

"Polaritonic crystals: from optical response to Casimir effect "

Laura Pilozzi

Institute for Complex Systems CNR – Rome - Italy

Andrea D'Andrea Donatella Schiumarini Norberto Tomassini

ESF PESC Exploratory Workshop *Polaritonics: From Basic Research to Device Applications*

March 20-23, 2012 - Marino (Rome), Italy

Outline

Introduction

- Polaritonic Crystals
 - periodic structures: superradiance, polaritonic crystal limit
 - quasicrystals: scaling and fractality

Optical response

• e.m. Green function for a general shaped superstructure

Casimir effect

- definition
- material design for force control
 - numerical approach
 - preliminary results

Polaritonic crystals are structured media (photonic crystals) with polariton poles in the dielectric susceptibility of some constituent materials.

Are characterized by a complex dielectric tensor, function of spatial variables and frequency.

$$\mathcal{E}_{ij}(\vec{r},\omega) = \mathcal{E}_{ij}(\vec{r},\omega) + i\mathcal{E}_{ij}(\vec{r},\omega)$$

In the photonic crystal limit "

$$\mathcal{E}(\vec{r},\omega) = \mathcal{E}'(\vec{r})$$

Mirror effect at the Brewster angle in semiconductor rectangular gratings L.Pilozzi, A. D'Andrea, H. Fenniche, Phys.Rev. B **64**, 235319 (2001)

Subwavelength nanostructured surfaces

Reflectivity maps

 $f_x = filling factor$

Subwavelength nanostructured surfaces

Patterned cavities

Grating-induced enhancement of exciton-polariton Rabi splitting in a planar microcavity L.Pilozzi, A. D'Andrea, Phys.Rev. B **61**, 4771 (2000)

Effect of lateral periodicity on the optical response of a quantum well in a distributed Bragg reflector cavity: A simplified description via the Green function of a cavity polariton L.Pilozzi, A. D'Andrea, k. Cho, Phys.Rev. B **76**, 245312 (2007)

Microscopic nonlocal response theory

$$\varepsilon(\vec{r}, \vec{r}', \omega) = \varepsilon_{b}(\vec{r}, \omega) + 4\pi \chi(\vec{r}, \vec{r}', \omega)$$

- Microscopic self-consistent approach

- Characteristic optical features dependent on system size and shape.

the microscopic spatial structure of the polarization

the response field intensity

reflects on

$$\vec{P}'(\vec{r},\omega) = \int d^3r' \chi'(\vec{r},\vec{r}',\omega) \vec{E}(\vec{r}',\omega)$$

Polaritonic crystals

Spatial dispersion effects on the optical properties of a resonant Bragg reflector L.Pilozzi, A. D'Andrea, K. Cho, Phys.Rev. B **69**, 205311 (2004)

Periodic structures

MQW: polaritonic crystal regime

Resonant Fibonacci quantum well structures in one dimension
A.N. Poddubny, L.Pilozzi, M.M.Voronov, E.L.Ivchenko, Phys.Rev. B 77, 113306 (2008) *Exciton-polaritonic quasicrystalline and aperiodic structures*A.N. Poddubny, L.Pilozzi, M.M.Voronov, E.L.Ivchenko, Phys.Rev. B 80, 115314 (2009)

Quasicrystals

Maxwell eqs.

P' remaining part of induced polarization

Kikuo Cho

"Reconstruction of Macroscopic Maxwell Equations" Springer Tracts. **237** (2010) *"Optical Response of Nanostructures: Microscopic Nonlocal Theory"* Springer (2003)

Different ways to renormalize the Green function:

1) Green function for vacuum

$$\left[\vec{\nabla} \times \vec{\nabla} \times -q^2 \vec{I}\right] \vec{G}_{vac}(\vec{r},\vec{r}',\omega) = 4\pi \vec{I} \,\delta(\vec{r}-\vec{r}')$$

No polarization is normalized into EM field

$$E(\vec{r},\omega) = E_{o}(\vec{r},\omega) + \int \vec{G}_{vac}(\vec{r},\vec{r}',\omega)P(\vec{r}',\omega)d\vec{r}'$$

incident field in vacuum polarization induced field

EM field Green functions

2) Cavity Green function

Only background polarization is renormalized

$$\vec{\nabla} \times \vec{\nabla} \times \vec{g}(\vec{r}, \vec{r}', \omega) - q^2 \left\{ 1 + 4\pi \chi_b(\vec{r}, \omega) \right\} \vec{g}(\vec{r}, \vec{r}', \omega) = 4\pi q^2 \vec{I} \,\delta(\vec{r} - \vec{r}')$$

$$E(\vec{r},\omega) = E_o^{cav}(\vec{r},\omega) + \int \vec{g}(\vec{r},\vec{r}',\omega) \left[\vec{P}_x^1(\vec{r},\omega) + \vec{P}'(\vec{r},\omega)\right] d\vec{r}'$$

General shaped superstructure

EM Green function with nonlocal renormalization of background dielectrics

$$\vec{\nabla} \times \vec{\nabla} \times \vec{g}(\vec{r}, \vec{r}', \omega) - q^2 \left\{ 1 + 4\pi \chi_b(\vec{r}, \omega) \right\} \vec{g}(\vec{r}, \vec{r}', \omega) = 4\pi q^2 \vec{I} \,\delta(\vec{r} - \vec{r}')$$

a) Non-local form of the background local polarization

$$\vec{P}_{b}(\vec{r},\omega) = \chi_{b}(\vec{r},\omega) \int d^{3}r' \,\delta(\vec{r}-\vec{r}') \,\vec{E}(\vec{r}',\omega)$$

b) Degenerate kernel $\delta(\vec{r} - \vec{r}') = \sum_{\nu} \phi_{\nu}^{*}(\vec{r}) \phi_{\nu}(\vec{r}')$

$$\vec{P}_{b}(\vec{r},\omega) = \sum_{\nu} \chi_{b\nu}(\vec{r},\omega) \phi_{\nu}^{*}(\vec{r}) \int d^{3}r' \phi_{\nu}(\vec{r}') \vec{E}(\vec{r}',\omega)$$

3) Green function of cavity polariton we include the linear polarization $\left[\vec{\nabla} \times \vec{\nabla} \times -q^2 \varepsilon_{b}(\vec{r},\omega)I\right]\vec{G}_{cp}(\vec{r},\vec{r}',\omega) - \sum_{\mu} \frac{4\pi q^2 P_{o\mu}(r)}{E_{\mu o} - \hbar\omega - i\gamma} H_{\mu o}(r',\omega) \neq 0$ $=4\pi q^2 \vec{I} \delta(\vec{r}-\vec{r})$ $H_{\mu o}(\mathbf{r}, \omega) = \int d\mathbf{r} \, "P_{\mu o}(\mathbf{r}", \omega) G_{cp}(\mathbf{\vec{r}}, \mathbf{\vec{r}}', \omega)$ $\vec{G}_{cp}(\vec{r},\vec{r}',\omega) = g(\vec{r},\vec{r}',\omega) + \sum_{\mu} \frac{(h_{o\mu}(r,\omega))}{E_{\mu\sigma} - \hbar\omega - i\nu} H_{\mu\sigma}(r',\omega)$ field induced by $P_{ou}(r)$ $h_{o\mu}(\mathbf{r},\omega) = \int d\mathbf{r}' g(\mathbf{r},\mathbf{r}',\omega) P_{o\mu}(\mathbf{r}',\omega)$ in the empty cavity

H. B. G. Casimir, Proc. K. Ned. Akad. Wet.51(1948) 793	$\partial U(L)$ 1	$\pi^2 \hbar c$
Zero point energy modification of the radiation field can	$(L)/A = -\frac{1}{\partial L}A =$	$=\overline{240L^4}$
produce an attractive force between neutral conductors.	1 atmosphere for L	=10 nm

mode frequencies and then in the zero point energy:

$$E = \sum_{n} \frac{1}{2} \hbar \omega_n \qquad \qquad \omega_n = c \sqrt{k_{//}^2 + \frac{\pi^2}{L^2} n^2}$$

$$E(L) = \frac{\hbar cA}{\pi} \sum_{n=0}^{\infty} 2\pi \int_{0}^{\infty} k_{//} dk_{//} \sqrt{k_{//}^{2} + \frac{\pi^{2}}{L^{2}}n^{2}} \qquad U(L) = E(L) - E(\infty) = -\frac{\pi^{2}\hbar c}{720L^{3}}A$$

Casimir Forces as e.m. stress energy tensor can be obtained via Fluctuation-Dissipation theorem from the imaginary-frequency $(\omega = iw)$ Green's function.

$$\left\langle \mathrm{E}_{j}(\vec{\mathbf{x}})\mathrm{E}_{k}(\vec{\mathbf{x}}')\right\rangle = \frac{\hbar}{\pi}\mathrm{w}^{2}\mathrm{G}_{jk}(\mathrm{iw},\vec{\mathbf{x}}-\vec{\mathbf{x}}')$$

Measurements

• Marcus Sparnaay at Philips in Eindhoven, in 1958 confirmed the Casimir force existence but was not able to reach sufficient accuracy

• 1996 Steve K. Lamoreaux

Los Alamos National Laboratory

"<u>Demonstration of the Casimir Force in the 0.6 to 6 µm Range</u>" Phys. Rev. Lett. **78**, 5–8 (1997)

measurement agreement with theory 10%

• 1997 Umar Mohideen and Anushree Roy <u>University of California at Riverside</u>

"<u>Precision Measurement of the Casimir Force from 0.1 to 0.9 μm</u>" Phys. Rev. Lett. **81**, 004549 (1997) measurement agreement with theory 1%

Vol 45718 January 2009 doi:10.1038/nature07610

Material design for force control: crossover from attraction to repulsion

As shown theoretically in a seminal paper by Evgeny Lifshitz

in certain circumstances repulsive forces can arise

Casimir repulsion experimentally demonstrated in Gold-Bromobenzene-Silicon

LETTERS

nature

Measured long-range repulsive Casimir–Lifshitz forces

J. N. Munday¹, Federico Capasso² & V. Adrian Parsegian³

Casimir effect

Can geometry alone give rise to Casimir repulsion?

Casimir force tailoring by complex asymmetric cavity geometries

Patterned mirrors

Patterned cavity

numerical approach Imaginary-frequency scattering-matrix techniques

$$P(d) = 2k_{B}T\sum_{n=0}^{\infty} \int_{0}^{\infty} \frac{d^{2}\vec{q}_{//}}{2\pi} q_{z}(iw_{n})\sum_{\alpha=S,P} \frac{r_{\alpha}^{(1)}(iw_{n})r_{\alpha}^{(2)}(iw_{n})e^{-2q_{z}d}}{1 - r_{\alpha}^{(1)}(iw_{n})r_{\alpha}^{(2)}(iw_{n})e^{-2q_{z}d}}$$

$$r_{\rm S}^{\mu}(\mathrm{i}w_{\rm n}) = \frac{q_z - k_z^{\mu}}{q_z + k_z^{\mu}} \qquad r_{\rm P}^{\mu}(\mathrm{i}w_{\rm n}) = \frac{\varepsilon_{\rm o}k_z^{\mu} - q_z\,\varepsilon^{\mu}(\mathrm{i}w_{\rm n})}{\varepsilon_{\rm o}k_z^{\mu} + q_z\,\varepsilon^{\mu}(\mathrm{i}w_{\rm n})} \qquad w_{\rm n} = 2\pi \frac{k_{\rm B}T}{\hbar}n$$

For patterned systems

$$P(L,T) = -k_B T \frac{\partial}{\partial L} \sum_{n=0}^{\infty} \int_{0}^{\infty} \frac{d^2 \vec{q}_{//}}{2\pi} \ln \det \left[\vec{I} - \vec{r}_1(iw_n) \vec{\chi}^{>}(L) \vec{r}_2(iw_n) \vec{\chi}^{>}(L) \right]$$

Casimir force tailoring by complex asymmetric cavity geometries

- We have discussed the optical properties of periodic and aperiodic polaritonic crystals and have shown how a particular renormalization of the Green function allows to consider more complex geometries.
- This renormalization is the required tool to consider complex geometries for the Casimir force tailoring

since

this force can be computed as an integral of the mean electromagnetic stress tensor over all the frequencies, determined from the classical Green function as a consequence of the fluctuation-dissipation theorem.

ESF PESC Exploratory Workshop *Polaritonics: From Basic Research to Device Applications*