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Abstract 14 

Analyzing the composition of animal hair fibers in textiles is crucial for ensuring the 15 

quality of yarns and fabrics made from animal hair. Among others, Fourier Transform 16 

Infrared Spectroscopy (FTIR) is a technique that identifies vibrations associated with 17 

chemical bonds, including those found in amino acid groups. Cashmere, mohair, yak, 18 

camel, alpaca, vicuña, llama and sheep hair fibers were analyzed via Attenuated Total 19 

Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy and Scanning Electron 20 

Microscopy (SEM) technique aiming the discrimination among them to identify 21 

possible commercial frauds. ATR-FTIR, being a novel approach, was coupled with 22 

chemometric tools (PLS-DA), building classification/prediction models which were 23 

cross-validated. PLS-DA models provided an excellent differentiation among animal 24 

hair of both camelids and eight animal species. In addition, the combination of ATR-25 

FTIR and PLS-DA was used to discriminate the cashmere hair from different origins 26 

(Afghanistan, Australia, China, Iran and Mongolia). The model showed very good 27 

discrimination ability (accuracy 87%), with variance expression of 94.88 % and mean 28 

squared error of cross-validation (MSECV) of 0.1525. 29 
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Introduction 34 

Specialty animal hair fibers, such as cashmere, mohair, yak, camel, alpaca and vicuña, 35 

are valuable natural raw materials used by the fashion industry for manufacturing 36 

high-quality luxury textiles, and are distinct from sheep's wool fibers.1 Although they 37 

have a very similar composition from a chemical point of view (keratin proteins), the 38 

main characteristics that confer high value to these fibers are warmth, finesse, 39 

softness, lightness, luster and, also, their rarity.2 For these reasons, the cost of these 40 

fibers is high, but pretty variable depending on the specific type, and the detection of 41 

eventual adulteration is therefore essential to guarantee quality maintenance and 42 

traceability within the supply chain up to the final consumers. For instance, some 43 

features of fine yak fiber are similar to those of cashmere (i.e., in terms of the mean 44 

fiber diameter), but its price is only a quarter. Thus, the bleaching of naturally 45 

pigmented fine yak hair is highly attractive economically, potentially leading to 46 

commercial fraud.3  47 

Furthermore, for example in the case of cashmere, fibers obtained in different 48 

countries have different prices in relation to their qualities.4 Due to the complexity of 49 

the textile supply chain, natural fibers that are often produced in one country and 50 

subsequently processed elsewhere are more subjected to risks of label falsification.5  51 

The traditional and most widely employed techniques for the identification of animal 52 

fibers in the textile sector involve microscopies. On the one hand, optical microscopy 53 

allows the study of the internal fiber structure, such as pigmentation and medulla, 54 

whereas, on the other hand, scanning electron microscopy (SEM) shows the surface 55 

morphology and the arrangement and fine structure of the cuticle cells at high 56 

resolution.2,6 Further improvements in microscopy-based techniques include 57 
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automatization and application of deep learning and artificial intelligence,7–10 and also 58 

the use of innovative equipment such as the digital holographic microscope.11 59 

The investigation of the thermal behavior of fibers can be used, as well, to distinguish 60 

different animal hair, in particular, through Differential Scanning Calorimetry (DSC). 61 

Still, such analyses can be practically utilized only from a qualitative point of view.12 62 

The most important drawbacks of the techniques described above are that they are 63 

often time-consuming, subjective and operator-dependent. In order to enhance the 64 

objectivity and accuracy of the identification of animal hair fibers, even in blends, 65 

alternative methods have been proposed, analyzing protein fractions, 66 

external/internal lipids and DNA. Another method was based on specific selectivity 67 

antigen-antibody, applying monoclonal antibodies. Nevertheless, the results obtained 68 

were often affected by the influence of the chemical treatments to which the fibers 69 

have been subjected during manufacturing processes, such as bleaching, 70 

depigmentation and dyeing.13 71 

Among these efforts, validated studies for the identification in mixed samples of yak, 72 

wool and cashmere fibers exploited specific molecular markers that could be 73 

unequivocally linked to individual species, bringing about an excellent qualitative and 74 

quantitative identification of cashmere, wool and yak. The procedure includes the 75 

enzymatic digestion of keratin extracted from the fibers and the peptide analysis by 76 

ultra-performance liquid chromatography – electrospray mass spectrometry (UPLC-77 

ESI-MS). This method has become an international standard “ISO 20418-1 Textiles - 78 

Qualitative and quantitative proteomic analysis of some animal hair fibres Part 1: 79 

Peptide detection using LC-ESI-MS with protein reduction”.14,15 A similar proteomic 80 

approach was also adopted for South American camelid hair fibers.16 However, so far, 81 

only some types of animal hair fibers can be objectively recognized and distinguished 82 

from each other with the proteomic method and, additionally, as other techniques 83 

mentioned, it is quite expensive and destructive.  84 

In recent years, spectroscopic methods coupled with chemometric analyses have been 85 

developed to overcome issues in textile material identification (both natural and 86 

synthetic), even in cases of very similar compositions.17–23 Recently, Deep Neural 87 

Networks (DNN) and Support Vector Machine (SVM) machine learning techniques 88 
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were able to discriminate the hair of five animal species with an accuracy of more than 89 

95%.24 90 

In this work, the aim is to propose a method for different animal hair fiber recognitions 91 

by Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopy 92 

as a fast and practical tool, as it can be used in a non-destructive way for the analysis 93 

of various samples shaped as powders, fibers, fabrics, etc. without any pretreatment. 94 

Such analyses were assisted by chemometrics, in order to set a more and more 95 

objective methodology for the discrimination of keratin-based samples, at least for a 96 

preliminary screening in the first steps of the supply chain, when the fibers are initially 97 

provided. Indeed, it is worth specifying that spectroscopy in ATR mode can be affected 98 

by chemical modification of the sample’s surface, due to its intrinsic working system 99 

based on the phenomenon of total internal reflection. While research activities 100 

demonstrate the feasibility of this method, its true significance lies in the potential 101 

reduction of operating times and quality control costs of the textile industry. Recent 102 

case studies indicate that these savings can amount to hundreds of thousands of euros 103 

per year.25,26  104 

The fibers considered in this research were chosen on the basis of the taxonomic 105 

classification of animals or their geographical origin to simulate different operating 106 

scenarios. 107 

 108 

Materials and Methods 109 

Sample collection and ATR-FTIR measurements 110 

Hair fibers were collected from eight different animal species belonging to six animal 111 

genera in total: Ovis (sheep), Capra (cashmere goat and Angora goat, from which 112 

mohair originates), Bos (yak) Camelus (camel), Lama (llama), Vicugna (vicuña and 113 

alpaca), where the last three genera all belong to camelids (family Camelidae). In 114 

addition, white cashmere hair samples were delivered to the laboratory from five 115 

different countries around the world (Australia, Afghanistan, China, Iran and 116 

Mongolia). The fibers were supplied by leading companies in the textile sector and 117 
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were stored in a glass vacuum desiccator with silica gel until analysis, to control 118 

moisture levels.  Hair samples were used as provided by the suppliers without any 119 

pretreatment (e.g., cleaning with solvents)27,28 in order to detect the global infrared 120 

profile of the hair. Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) 121 

spectroscopy analysis was performed with a diamond crystal ATR-FTIR equipment 122 

(Spectrum Two FT-IR Spectrometer adjusted with UATR Two Accessory, Perkin Elmer, 123 

Waltham, MA, USA), in a wavenumber range of 4000 to 450 cm-1, at 4 cm-1 resolution 124 

with 32 scans. At the beginning and before every measurement, the diamond crystal 125 

was cleaned meticulously with isopropyl alcohol. During the conduction of the 126 

measurements, an amount of animal hair, approximately 0.3 g, was placed on the 127 

surface of the crystal (2.0 × 2.0 mm). 128 

Spectra pre-processing and data analysis 129 

The spectra pre-processing step was carried out with Spectragryph software v. 1.2.15. 130 

All animal hair spectra were baseline corrected, followed by multiplicative scatter 131 

correction (MSC). Multivariate analysis was performed with MATLAB (R2022a; The 132 

Mathworks, Natick, MA, USA), based on a previously reported work,29 to build a 133 

classification with a PLS-DA model (supervised technique). In order to validate the PLS-134 

DA model, each dataset was randomly split into a training set and a test set with a 135 

ratio of 70%:30%. The classification/prediction model was built from the training 136 

dataset of samples, and its efficiency was confirmed via the classification of the 137 

“unknown” test dataset samples. In order to avoid an overfitting effect on the 138 

upcoming classification model, 10-fold repeated stratified cross-validation (100 139 

repeats) was performed. 140 

Data management 141 

Following ATR-FTIR measurements, a high amount of spectra and data were obtained. 142 

The data management process for the series of studies is displayed in Figure 1. In the 143 

initial study, infrared spectra were collected for each of the eight animals 144 

(discrimination among species) to identify patterns and correlations. Then, four 145 

animals from the family of camelids were chosen to investigate in detail the 146 

discrimination ability of ATR-FTIR within the same animal family. The final deepening 147 



6 
 

was focused on one selected animal fiber (cashmere) from the initial eight-animal 148 

group, studying variations and adaptations of cashmere goat hair derived from five 149 

different geographical origins. This robust data management system ensured that the 150 

data from these diverse sources was integrated seamlessly, allowing for 151 

comprehensive comparisons and insightful conclusions. 152 

 153 

Figure 1: Data management visualization and number of samples used (split in training and 154 

test datasets). The colorful circle indicates the samples used for the initial discrimination 155 

among different species. Warm-color semicircle indicates the sub-group used for the 156 

discrimination among camelids. The small blue-color palette circle indicates the dataset used 157 

for the discrimination of cashmere samples based on their origin. 158 

 159 

Morphological analyses 160 

Scanning Electron Microscopy (SEM) measurements were performed using an EVO10 161 

instrument (Carl Zeiss Microscopy GmbH), according to the standard methods IWTO 162 
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TM 58-00 and AATCC 20A-2017, specific for fiber analyses. The acceleration voltage 163 

was set at 20 kV. Prior to the analyses, the samples were sputter-coated with a 20 nm-164 

thick gold layer in rarefied argon, using a Quorum Q150R ES plus Sputter Coater. 165 

  166 

Results and discussion 167 

Hair fiber discrimination for different animal species and within the camelid family  168 

SEM images of the different animal fibers taken into account in this part of the study 169 

are reported in Figure 2. Generally, animal fibers are similar on the basis of their 170 

morphological features. Some distinctions are possible by carefully observing the 171 

shape and thickness of the scales and the profile of the fiber.30 Due to thicker cuticle 172 

scale edges and higher scale frequency, the wool fibers are simple to identify 173 

compared to other animal fibers, assuming a significantly higher surface roughness 174 

(Figure 2a). On the contrary, the cashmere fiber scales are regular, thin with smooth 175 

surface and every scale envelopes the fiber shaft flatly and evenly. The distance 176 

between adjacent scales is large (Figure 2b). The mohair fibers exhibit an even 177 

diameter, straight fiber shaft and smooth surface. Many cuticle scales are lance-178 

shaped, but usually, scales overlap flatly and regularly on the fiber shaft with tile 179 

shapes (Figure 2c). Finer mohair shows similar scale patterns to those of cashmere. 180 

Therefore, sometimes, it is difficult to distinguish these fibers from each other. The 181 

yak fibers have a high scale frequency and a high diameter evenness in the fiber’s axial 182 

direction. Scales are thin and they encircle the fiber shaft tightly with an irregular ring-183 

shaped pattern (Figure 2d). In the camel fibers, the scales are thin and arranged 184 

obliquely along the fiber axis. Some fine fibers have scale patterns resembling those 185 

of cashmere (Figure 2e). The alpaca fibers show a high scale frequency with less clear 186 

and ripple-crenate edges (Figure 2f). These characteristics are very similar to those of 187 

llama fibers (Figure 2g); therefore, it is not straightforward to distinguish with 188 

certainty these two kinds of fibers. Finally, the vicuña fibers have fine diameters and 189 

show high-scale frequency and characteristic axial furrows (Figure 2h). 190 
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 191 

Figure 2: SEM images of the different animal fibers: Wool (a), Cashmere (b), Mohair (c), Yak 192 

(d), Camel (e) Alpaca (f), Llama (g) and Vicuña (h). Scale bar: 10 μm. 193 

 194 

In Figure 3, infrared spectra of hair fibers from the eight animal species considered are 195 

reported.  196 
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 197 

Figure 3: Averaged infrared spectra of hair fibers from eight animal species. 198 

The typical spectra of hair fibers consist of some macro-regions that can be 199 

summarized as follows:  200 

- The broad zone with centers at 3500 and 3275 cm-1 due to the O-H and N-H stretching 201 

vibrations (amide-A band)31, plus the peak at 3060 cm-1 of Amide B;32,33 202 

- The signals around 2920 and 2850 cm-1 due to asymmetrical and symmetrical 203 

stretching of the CH2 and CH3 groups;34–37 204 

- The peaks at 1634 cm-1 (Amide I) and at 1530 cm-1 (Amide II) corresponding, 205 

respectively, to C=O stretching vibration and the coupling of the N-H bending with C=N 206 

stretching;34 207 

- The complex Amide III band at 1234 cm-1 attributed to the in-phase combination of 208 

C-N stretching and N-H bending, with some contribution from C-C stretching and C=O 209 

bending vibrations;38 210 

- The peaks between 1200 and 1000 cm-1 (fingerprint region) belonging to the S-O 211 

stretching vibration band (hair keratin contains a high amount of intra- and 212 

intermolecular disulfide bonds of cystine amino acids).23,39 213 
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First of all, the absence of significant absorptions around 1760-1720 cm-1, where the 214 

signals of esters and organic acids of lanolin can lie, is the index of a sufficient 215 

cleanness of the fibers, making the ATR-FTIR attributions mostly relatable to the 216 

inherent characteristics of the keratin-based components.40 Indeed, lanolin is the 217 

wool grease that is derived from animal skin secretion.40  218 

Some of the main differences among spectra can be detected by zooming in on the 219 

spectrum in the high wavenumber region (Figure S1 in Supporting Information). 220 

Between 3250 and 3150 cm-1, a more pronounced shoulder in llama and vicuña 221 

spectra than in other samples can be ascribed to differences in the presence of 222 

primary and secondary amide functionalities.35 However, in the range 3400-3100 cm-223 

1, also residual adsorbed moisture might influence the spectral features. In the region 224 

of C-H vibration modes, the band centered at 2920 cm-1 is particularly diverse for yak 225 

(less sharp), camel (less intense and flat) and llama (additional shoulder at 2934 cm-1), 226 

while, at 2893 cm-1, a small peak appeared for vicuña and sheep wool. This region 227 

seems particularly affected by the sample variation, probably not only for the C-H 228 

modes, but also for the contribution of NH3
+ stretching vibrations and the specific 229 

differences in keratin composition, as already seen in the FTIR spectra acquired in Dai 230 

et al.41 Moreover, between 2885 and 2825 cm-1, the positions of the peaks slightly 231 

varied depending on the sample type and the intensity ratio of the signals 2851/2872 232 

cm-1 (CH2/CH3) resulted in being reduced in the cases of camel and alpaca. The 233 

explanation for these discrepancies likely lies in the aminoacidic composition -creating 234 

polypeptide chains- of the animal hair deriving from different species and exemplars.42 235 

Indeed, variable combinations of alanine, arginine, aspartic acid, cysteine, glutamine, 236 

glutamic acid, histidine, leucine, lysine, methionine, serine, threonine, tyrosine and 237 

valine are usually contained in keratins.43–45 Regarding the cases in which the 238 

diminishing of the CH2/CH3 ratio happens, for instance, it is possible to hypothesize a 239 

decrement of alanine, leucine and valine that possess a methyl group with respect to 240 

other amino acids where only -CH2 are present, like glutamic acid or cysteine that are 241 

among the most abundant ones in keratins.46 242 

If the amide I and amide II bands can be considered substantially equal among the 243 

specimens, the fingerprint zone clearly highlighted other variations (Figure 3). The 244 
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transmittance values for vicuña, from 1233 to 1097 cm -1, were higher than other 245 

fibers, probably implying a difference in the secondary structures of keratin, where β-246 

sheets were favored.47  247 

For alpaca, the signal intensity enhancement occurred from 1138 to 966 cm-1, 248 

together with a shift of the peak at 1030 cm-1 to 1040 cm-1. On the contrary, the peak 249 

at about 1030 cm-1 showed a decreased intensity in mohair, cashmere and wool 250 

samples. This latter signal is assignable to cysteine -S-sulfonate (-S-SO3-) and cysteic 251 

acid (-SO3H), whereas between 1055 and 1200 cm-1, cystine oxides can be 252 

detected.36,48–51 Again, these discrepancies can be typical of specific amino acid 253 

presence, particularly in terms of cysteine amount and, although to a lesser extent, 254 

methionine, or an index of the oxidation state of the fibers. The oxidation state of the 255 

fibers can be related to multiple factors, namely the exposure of the animals from 256 

which the hair originates to oxidative stress sources,52–54 or modifications potentially 257 

occurring in the supply chain. In this excursus, the sample that showed various 258 

peculiarities was the alpaca, which is in accordance with the literature. We suggest, 259 

indeed, that in this kind of fiber, sulfur-based and –CH2-containing amino acids, such 260 

as cysteine, are predominant at the expense of other amino acids. Atav and Türkmen 261 

have already found that Suri alpaca fibers had higher sulfur and cystine content 262 

compared with sheep wool.55  263 

Given the time-expensive procedures and the necessity of experienced operators to 264 

punctually distinguish the physical-chemical characteristics of each fiber sample, 265 

multivariate analysis was applied to the infrared spectra and a PLS-DA model was built 266 

to discriminate them by a chemometric tool. In order to choose the optimum number 267 

of components to build a model expressing the maximum variance among animal 268 

species but with minimum estimated error, diagnostics and 10-fold cross-validation 269 

were performed at the training set (168 samples). As depicted in Figure 4a, a high 270 

number of components (18 latent variables, LVs) were required to achieve a variance 271 

expression of 99.10 %. Indeed, a model with 18 LVs showed the minimum mean 272 

squared error of cross-validation (MSECV, 0.4851, Figure 4b), while the LVs’ increase 273 

did not add any features to the model. Figure 4c displays the score plot of the first 274 

three LVs, indicating the discrimination propensity of the model. Finally, the 275 
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discrimination ability of the model was evaluated with the classification of “unknown” 276 

test dataset (72 samples). According to the confusion matrix, the 18-LVs model 277 

succeeded with 100 % accuracy (Figure 4d), indicating very good discrimination ability. 278 

The discrimination of alpaca, vicuña, llama, mohair and Cashmere via ATR-FTIR 279 

spectroscopy and machine learning techniques has recently and successfully been 280 

carried out in the work of Quispe et al.24  281 

  282 

Figure 4: Diagnostics of the PLS-DA model among eight animal species. (a) Percentage of 283 

variance explained in Y (groups of animal species), (b) 10-fold cross-validation of the model, 284 

(c) score plot of the first three components (LV1, LV2, LV3) and (d) confusion matrix (using 18-285 

LVs) of the predicted “unknown” test dataset. In (d), Alp=alpaca, Cam=camel, Cash=cashmere, 286 

Lama=llama, She=sheep wool, Moh=mohair, Vic= vicuña, Yak=yak. Such order is followed from 287 

left to right in the “Predicted Class” axis and from top to bottom in the “True Class” axis. 288 

However, herein because of the large number of groups that were analyzed, a high 289 

number of components (18 LVs) were required. In order to assess the discrimination 290 

ability of infrared spectroscopy, the study was repeated, including only the subgroup 291 

of camelids (84 samples as the training dataset). It is evident in Figure 4c that the four 292 
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subgroups of camelids (alpaca, camel, llama, vicuña), at the lower part of the plot, 293 

were slightly separated from the other groups of animals. Indeed, by reducing the 294 

number of groups, PLS-DA could separate the four classes of camelids with only ten 295 

LVs. According to Figure 5, a 10-LVs model was able to classify the “unknown” samples 296 

(36 samples as test dataset) correctly with 100 % accuracy, while the expressed 297 

variation and MSECV (99.43 %  and 0.0437 in Figure 5a and 5b, respectively) were 298 

much better than previously. 299 

 300 

Figure 5: Diagnostics of the PLS-DA model among four camelids (alpaca, camel, llama, vicuña). 301 

(a) Percentage of variance explained in Y (groups of camelids), (b) 10-fold cross-validation of 302 

the model, (c) score plot of the first three components (LV1, LV2, LV3) and (d) confusion matrix 303 

(using 10-LVs) of the predicted “unknown” test dataset. 304 

These analyses confirm not only the ability of ATR-FTIR to separate animal hair from 305 

different animal species, but also the ability to discriminate hair from animals 306 

belonging to the same family.  307 
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PLS-DA model for cashmere fibers from different origins 308 

At this point, delving further into this research, only one animal fiber type was studied, 309 

but this time, hair samples were collected from different countries (Afghanistan, 310 

Australia, China, Iran and Mongolia). It is important to point out that fibers coming 311 

from the same animal can show slight differences in morphological characteristics 312 

according to their geographical origins. However, these differences are difficult to 313 

recognize by microscopical analysis and to associate them with one origin rather than 314 

another. In Figure 6, SEM images of cashmere fibers coming from goats of different 315 

origins are reported and they are all identified as “fibers having the morphological 316 

characteristics of cashmere”. 317 

 318 

Figure 6: SEM images of cashmere fibers with different geographical origins: Mongolia (a), 319 

China (b), Iran (c), Afghanistan (d) and Australia (e). Scale bar: 10 μm. 320 

Regarding the multivariate analysis, since it began with a maximum number of ten 321 

latent variables, 10-fold cross-validation was performed to further minimize the LVs’ 322 

number (Figure S2 in Supporting Information). A compromise between a low MSECV 323 

and a minimum number of LVs was selected as an optimum prediction model without 324 

overfitting: thus, the analysis proceeded by choosing only six LVs (MSECV 0.1525) and 325 

obtaining an excellent discrimination ability.  326 
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The differentiation among the training dataset samples associated with the five 327 

countries of origin of the cashmere hair can be detected distinctly in the score plot of 328 

PLS-DA (Figure S3 in Supporting Information). On the one hand, Australian samples 329 

showed some variability; still, this group could be discriminated by the model. On the 330 

other hand, Mongolian samples had the best separation from the other groups. 331 

Consequently, 6-LVs PLS-DA model with an expressed variation of 94.88 % and 332 

excellent fitting ability (R2 = 0.9488) can be used as a suitable chemometric tool for 333 

the discrimination among the five countries of origin of the cashmere hair.  334 

The analysis continued by investigating the variables associated with the 335 

discrimination. A detailed inspection of ATR-FTIR spectra (Figure 7a and 7b) together 336 

with the regression coefficients plot of the first two major components (Figure 7c) 337 

indicates all spectral characteristics from which the clustering of the samples mainly 338 

derives. As anticipated in the previous section, the detection of the peak at 1735 cm -1 339 

in the Mongolian fibers could give an idea of a lower degree of cleanness of that 340 

sample, which can have influenced the discrimination, bringing about additional 341 

information regarding the skin secretion of the animal species. However, analyzing 342 

other more PLS-DA “sensitive” regions, between 2980 and 2825 cm-1, assigned to C-H 343 

asymmetric and symmetric stretching vibrations, the most visible event was the band 344 

intensity variation (the Mongolia sample was the most intense, whereas the 345 

Afghanistan sample showed the smallest signals). In the case of Mongolian fibers, this 346 

fact can also be associated with the superimposition of alkyl chain groups of lipids 35 347 

with those of aminoacids. This hypothesis is corroborated by the presence of a 348 

broadened band comprised between 1280 and 1130 cm-1 (Figure 7a and 7b), which 349 

can subtend the vibrational modes of C-O stretching, related to fatty acids.56 350 
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 351 

Figure 7: (a) Infrared spectra of cashmere fiber from different countries, (b) zoom of the region 352 

1325-810 cm-1 (c) PLS coefficients plot. 353 

Additionally, a strong peak at 1182 cm-1 (appeared in both LV1 and LV2), and two 354 

peaks at 1056 cm-1 and 1036 cm-1 (the strongest among LV2’s variables which were 355 

associated with the discrimination, but in LV1 not so strong) were present in the 356 

loading plot (Figure 7c). As already mentioned, these wavenumbers were connected 357 

to S-O stretch vibration. More specifically, the 1200-1000 cm-1 region is the infrared 358 

window of cystine dioxide (-SO2-S-) (1182 cm-1), cystine monoxide (-SO-S-) (1056 cm-359 

1) and cysteic acid (-SO3H) (1036 cm-1) vibrations.49–51 Looking at Figure 7b, the most 360 

diverse band centered at about 1040 cm-1 was that from Afghanistan, with its stronger 361 

intensity. The differences observed in spectra of cashmere fibers could be correlated 362 

with their different amino acid composition, in turn, linked with the origin and the diet 363 

(grazing, administration of feeds, use of protected proteins) and also by the energy 364 

intake.57 Glycine, phenylalanine, serine, and tyrosine content has been reported to be 365 

affected by the country of origin; alanine, histidine, isoleucine, proline, valine, aspartic 366 

acid and phenylalanine levels depend on the energy nutrition and management.57 367 

Multivariate analysis was ended by utilizing the developed 6-LVs PLS-DA model to 368 

assess the test dataset samples of cashmere hair indicated as “unknown” for the 369 

model. The confusion matrix of the test dataset is reported in Figure 8. The accuracy 370 
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of the model was 86.67 %, which indicates an extensive classification of the 371 

“unknown” country of origin of the samples. Australian cashmere hair was the group 372 

with the highest misclassification capacity, due to the fact that five out of nine 373 

“unknown” samples were classified elsewhere. Overall, only 6 out of the total 45 374 

samples of the test dataset were misclassified, giving the model sensitivities and 375 

specificities presented in Table 1. These results demonstrate that ATR-FTIR coupled 376 

with PLS-DA could satisfactorily discriminate the cashmere hair samples from different 377 

origins. 378 

  379 

Figure 8: Confusion matrix of the cashmere hair origin predictive PLS model. 380 

 381 

Table 1: Sensitivity and specificity of country origin of cashmere hair. 382 

Country origin Sensitivity Specificity 

Afghanistan 1 1 

Australia 0.44 1 

China 0.89 0.94 

Iran 1 0.89 

Mongolia 1 1 
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 383 

Conclusions and perspectives 384 

In summary, our study represents a significant advancement in the field of animal hair 385 

fiber discrimination and origin classification. We investigated the utility of Attenuated 386 

Total Reflection (ATR) Fourier Transform Infrared (FTIR) spectroscopy coupled with a 387 

chemometric tool, specifically Partial Least Squares Discriminant Analysis (PLS-DA), for 388 

discriminating various animal hair fibers (cashmere, mohair, yak, camel, alpaca, 389 

vicuña, llama and sheep) and differentiating cashmere hair samples from different 390 

origins (Afghanistan, Australia, China, Iran and Mongolia). Scanning Electron 391 

Microscopy (SEM) technique was used to analyze the surface morphology of the 392 

different sample categories. 393 

Our findings underscore the effectiveness of ATR-FTIR coupled with PLS-DA in 394 

accurately distinguishing between eight animal hair groups and camelid subgroups. 395 

Specifically, it achieved variance expressions of 99.10 % (18 LVs) and 99.43 % (10 LVs) 396 

when discriminating between eight animal hair groups and camelid subgroups, 397 

respectively. The robustness of our discrimination approach was supported by low 398 

MSECV values, 0.4851 and 0.0437, for eight animal hair groups and camelid 399 

subgroups, respectively.  400 

Particularly, ATR-FTIR coupled with PLS-DA effectively classified cashmere hair 401 

samples from different countries, with Mongolian samples demonstrating superior 402 

separation compared to Australian samples, which exhibited higher misclassification 403 

rates. The discrimination seemed to be influenced by the superimposition of alkyl 404 

chain groups of lipids, when detected, and cystine oxides and cysteic acid vibrations 405 

also contributed with a strong influence.  406 

Although this study successfully demonstrates the qualitative identification of animal 407 

fibers using PLS-DA, it does not encompass quantitative analysis, which is useful for 408 

blends. Additional research should explore the integration of quantitative methods to 409 

enhance the robustness and applicability of the findings. Moving forward, future 410 

research efforts could focus on addressing some of the limitations encountered in our 411 

study, such as sample size constraints or the exploration of additional discriminant 412 
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factors beyond amino acid compositions. Additionally, there is potential to further 413 

optimize the ATR-FTIR technique and refine chemometric models to enhance 414 

discrimination accuracy and reliability, as well as investigate other animal hair types, 415 

such as cashmere, whose origins hold significant importance in the fashion industry 416 

and potential susceptibility to commercial frauds. 417 

To conclude, our research contributes to advancing the understanding and application 418 

of analytical techniques for discriminating animal hair fibers, taking part in the 419 

preliminary stages of the textile manufacturing process, or as a complementary tool 420 

together with other identification techniques.  421 
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