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Periodic systems have new classes of synchronization stability
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The master stability function is a robust and useful tool for determining the conditions of synchronization
stability in a network of coupled systems. While a comprehensive classification exists in the case in which the
nodes are chaotic dynamical systems, its application to periodic systems has been less explored. By studying
several well-known periodic systems, we establish a comprehensive framework to understand and classify
their properties of synchronizability. This allows us to define five distinct classes of synchronization stability,
including some that are unique to periodic systems. Specifically, in periodic systems, the master stability function
vanishes at the origin, and it can therefore display behavioral classes that are not achievable in chaotic systems,
where it starts, instead, at a strictly positive value. Moreover, our results challenge the widely held belief that
periodic systems are easily put in a stable synchronous state, showing, instead, the common occurrence of a
lower threshold for synchronization stability.

DOI: 10.1103/PhysRevResearch.6.043105

I. INTRODUCTION

Over the last couple of decades, the most successful struc-
tural paradigm in the study of complex systems has been
that of networks, in which discrete elements called nodes
or vertices interact across connections called links or edges
[1–4]. Of particular relevance to real-world applications is
the case where the nodes are dynamical systems, coupled to
each other if they share an edge. However, proper frameworks
and techniques are required to operationally define robustness
and resilience of networks leading to optimal performance
[5]. In dynamical networks, a vast array of phenomena can
occur, driven by the collective organization of the individual
dynamical systems. A significant one is the emergence of a
synchronized state, in which a number of elements that can
extend to the entire network eventually converge to the same
trajectory in phase space [6–8]. The study of synchronized
states holds a special importance across fields, as it has found
notable applications such as in modeling the functioning of
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neurons and the brain, and in investigating and optimizing the
operation of power grids [9–16]. As a result, strong efforts
have been directed toward the study of the different forms
under which synchronized states appear and of the effects that
factors such as network structure and coupling configuration
have on their properties [17–38].

A related question, which has generated a large body of
work, is how to assess the stability of a synchronized state. A
powerful tool to address this problem is the method known
as the master stability function (MSF) [39]. The method
estimates the stability of the synchronous solution to the
dynamics by estimating the largest Lyapunov exponent af-
ter the system is perturbed in directions within the subspace
transverse to the synchronization manifold. This allows one
to evaluate the synchronization stability from the sign of the
exponent, so that the trajectory of the perturbed system will
converge back onto the synchronized state only if the largest
Lyapunov exponent is negative. The elegance of the method,
which is equivalent to a decomposition of the dynamics into
eigenmodes, has made it a preferred tool for the exploration
of the properties of synchronization, so that, over time, it
has been extended and applied to a diverse range of complex
networks, underscoring its power and versatility [40–48].

The nature of the MSF has also made it a natural choice of
method to employ when studying systems whose dynamics is
chaotic. In fact, a general classification scheme has also been
presented for the synchronization behavior of chaotic systems,
based on the positivity regions of the MSF [2]. This has shown
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that each chaotic system belongs to one of three classes, which
correspond to a vanishing, unbounded, or bounded region of
parameters for which their synchronized state is stable after an
initial threshold in coupling strength. However, notwithstand-
ing the numerous successes of this method, no systematic
study of the MSF behavior for periodic systems had been
carried out so far. Note that ensuring that periodic systems
reliably Permain in a stable synchronized state is an important
task for numerous engineering applications where the preci-
sion of timing and the mitigation of jitter, instabilities, and
phase noise are of critical relevance. Specific examples of
such situations include synchronizing AC power-distribution
networks to ensure efficient and coordinated power delivery
[49,50], guaranteeing the synchronous operation of digital
communication networks to obtain reliable data transmission
[51], and maintaining coherence in clock distribution trees
within electronic devices and circuit boards, which is essential
for optimal performance and functionality [52].

In this article, we close the gap in the synchronizability of
periodic systems by a thorough investigation into their syn-
chronization dynamics. We use the MSF method introduced
by Pecora and Carroll, focusing on its application to peri-
odic systems, which differs from the predominantly chaotic
systems studied in previous research. Chaotic systems are in-
herently challenging to synchronize due to the butterfly effect,
which has driven significant research into their synchroniz-
ability. In contrast, it was traditionally believed that identical
periodic systems would synchronize at infinitesimal coupling
strength. However, our findings demonstrate that the MSF
behavior for periodic systems can differ substantially from
that of chaotic systems. This difference stems from the initial
value of the MSF, which is equal to the maximum Lyapunov
exponent of the system. By applying the MSF method to sev-
eral periodic systems, we reveal the existence of distinct stable
synchronization regions and propose a classification scheme
for periodic systems. We identify two additional classes of
MSF behavior unique to periodic systems. Furthermore, we
present examples where periodic systems do not synchronize
at infinitesimal coupling. These findings can help in expand-
ing the understanding of synchronization in periodic systems.

II. MODEL AND METHODS

Given a connected network of N diffusively coupled
d-dimensional identical systems with weighted adjacency ma-
trix W, its dynamics is described by the system of equations

ẋi = F(xi ) − σ

N∑

j=1

Li, jH(x j ), (1)

where xi is a vector with d components representing the state
of node i, F : Rd → Rd and H : Rd → Rd are vector fields
describing the internal dynamics of the systems and their
mutual coupling, respectively, σ is the coupling strength, and
the matrix L is the graph Laplacian of the network, whose
elements are

Li,i =
N∑

j=1

Wi, j

Li, j = −Wi, j . (2)

Note that, for the sake of brevity, here and in the following
we will omit writing explicit time dependencies, except when
we wish to draw specific attention to them. The definition of
the graph Laplacian in the previous equation makes it a posi-
tive semidefinite zero-row-sum matrix. This means that in this
case, it has one zero eigenvalue (λ1 = 0), while all the others
are positive (λi > 0 for i = 2, . . . , N). Also, its presence in
Eq. (1) guarantees the existence of an invariant synchronous
solution of the dynamics s(t ), so that xi(t ) = s(t ) for all i. In
turn, this allows one to introduce the synchronization error
vectors δxi = xi − s, which measure the componentwise dif-
ference between the state of each node at a given time and the
synchronous solution. If F and H are at least C1, i.e., if they
are continuous and differentiable, one can linearize them via a
vector equivalent of a first-order Taylor expansion around the
synchronous solution, so that

F(s + δxi ) ≈ F(s) + ĴF(s)δxi (3)

and

H(s + δxi ) ≈ H(s) + ĴH(s)δxi, (4)

where ĴF(s) and ĴH(s) are the Jacobians of F and H, respec-
tively. Then, substituting xi = s + δxi into Eq. (1) leads to

ṡ + δ̇xi = F(s) + ĴF(s)δxi − σ

N∑

j=1

Li, j (H(s) + ĴH(s)δxi ).

(5)

As ṡ = F(s) and
∑N

j=1 Li, j = 0, the evolution of the synchro-
nization error vectors simplifies to

δ̇xi = ĴF(s)δxi − σ

N∑

j=1

Li, j ĴH(s)δxi. (6)

Finally, the synchronization error vectors can be decom-
posed along the directions determined by the eigenvectors
of the Laplacian, which can be conveniently arranged in an
orthogonal matrix V. This yields a decomposition of the
dynamics into N decoupled modes ηi = V−1δxi, whose evo-
lution is given by the set of variational equations

η̇i = (ĴF(s) − σλiĴH(s))ηi. (7)

Because of the fact that λ1 = 0 and because of the orthogonal-
ity of V, the evolution of these variational equations occurs
along the synchronous solution of the dynamics for i = 1,
and along directions transverse to it for i > 1. Then, one can
consider the generic equation

η̇ = (ĴF(s) − KĴH(s))η (8)

and compute its maximum Lyapunov exponent �. The de-
pendence of � on the generalized coupling strength K is the
master stability function [39]. Given a coupling strength σ ,
if the synchronized state is stable for that value of σ , then
the MSF is negative for all values of K = σλi with i > 1.
Note that when K = 0, the value of the MSF is the maximum
Lyapunov exponent of the uncoupled system. Consequently,
for chaotic systems, the MSF has a positive intercept.

Based on the qualitative behavior of the MSF, a general
classification for the synchronization stability of chaotic sys-
tems was introduced in Ref. [2]. According to it, any system
belongs to one of the following three classes:
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FIG. 1. The chaotic Hindmarsh-Rose system can belong to Classes I, II, and III. The master stability function (�) of the chaotic Hindmarsh-
Rose system, Eq. (9), plotted as a function of the generalized coupling strength K , is in Class III for the couplings y → x and z → z, in Class
II for x → x, x → y, and y → y, and in Class I for all other choices. Thus, depending on the choice of the coupling, the Hindmarsh-Rose
system in the chaotic regime can belong to any of the synchronizability classes. The parameter values are a = 1, b = 3, I = 16

5 , c = 1, d = 5,
r = 6 × 10−3, s = 4, and x1 = 8

5 .

Class I. The MSF is positive for all values of K . Con-
sequently, synchronization is not stable for any coupling
strength.

Class II. The MSF is negative for an unbounded interval
of values of K . Consequently, there exists a critical value K∗,
at which the function intersects the horizontal axis and after
which it is always negative.

Class III. The MSF is negative in a bounded interval of
values of K . Consequently, there are two intersection points
K∗

1 and K∗
2 , such that the MSF is negative for K∗

1 < K < K∗
2 .

As an example of a chaotic system that can belong to
any of the three classes depending on the coupling between
elements, consider the Hindmarsh-Rose model, whose system
of equations describes the spiking and bursting behavior of a
single neuron [53]:

ẋ = y − ax3 + bx2 − z + I,

ẏ = c − dx2 − y,

ż = −rz + rs(x + x1). (9)

To obtain the MSF of the HR system, first the perturbed equa-
tions are derived according to Eq. (8). Then, the maximum
Lyapunov exponent � of the perturbed system is calculated as
a function of the generalized coupling strength K , and defined
as the MSF. Choosing a = 1, b = 3, I = 16

5 , c = 1, d = 5,

r = 6 × 10−3, s = 4, and x1 = 8
5 results in a rich variety of

synchronization behaviors corresponding to the nine possi-
ble single-variable couplings i → j, with (i, j) ∈ {x, y, z} ×
{x, y, z}. The MSFs of the chaotic HR system are illustrated
in Fig. 1. The figure shows that the MSF can belong to all
synchronizability classes of chaotic systems, namely Class
III for the couplings y → x and z → z, Class II for x → x,
x → y, and y → y, and Class I for all other couplings.

III. MSF OF PERIODIC SYSTEMS

The situation is subtly different when one considers peri-
odic systems. In fact, if an isolated system supports a periodic
orbit, its corresponding maximum Lyapunov exponent is zero.
This means that the MSF in the case of periodic systems does
not start from a strictly positive value, but rather it starts from
zero. This has two immediate consequences. First, there is
always at least one point where the MSF vanishes, namely
K = 0. Second, an initial discrimination for the synchroniz-
ability of a coupled network is determined by the sign of
the (right-hand) derivative of the MSF at zero. This suggests
the possibility that the properties of synchronizability of a
network of periodic oscillators are actually more complex
than those of a network of chaotic ones.

To confirm the correctness of this consideration, we com-
puted the MSF for the Hindmarsh-Rose model, using the same
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FIG. 2. New classes of synchronizability for the periodic Hindmarsh-Rose system. The master stability function (�) of the periodic
Hindmarsh-Rose system, Eq. (9), plotted as a function of the generalized coupling strength K , is always positive for the couplings x → z,
y → z, and z → x; it has bounded intervals of negative values for y → x and z → y; it is negative in an unbounded range for x → x, x → y,
and y → y; and it has multiple regions of negativity for z → z. Note that the z → z coupling results in the system belonging to a synchronization
class that is exclusive of periodic systems. Also note that, in contrast with conventional belief, a minimum coupling strength is required to
achieve synchronization in many cases. The parameter values are a = 1, b = 3, I = 16

5 , c = 1, d = 5, r = 5.6 × 10−3, s = 4, and x1 = 8
5 .

parameter values as before, except for r, which we imposed to
be equal to 5.6 × 10−3. This choice ensures that dynamics of
the individual systems is periodic. It should be noted that the
steps one has to follow in order to compute the MSF for a
periodic system are the same as would be taken in the case
of a chaotic system. The only difference is that the periodic
synchronous solution is used to obtain the perturbed linear
equation. The MSF results, shown in Fig. 2, demonstrate an
even broader range of behaviors than observed in the chaotic
version of the model. In fact, the couplings x → z, y → z, and
z → x result in a MSF that is always positive, the couplings
y → x, z → y, and z → z yield well-defined ranges of nega-
tivity, and the couplings x → x, x → y, and y → y result in
unbounded regions of negative values for the MSF. Therefore,
the fundamental effect of the periodicity of the system is
on the MSF of the couplings z → y and z → z, with the for-
mer that now features a bounded negative region and the latter
that includes several negative regions. Moreover, even though
x → x, x → y, and y → y all correspond to unbounded re-
gions of negativity, only in the case of y → y does the region
start at K = 0. Effectively, one could say that the fact that the
MSF vanishes at zero has split Class II into two new classes:
if the derivative at zero is negative, then the unbounded region
of stability starts at zero; if, instead, it is positive, then the
interval starts at a value K∗ > 0. Similarly, y → x, z → y,

and z → z produce a finite region of negative values, which,
however, only starts at zero for the z → z coupling. Thus,
Class III also undergoes a split that depends on the sign of
the derivative at zero, akin to that of Class II. Note that the
z → z coupling actually produces multiple separate intervals
for which the MSF is negative. However, when classifying
the stability of synchronized states, one is generally only
interested in the interval after the first threshold for stability,
which, in this case, is zero.

To further explore this phenomenology, we studied a net-
work of Rössler oscillators [54], whose evolution is given by
the system

ẋ = −y − z,

ẏ = x + ay,

ż = b + (x − c)z. (10)

To ensure periodic dynamics, we chose the parameter values
a = 0.161, b = 0.2, and c = 9. The calculation of the MSF
for all possible single-variable couplings, illustrated in Fig. 3,
shows that in all cases except x → x, y → y, and z → x the
maximum Lyapunov exponent remains positive for all K > 0.
The y → y coupling results in an unbounded negative region
starting at zero. For x → x, the MSF is negative only in
a range 0 < K < k∗. Finally, the z → x causes a situation
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FIG. 3. New classes of synchronizability for the periodic Rössler oscillator. The master stability function (�) of the periodic Rössler
oscillator, Eq. (10), plotted as a function of the generalized coupling strength K , is always positive for all couplings except x → x, which
results in a bounded negative region, y → y, which yields an unbounded negative region, and z → x, which causes the appearance of multiple
negative intervals. Note how the z → x coupling induces a minimum coupling strength after which synchronization is always stable, whereas
with the x → x coupling a maximum coupling strength emerges after which synchronization is never stable, contrary to the received wisdom
about periodic systems. The parameter values are a = 0.161, b = 0.2, and c = 9.

similar to the Hindmarsh-Rose model with z → z coupling,
with the appearance of multiple finite intervals of stable syn-
chronization, the first of which starts at a positive K∗

1 . This
confirms the occurrence of a split in Class III, dependent on
the sign of the derivative of the MSF at zero: for negative
derivatives one obtains a stable region 0 < K < k∗, whereas
for positive derivatives stability happens for K∗

1 < K < K∗
2 ,

with K∗
1 > 0.

A similar range of classes of synchronizability also
characterizes the behavior of the Lorenz system, which can
be always unstable, always stable with a vanishing or nonzero
threshold, or with a bounded region of stability starting at
a positive coupling strength (see the Supplemental Material
[55]).

To check whether the dimensionality of the oscillators
plays a role in the emergence of the new synchronizability
classes, we studied several 2two-dimensional systems. We
found the most diverse behavior is exhibited by the Brusse-
lator system [56], which is a mathematical model for autocat-
alytic chemical reactions described by the following system:

ẋ = a + x2y − (b + 1)x,

ẏ = bx − x2y. (11)

Choosing a = 1 and b = 3, we obtain the MSF represented
in Fig. 4. Since the model is two-dimensional, we have only
four possible single-variable couplings. Notably, each of
them produces a different synchronizability behavior: x → x
results in the MSF being always negative for K > 0, x → y
causes the appearance of an unbounded region of stability
after a K∗ > 0, and y → x and y → y corresponds to a
bounded stability region for 0 < K < K∗, which, in the case
of y → x, is followed by a second one.

A slightly less rich behavior is offered by the unforced
undamped Duffing oscillator [57], whose dynamics is given
by the system

ẋ = y,

ẏ = x − x3. (12)

In fact, its MSF is either always positive for all K > 0, when
the coupling is x → y or y → x, or it has multiple intervals
of negativity, with the first one starting at zero, when the
coupling is x → x or y → y (Fig. 5).

Similar behaviors are observed in several other two-
dimensional periodic systems that we have systematically
studied, namely the Lotka-Volterra model, the FitzHugh-
Nagumo model, the van der Pol oscillator, the cab-
bage system, and the Stuart-Landau oscillator (see the
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FIG. 4. New classes of synchronizability for the periodic Brusse-
lator. The master stability function (�) of the periodic Brusselator,
Eq. (11), plotted as a function of the generalized coupling strength
K , is always negative for x → x coupling, negative after a threshold
for x → y, negative before a threshold for y → y, and has multiple
regions of negativity for y → x. Note that the synchronization class
corresponding to the y → x coupling is exclusive of a periodic sys-
tem. Also, the x → y coupling requires a minimum coupling strength
to achieve stable synchronization, whereas the y → x and y → y
couplings induce a maximum coupling strength, after which synchro-
nization ceases to be stable, in contrast with the current assumptions
about periodic systems. The parameter values are a = 1 and b = 3.

Supplemental Material [55]). In all these cases, we have found
the appearance of different synchronizability classes, includ-
ing split ones.

Note that, in all the cases considered, it is to be ex-
pected that, for a given type of coupling, different parameter
values will result in a different synchronizability profile. As
an example, consider again the Hindmarsh-Rose system. Its

FIG. 5. New classes of synchronizability for the unforced un-
damped Duffing oscillator. The master stability function (�) of the
unforced undamped Duffing oscillator, defined in Eq. (12), plotted as
a function of the generalized coupling strength K , has multiple neg-
ative regions for self-couplings, and it is always positive otherwise.
Thus, the self-couplings correspond to a new synchronizability class,
which is exclusive for periodic systems, and the others contradict the
current general assumption that periodic systems synchronize in a
stable way for any positive coupling strength.

bifurcation diagram, illustrated in Fig. 6 for the same param-
eter values as used before and using r as control, shows the
existence of multiple transitions between periodic and chaotic
dynamics. Studying the MSF for different values of r, one
can observe that its qualitative behavior remains unchanged
under x → x, y → x, x → y, x → z, and y → z couplings.
However, for other coupling schemes, the behavior of the
MSF depends on the value of r. Most clearly, in the y → y
coupling, the MSF can be either always negative, or it can first
take on positive values and then turn permanently negative, as
synchronization becomes stable (Fig. 6), explicitly showing
how a parameter change can switch the sign of the derivative
of the MSF at zero and, consequently, alter the stability prop-
erties of the synchronized state.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have explicitly shown how the master
stability function for periodic networked systems can have
a wealth of different behaviors. In particular, class II and
class III for chaotic systems, corresponding to unbounded
and bounded regions of negativity of the MSF, respectively,
split each into two different classes when the systems consid-
ered are periodic. This symmetry breaking is caused by the
fact that, when the coupling is zero, the MSF is the largest
Lyapunov exponent of the uncoupled system, which, in the
periodic case, is zero. Thus, there is always at least one point
at which the MSF touches the horizontal axis, namely, the
point at zero. In turn, this means that it is always possible that
K = 0 is a threshold value for the MSF, whether the unique
one, like in class II, or the lower one, like in class III. The sign
of the derivative of the MSF at the origin determines, however,
whether, for very small values of the coupling, the function is
negative or positive. Therefore, if the derivative is negative,
a region of coupling strengths for which the synchronous
state is stable starts immediately, whereas synchronization
is otherwise unstable for low coupling strengths. Based on
these considerations, and in analogy with chaotic systems,
we propose the following classification of synchronizability
of periodic systems:

Class I. The MSF is positive for all K > 0. Thus, syn-
chronization is never stable for any coupling strength.

Class II. The MSF is negative for all K > 0. This class,
corresponding to class II of chaotic systems with K∗ = 0,
contains systems whose synchronous state is stable for any
coupling strength.

Class III. The MSF is negative for 0 < K < K∗. This
class, corresponding to class III of chaotic systems with K∗

1 =
0 and K∗

2 = K∗, contains systems whose synchronous state is
stable only for nonzero couplings smaller than a threshold.

Class IV. The MSF is negative for K > K∗, with
K∗ > 0. This class is exclusive to periodic systems. In fact,
even though it resembles class II of chaotic systems, it is to
be noted that, in that case, the first point at which the MSF
vanishes must have a negative derivative, whereas here the
derivative at the first root of the MSF is positive.

Class V. The MSF is negative in a range K∗
1 < K < K∗

2 .
Similar to the previous case, this class is typical of periodic
systems even though it resembles class III of chaotic ones.
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FIG. 6. System parameters can cause a switch in synchronizability properties. (a) The bifurcation diagram of the Hindmarsh-Rose system,
Eq. (9), with a = 1, b = 3, I = 16

5 , c = 1, d = 5, s = 4, and x1 = 8
5 , plotting the largest value of x (xmax) for different values of r, shows

numerous transitions between periodic and chaotic behavior. (b) The MSF (�), plotted for different values of r and K in different coupling
schemes, shows that in some cases, such as y → y, the stable synchronizability region can change its profile.

Note that, since the value of the MSF at zero is always zero
for periodic systems, this classification is exhaustive, because
of the dependence of the new classes on the positivity of the
derivative at zero.

Additionally, our results challenge some of the received
wisdom about periodic systems. In fact, it was generally
believed that periodic systems can achieve a stable synchro-
nized state even for small coupling strengths. However, we
have demonstrated that in some cases, such as those falling
into class III and class V, too strong a coupling can de-
stroy the stability of synchronization. Even more to the point,
the existence of class IV and, again, class V shows that,

sometimes, there is indeed even a nonzero lower threshold
for stability. Moreover, classes III and V have some fasci-
nating implications, especially when they feature multiple
stability regions with an an unbounded final one. In fact, in
these cases, systems have to admit a synchronous state that is
definitively stable for large enough coupling. However, at the
same time, the stability of synchronization may be temporar-
ily lost as the coupling strength increases, before reaching
a final threshold. While this is not too surprising in chaotic
systems, these behaviors, which we have clearly identified,
were believed not to occur in periodic systems, highlighting
the value of the master stability function approach in studying
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the synchronization of nonlinear systems, regardless of their
nature.
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