape modification vector, it does not in-

herently offer a method to revert to the original design variables from 
the latent space, which is the reduced dimensional representation of 
the original shape parameterization. This leads to two significant chal-

lenges:

1. the POD/PCA modal parameterization necessitates the implemen-

tation of a new shape modification method based on the POD/PCA 
eigenvectors;

2. when fewer than all POD/PCA modes are used (as is typical in 

dimensionality reduction), there is no guarantee that the shape 
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Fig. 1. Shape modification example and notation for 𝑛 = 2.

produced using these reduced eigenvectors will reside within the 
original design space, potentially resulting in infeasible designs.

The PME technique has been developed to address these limitations 
[32]. PME extends standard PCA-based dimensionality reduction by in-

corporating the design variables into a generalized feature space formed 
by both the discretized shape deformation vector 𝐝 and the original de-

sign variables 𝐮. This approach ensures a more robust and feasible map-

ping between the reduced design space and the original design space, 
facilitating effective and practical shape optimization.

Consider a manifold , which identifies the original/parent shape, 
whose coordinates in the 𝑛D-space are represented by 𝐠(𝝃) ∈ ℝ𝑛 with 
𝑛 = 1, 2, or 3; 𝝃 ∈  are curvilinear coordinates defined on . Assume 
that, for the purpose of shape optimization, 𝐠 can be transformed to a 
deformed shape/geometry 𝐠′(𝝃, 𝐮) by

𝐠′(𝝃,𝐮) = 𝐠(𝝃) + 𝜹(𝝃,𝐮) ∀𝝃 ∈  (1)

where 𝜹(𝝃, 𝐮) ∈ ℝ𝑛 is the resulting shape modification vector, defined 
by arbitrary shape parameterization or modification method (e.g., CAD 
parameterization, Bezier surfaces, FFD, NURBS, etc.), and 𝐮 ∈ ⊂ℝ𝑀

is the design variable vector. Fig. 1 shows an example of the current 
notation for 𝑛 = 2.

Discretizing  by 𝐿 elements of measure Δ𝑗 (with 𝑗 = 1, … , 𝐿), 
having 𝐝(𝝃, 𝐮) as the discretization of 𝜹(𝝃, 𝐮), sampling  by a statis-

tically convergent number of Monte Carlo (MC) realizations 𝑆 , so that 
{𝐮𝑘}𝑆𝑘=1 ∼ 𝑝(𝐮), and organizing the discretization 𝐝 = 𝐝 − ⟨𝐝⟩ (with ⟨⋅⟩
the ensemble average) in a data matrix 𝐃 of dimensionality [𝑛𝐿 × 𝑆]

𝐃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑1,𝜉1 (𝐮1) 𝑑1,𝜉1 (𝐮𝑆 )
⋮ ⋮

𝑑𝐿,𝜉1
(𝐮1) 𝑑𝐿,𝜉1

(𝐮𝑆 )
⋮ … ⋮

𝑑1,𝜉𝑛 (𝐮1) 𝑑1,𝜉𝑛 (𝐮𝑆 )
⋮ ⋮

𝑑𝐿,𝜉𝑛
(𝐮1) 𝑑𝐿,𝜉𝑛

(𝐮𝑆 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

where 𝑑𝑗,𝜉𝑘 is the 𝑘-th component of the shape modification vector as-

sociated to the 𝑗-th element, defining �̂� = 𝐮 − ⟨𝐮⟩, the embedding is 
achieved introducing a matrix 𝐏 of dimensionality [(𝑛𝐿+𝑀) × 𝑆] as 
follows

𝐏 =
[
𝐃
𝐔

]
with 𝐔 =

⎡⎢⎢⎣
�̂�1,1 �̂�1,𝑆
⋮ ⋯ ⋮

�̂�𝑀,1 �̂�𝑀,𝑆

⎤⎥⎥⎦ (3)

where the matrix 𝐔 is added to the data matrix 𝐃 with a null weight 
3

𝐖𝐮 such that
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𝐖𝐮 = 𝟎 and 𝐖 =
[
𝐖 𝟎
𝟎 𝐖𝐮

]
(4)

and so leading to a generalized PCA problem in the form

�̃��̃�𝐖�̃� = �̃��̃� with �̃� = 1
𝑆
𝐏𝐏𝖳 (5)

where �̃� and �̃� represent the eigenvectors and eigenvalues matrices of 
�̃��̃�𝐖, where

�̃� =
[
𝐆 𝟎
𝟎 𝐈

]
(6)

and

�̃� =
[
�̃�1 … �̃�𝑆

]
with �̃�𝑘 =

[
𝐳𝑘
𝐯𝑘

]
(7)

The matrix 𝐆 = diag
(
𝐆1,… ,𝐆𝑛

)
is block diagonal and has dimension-

ality [𝑛𝐿 × 𝑛𝐿], with each [𝐿 ×𝐿] 𝑘-th block being a diagonal matrix 
itself

𝐆𝑘 = diag
(
Δ1,… ,Δ𝐿

)
(8)

containing the measure Δ𝑗 of the 𝑗-th element. Similarly, 𝐖 =
diag

(
𝐖1,… ,𝐖𝑛

)
is a block diagonal matrix of dimensionality [𝑛𝐿 ×

𝑛𝐿], where each [𝐿 ×𝐿] 𝑘-th block 𝐖𝑘 (𝑘 = 1, … , 𝑛) is itself a diagonal 
matrix defined as

𝐖𝑘 = diag
(
𝜌1,… , 𝜌𝐿

)
(9)

with 𝜌𝑗 (for 𝑗 = 1, … , 𝐿) the arbitrary weight given to each element.

Having given a null weight to 𝐔 does not remove the contribution 
of the design variables from the inner product, but just cancels as many 
columns as 𝑀 from the matrix �̃��̃�𝐖.

The solutions 𝜆𝑘 and 𝐳𝑘 of Eq. (5) are finally used to construct the 
reduced dimensionality representation of the original parameterization; 
defining the desired confidence level 𝑙, with 0 < 𝑙 ≤ 1, the number of 
reduced design variables 𝑁 is chosen such that

𝑁∑
𝑘=1

𝜆𝑘 ≥ 𝑙

𝑛𝐿∑
𝑘=1

𝜆𝑘 = 𝑙𝜎2 with 𝜆𝑘 ≥ 𝜆𝑘+1 (10)

and the PME of the original design variables is finally achieved by

𝐮 ≈ �̌� = ⟨𝐮⟩+ 𝑁∑
𝑘=1

𝑥𝑘𝐯𝑘 (11)

where the eigenvectors component 𝐯𝑘 embeds (or contains) the reduced-

order representation of the original design parameterization.

To reconstruct at least all the samples in 𝐃, the coefficients 𝜽𝑗 , for 
𝑗 = 1, … , 𝑆 , are evaluated projecting the matrix 𝐏 on �̃�′, that contains 
only the first 𝑁 eigenvectors of ̃𝐙, retaining the desired level of variance 
of the original design space, as follows

𝚯 = 𝐏𝖳�̃�𝐖�̃�′ (12)

with 𝚯 = [𝜽1 … 𝜽𝑆 ]𝖳. Consequently, the reduced design variables 𝐱 =
[𝑥1 … 𝑥𝑁 ]𝖳 can be bounded such as

min
𝑗

Θ𝑗𝑘 ≤ 𝑥𝑘 ≤max
𝑗

Θ𝑗𝑘 𝑘 = 1, … 𝑁. (13)

It may be noted that the overall methodology is independent of the 
specific shape modification method, which is seen as a black box by 
PME. Fig. 2 shows the extended design matrix structure (XDSM) [16]

of the SBDO process integrating the PME method. It may be noted that 
the PME is performed offline/upfront to the optimization procedure and 

this is given by assigning a negative sign to the associated XDSM blocks.
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Fig. 2. XDSM diagram for the solution of a shape optimization by PME.
3. Aerodynamic shape optimization problem

The study focuses on the shape re-parameterization and optimization 
of the RAE-2822 airfoil in transonic conditions using PME. The airfoil 
operates under conditions of Mach 0.734 and a Reynolds number of 
6.5 × 106. The design optimization problem is defined as follows:

minimize 𝐶𝐷(𝐮)
subject to 𝐶𝐿(𝐮) = 0.824

and to −0.11 ≤ 𝐶𝑀 ≤ −0.01
𝑡∕𝑐 = 0.1211
𝑟 ≥ 0.007𝑐
𝜏 ≥ 5◦
𝑡85∕𝑐 ≥ 0.02
𝐮𝑙 ≤ 𝐮 ≤ 𝐮𝑢,

(14)

where 𝐶𝐷 is the drag coefficient and 𝑐 is the airfoil chord. The lift coef-

ficient (𝐶𝐿) constraint is maintained by treating the angle of attack (𝛼) 
as a free parameter, which is automatically managed by the flow analy-

sis driver. In this design optimization problem, constraints are imposed 
for the pitching moment (𝐶𝑀 ), the maximum thickness-to-chord ratio 
(𝑡∕𝑐), the leading-edge radius (𝑟), the trailing edge angle (𝜏), and the 
thickness at 85% of the chord (𝑡85∕𝑐).

The shape handler ensures that the maximum thickness constraint 
is automatically satisfied by scaling the airfoil following its paramet-

ric modification. These constraints ensure the aerodynamic performance 
and structural integrity of the optimized airfoil [34]. The proposed prob-

lem is similar to the AIAA Aerodynamic Design Optimization Discussion 
Group (ADODG)1 case 2; however, some differences make the problem 
slightly more difficult. In particular, a constraint on the maximum thick-

ness, which is fixed and must be equal to that of RAE-2822, substitutes 
the constraint on the minimum area of the airfoil, and other geometric 
constraints are imposed on the minimum thickness at 85% of the chord 
and leading-edge radius.
4

1 https://sites .google .com /view /mcgill -computational -aerogroup /adodg.
3.1. Shape parameterization

The design space was defined within the activities of the NATO-AVT-

331 [5] and is composed of 𝑀 = 20 design variables, each linked to a 
different shape function (see Fig. 3) that operates either on the upper or 
lower side of the airfoil [28]. Namely, the shape modification functions 
include 6 polynomials, 12 Hicks-Henne bumps, and 2 Wagner functions 
[12].

An in-house code (WG2AER developed at CIRA) parameterizes the 
airfoil as a linear combination of the parent geometry 𝐠(𝝃), and the mod-

ification functions 𝜹.

3.2. Numerical solver and computational grid

The flow solver used to obtain RANS solutions is the open-source 
finite-volume code SU2 [23] v6.2.0, conceived at Stanford University 
and steadily growing in diffusion in the aeronautical world thanks to a 
broad community of developers active all over the world. SU2 is writ-

ten in C++ language and is characterized by a highly modular structure 
that is easily extensible for the solution of any set of PDE. The heart 
of the software is the parallel RANS solver capable of solving problems 
of interest to the mechanical and aerospace industry in the turbulent 
transonic regime.

The present work uses the Spalart-Allmaras turbulence model [37]

along with a 2nd-order monotone upstream-centered scheme for con-

servation law and an adaptive Courant–Friedrichs–Lewy number.

The numerical solution of the RANS equations using the finite vol-

ume method requires the generation of computational meshes with care-

fully specified characteristics. Indeed, in the context of optimization, it is 
not enough to generate a calculation grid for a single geometry. Further-

more, it is necessary to have an automatic procedure able to generate 
a calculation grid for each new geometry that the optimizer needs to 
analyze. The implementation of this type of procedure is not trivial be-

cause it is necessary to find a compromise between calculation accuracy, 
fast CFD computation, and the robustness of the meshing procedure to 
minimize errors that could occur during the grid generation phase. The 
automated procedure here presented takes in input the airfoil points, 
some flow data, and some grid control parameters, and returns a hybrid 
grid composed of triangles and quadrangles in the format suitable for 

SU2 solver.

https://sites.google.com/view/mcgill-computational-aerogroup/adodg
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Fig. 3. Shape modification functions of the parametric model.

Fig. 4. RAE 2822 computational domain and grid details.
The grid generation engine is the GMSH v4 software [10] that is 
excellent in terms of efficiency and robustness and batch usage capabil-

ities. The interface script to GMSH requires as input, basically, the coor-

dinates of the airfoil, the dimensions of the fluid domain, the Reynolds 
number, and a reference length. According to input data, a hybrid grid 
with proper and accurate modeling of the boundary layer and the wake 
is obtained. The parametric mesh generation procedure uses the field 
feature of GMSH to manage cell sizes and refinement zones, like the 
wake and the boundary layer.

It is worth noting that, for unstructured grids, mesh deformation 
techniques are often preferred in literature over computational mesh re-

generation. Here, instead, mesh regeneration is considered to be a more 
practical solution. Indeed, both methods offer advantages and disad-

vantages: for example, mesh deformation more reliable when it comes 
to computing the finite difference gradient of the quantity of interest, 
while re-meshing allows better control of the quality of the grid when it 
is necessary to explore a fairly large set of variations in the space of the 
design parameters, as is typical of many evolutionary algorithms and 
when one wants, as in our case, to explore the impact on the parame-

terization on a large set of possible shapes.

A circular computational domain with a radius equivalent to 40𝑐
is used. The computational grid is hybrid, with a mix of quadrilateral 
(quad) and triangular (tri) elements. The quad elements are used in the 
boundary layer region whose height is estimated using the Schlichting 
formula for turbulent boundary layer on a flat plate. This leads to about 
57k mesh elements to discretize the boundary layer region. The first cell 
height (adjacent to the airfoil surface) is calculated to approximatively 
respect the condition that the dimensionless distance from the wall 𝑦+ =
𝑦𝑢𝜏∕𝜈 is ≈ 1, with 𝑢𝜏 friction velocity and 𝜈 kinematic viscosity. The 
remaining part of the flow field is discretized using tri elements, and 
about 97k cells are used for a total of about 160k mesh elements. An 
example of an automatically generated grid for the RAE-2822 airfoil is 
shown in Fig. 4, where the detail of the boundary layer zone and the 
5

treatment of the corner point at the trailing edge are shown.
3.3. Optimization algorithm

The covariance matrix adaptation evolution strategy (CMA-ES) is a 
robust stochastic optimization algorithm, particularly effective for non-

linear or non-convex optimization problems. It belongs to the family of 
evolutionary algorithms, employing a population-based approach to op-

timize a given objective function. The algorithm maintains and adapts 
a distribution of candidate solutions using a multivariate normal distri-

bution [11].

The update rules of the CMA-ES rely on the mean vector 𝐦𝑡 and 
the covariance matrix 𝐂𝑡 of the distribution. The algorithm initializes 
the mean 𝐦0, covariance matrix 𝐂0 = 𝐈, step size 𝜎0, and other inter-

nal parameters like evolution paths. Generating a new population of 𝛾
candidate solutions from the current normal distribution:

𝐱𝑘 =𝐦𝑡 + 𝜎𝑡𝐂
1∕2
𝑡 𝐫𝑘 for 𝑘 = 1,… , 𝛾, (15)

where 𝐫𝑘 ∼ (𝟎, 𝐈) is a standard normal random vector, CMA-ES evalu-

ates each candidate solution using the objective function. Selecting the 
top 𝜇 candidates based on their objective values to form the new mean:

𝐦𝑡+1 =
𝜇∑
𝑖=1

𝑤𝑖𝐱𝑖∶𝛾 , (16)

where 𝐱𝑖∶𝛾 is the 𝑖-th best candidate and 𝑤𝑖 is the corresponding weight, 
the algorithm updates the evolution paths 𝐩𝑐 and 𝐩𝜎 for step size and 
covariance matrix adaptation, respectively, and then updates the covari-

ance matrix 𝐂𝑡:

𝐂𝑡+1 = (1 − 𝑐1 − 𝑐𝜇)𝐂𝑡 + 𝑐1𝐩𝑐𝐩𝖳𝑐 + 𝑐𝜇

𝜇∑
𝑖=1

𝑤𝑖𝐫𝑖∶𝛾𝐫𝖳𝑖∶𝛾 . (17)

Finally, the step size 𝜎𝑡 is updated using the evolution path 𝐩𝜎 .

The adaptation of the covariance matrix enables CMA-ES to learn 

the underlying shape of the objective function and to conduct effec-
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Fig. 5. Grid verification study for the original RAE 2822 and the optimized 
airfoils.

Fig. 6. Geometric variance convergence as a function of the MC items.

tive search strategies by adjusting the distribution of candidate solutions 
over successive generations.

4. Results

A preliminary evaluation of the computational grid for the parent 
airfoil was carried out through a grid verification study, following the 
methodology described in [41]. A grid triplet (G1, G2, G3) was estab-

lished, where G1 comprises approximately 160k elements, while G2 and 
G3 are progressively coarser with refinement ratios of 𝑟 ≈ 1.2. Fig. 5

shows a monotonic convergence, as indicated by 𝑅 ≈ 0.2, which reflects 
the ratio of solution differences between the grid levels. This ratio being 
less than 1 confirms that the grid exhibits monotonic convergence. To 
account for the discretization error, the grid uncertainty was estimated 
using the grid convergence index method, yielding an uncertainty esti-

mate of approximately 1.32%.

4.1. Design-space dimensionality reduction results

In previous studies [32], it has been demonstrated that a limited 
number of samples (on the order of a few thousand) is sufficient for PME 
training purposes. In this study, the geometric variance changes with a 
variation of less than 1% from 1,000 to 4,000 MC items (see Fig. 6). 
Therefore, the PME is trained by a set of 𝑆 = 4, 000 MC items as they 
provide convergence and are more than sufficient to ensure accuracy.

The geometry is discretized by 𝐿 = 364 grid nodes, providing a data 
6

matrix 𝐏 of dimension [748 × 4000]. Fig. 7 shows the variance resolved 
Aerospace Science and Technology 155 (2024) 109611

Fig. 7. Variance resolved as a function of the number of reduced design vari-

ables.

by PME. The number of reduced design variables to retain at least the 
95% of the original geometric variance is equal to 𝑁 = 5, achieving a 
dimensionality reduction equal to 75%, whereas 𝑁 = 8 reduced-design 
variables, corresponding to a dimensionality reduction equal to 60%, 
are needed to retain at least the 99% of the original geometric variance. 
The corresponding eigenvectors 𝐳𝑘 and 𝐯𝑘 (for 𝑘 = 1, … , 8) are shown 
in Fig. 8. Note that the PME eigenvector components for the shape rep-

resentation 𝐳𝑘 (see Fig. 8 left) are those obtained by lower and upper 
bound of 𝚯 (see Eq. (13)). These are not used for the shape modifica-

tion in reduced design space, which is based on 𝐯𝑘 (see Fig. 8 right) 
through the reconstruction of the original design variables via Eq. (11), 
but allows to understand what are the maximum allowable deformations 
with the reduced-design variables. Furthermore, 𝐯𝑘 allows to understand 
what of the original design variables participate in the reduced design 
variables, e.g., looking at the peaks of 𝐯1, it is mostly participated by 𝑢2, 
𝑢4, 𝑢6, and 𝑢20, and partially by 𝑢12, 𝑢14, and 𝑢16.

Fig. 9 illustrates an example of geometry reconstruction. Specifically, 
it presents one variant among the 4,000 MC items in 𝐃, originally pa-

rameterized by its shape and subsequently reconstructed via PME. The 
figure depicts the progression of PME reconstruction quality from left 
to right, showing improvements as the dimensionality 𝑁 increases. It 
is evident that while 𝑁 = 5 captures at least 95% of the original de-

sign variability, it still exhibits noticeable differences compared to the 
original geometry. In contrast, increasing 𝑁 to 8, which covers 99% of 
the geometric variance, results in a significantly improved and accurate 
reconstruction.

4.2. Optimization results

The optimization problem defined in Eq. (14) is addressed using the 
CMA-ES. This is applied with a population size of 10 individuals, and 
the total computational budget is set to 1,000 function evaluations. The 
optimization process is carried out both in the original design space, 
which has a dimensionality of 𝑀 = 20, and in two PME-reduced design 
spaces with dimensionalities of 𝑁 = 5 and 𝑁 = 8, respectively. Given 
the stochastic nature of CMA-ES, each optimization scenario is indepen-

dently repeated 10 times to ensure statistical robustness.

Fig. 10 shows the optimization convergence, considering the best re-

sults over the 10 repetitions. The optimization performed in the reduced 
design space using 𝑁 = 5 does not allow for achieving a better optimum 
compared to the optimization procedure conducted in the original de-

sign space. On the contrary, using 𝑁 = 8 a better optimum is found. This 
last design space allows also for a slightly faster convergence towards 
the optimum, compared to the original design space. Detailed statistics 
on the optimization results a given in Table 1. The optimal (original) 

design variables are compared in Fig. 11, while the associated airfoil 
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Fig. 8. Shape modification vector modes 𝐳𝑘 on the left and embeddings modes 𝐯𝑘 on the right, for 𝑘 = 1,… ,8 (from top to bottom).

Fig. 9. Example of PME reconstruction of one airfoil variant, conditional to the number of reduced design variables 𝑁 .
7
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Table 1

Summary and statistics of the optimization results in terms of drag coefficient 𝐶𝐷.

Design space Number of design variables Worst Median Best Best Δ𝐶𝐷%

Original 𝑀 = 20 0.0126963 0.0125283 0.0124299 -39.3

PME (95%𝜎2) 𝑁 = 5 0.0138232 0.0131226 0.0128821 -37.1

PME (99%𝜎2) 𝑁 = 8 0.0129479 0.0126019 0.0123595 -39.7
Fig. 10. Optimization convergence.

shapes and pressure coefficient 𝐶𝑝 along the cord are shown in Fig. 12. 
The optimal design variables (see Fig. 11) are quite different, but not so 
far from the parent airfoil. Indeed, the differences in the optimal shapes 
(see Fig. 12 top) are not highly appreciable, especially when compar-

ing 𝑀 = 20 to 𝑁 = 5. Major differences are visible for 𝑁 = 8, compared 
to 𝑀 = 20. Finally, looking both at the 𝐶𝑝 and the Mach field (shown 
in Fig. 13) it can be seen that all the optimal designs have reduced the 
shock present on the parent airfoil and this is definitely smoother for 
𝑁 = 8, compared to the others.

Finally, a grid convergence study for the optimal configuration (𝑁 =
8 PME best) has been conducted, confirming that the mesh regeneration 
approach yields consistent and robust results. As shown in Fig. 5, the 
drag coefficient for the optimized airfoil converges similarly to the orig-

inal RAE-2822 case, ensuring reliability in the optimization outcomes.

5. Discussion

To statistically assess the performance of the evolutionary algorith-

m’s worst, median, and best values have been provided in Table 1, and 
optimization convergence, as well as optimal shapes, have been shown 
for the best results obtained using the three design spaces. Nevertheless, 
although the optimization runs were replicated 10 times each with dif-

ferent seeds, the benefits of using the reduced design spaces are not so 
clear, and a further discussion here is presented to understand how the 
different parameterization allowed more or less efficient exploration of 
the search space during the optimization process.

For this purpose, the single generation of individuals from each op-

timization run is extracted (including the initialization phase, in which 
fitness information is not yet used to direct the search) and grouped the 
homologous generations for each parameterization used. As can be ob-

served from Fig. 14, the empirical distributions of the quantity of interest 
(QoI) to be optimized allow to evaluate how (on average) the individu-

als belonging to the 𝑖-th generation are distributed in the search space. 
Of particular interest are the tails of the distributions, which allow to 
compare how the elements of a given generation tend to distribute them-

selves around the minimum values (left tail) or how they tend to disperse 
in regions far from the optimum (right tail). To numerically evaluate 
these aspects of the empirical distribution, the conditional value-at-risk 
8

(CVaR, also defined in the literature as expected shortfall or superquan-
tile, [1,29]) is used. Its definition for the left and right distribution tails, 
respectively left CVaR (CVaR𝐿

𝛼 (𝑋) or left-tail conditional expectation 
below VaR𝛼(𝑋)) and right CVaR (CVaR𝑅

𝛼 (𝑋) or right-tail conditional 
expectation above VaR𝛼(𝑋)), are defined as follows:

CVaR𝐿
𝛼 (𝑋) = E[𝑋 ∣𝑋 ≤VaR𝛼(𝑋)] = 1

𝛼

𝛼

∫
0

VaR𝛾 (𝑋)𝑑𝛾 (18)

CVaR𝑅
𝛼 (𝑋) = E[𝑋 ∣𝑋 ≥VaR𝛼(𝑋)] = 1

1 − 𝛼

1

∫
𝛼

VaR𝛾 (𝑋)𝑑𝛾 (19)

where the value-at-risk (VaR) is defined as VaR𝛾 = 𝐹−1(𝛾) = inf{𝑦 ∶
𝐹 (𝑦) ≥ 𝛾} with 𝐹−1(𝛾) inverse of the cumulative distribution function 
𝐹 (𝑦) = Pr{𝑋 ≤ 𝑦} [27]. Observing that

𝛼CVaR𝐿
𝛼 (𝑋) + (1 − 𝛼)CVaR𝑅

𝛼 (𝑋) = E (20)

follows

CVaR𝐿
𝛼 (𝑋) = 1

𝛼
E−1 − 𝛼

𝛼
CVaR𝑅

𝛼 (𝑋) (21)

Returning to the analysis of Fig. 14, which was obtained by collect-

ing the populations at the 68-th generation, the advantage of the 𝑁 = 8
in the left tail of the probability distribution focused on the QoI mini-

mum values appears evident, and this advantage is well evidenced by 
the corresponding CVaR𝐿 values. The right tail of the distribution in-

stead shows a lower dispersion of high QoI values in the case of 𝑁 = 5. 
This may indicate convergence or a premature stagnation of the 𝑁 = 5
parameterization during the search process for the optimum. Note, then, 
that although the CVaR𝑅 values are very similar for the 𝑁 = 5 and 
𝑁 = 8, the greater difference between VaR and CVaR𝑅 in the case of 
𝑁 = 8 indicates that the degree of diversity of the population is still 
acceptable in this case.

The observation of Fig. 15, reporting CVaR𝑅 in ordinate logarithmic 
scale, shows that the dispersion of the initial populations is much higher 
for the 𝑁 = 5 and 8 parameterization than for the original 𝑀 = 20. This 
is in most cases because the 𝑁 = 5 and 8 design spaces initially generate 
more “extreme” shapes that do not respect the geometric constraints of 
the optimization problem or that cause the CFD solver to diverge. This is 
certainly a shortcoming of the search space compression technique that 
might require filtering based on either geometric or physical character-

istics of the problem [14,31]. Around the twentieth generation, instead, 
the situation reverses, and the CVaR𝑅 trends show that the 𝑁 = 5 and 
8 reduced-design space reach convergence and decrease the diversity 
before the original 𝑀 = 20 parameterization.

Fig. 16 top shows the CVaR𝐿 as a function of CMA-ES generations 
for each of the coding used. The lower values of 𝑀 = 20 original design 
space in the first generations show how the exploiting capabilities of the 
latter are prevalent in the first phase of optimization, while 𝑁 = 5 and 
8 parameterizations seem to favor a greater exploratory capacity of the 
design space. Fig. 16 bottom, which is a closeup on the ordinate scale, 
highlights that around generation 60, 𝑁 = 5 and 𝑀 = 20 show signs of 
population convergence on local minima, while 𝑁 = 8 still seems capa-

ble of allowing exploitation and improving the optimum before reaching 

convergence.
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Fig. 11. Comparison of optimal design variable (best) values.

Fig. 12. Airfoil shape (top) and associated pressure coefficient (bottom) comparison between parent and optimized airfoils in the original and reduced design space.
9

Fig. 13. Mach field comparison between parent and optimized airfoils.
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Fig. 14. Empirical distribution functions obtained for the different design vari-

ables parameterizations at the 68-th generation.

Fig. 15. Right tail CVaR𝑅 in logarithmic scale as a function of CMA-ES genera-

tions.

6. Conclusions

In this study, the shape optimization of the RAE-2822 airfoil un-

der transonic conditions has been explored using the parametric model 
embedding (PME) technique. By integrating PME into the design opti-

mization process, the design-space dimensionality has been successfully 
reduced while maintaining a clear connection to the original parame-

ters. This approach mitigated the curse of dimensionality and facilitated 
a more efficient optimization process.

The results demonstrate that the PME method is effective in preserv-

ing the essential characteristics of the original design space, enabling 
accurate reconstructions and meaningful shape modifications. Specifi-

cally, the optimization conducted in the PME-reduced design space with 
𝑁 = 8 retained at least 99% of the geometric variance and yielded an 
optimized airfoil with reduced drag and improved aerodynamic perfor-

mance compared to both the original and other reduced spaces.

The CMA-ES algorithm was employed to handle the optimization 
process, and multiple independent runs ensured the statistical robust-

ness of the results. The optimized designs showed significant improve-

ments in terms of shock wave mitigation and smoother pressure dis-

tributions along the airfoil surface. Additionally, the statistical analysis 
helped to understand the advantages and disadvantages of different lev-

els of parameter space compression.

The PME technique can be applied without substantial modifications 
10

to handle three-dimensional geometries, such as wings and full aircraft 
Aerospace Science and Technology 155 (2024) 109611

Fig. 16. Left tail (top) CVaR𝐿 as a function of CMA-ES generations and (bottom) 
closeup.

configurations, to evaluate its performance in more complex design 
spaces. Furthermore, PME direct integrability into CAD software can 
potentially streamline the design optimization process in industrial ap-

plications. However, collaborating with industry partners to apply PME 
in real-world projects is essential to validate its practical benefits and 
identify any additional requirements for industrial adoption.

Finally, the application of PME to physics-informed [30,31] and 
physics-related [14,15] formulations, as well as to nonlinear dimen-

sionality reduction methods [7], is a viable approach to address the 
limitations of linear approximations of PCA when dealing with strong 
nonlinearities in shape parameterization or underlying physics. This 
PME analysis will help determine when it is appropriate to intro-

duce physics-based or shape-based constraints in the compressed pa-

rameterization, further enhancing the effectiveness of the optimization 
process.
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