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Abstract—Software in modern vehicles is becoming increas-
ingly complex and subject to vulnerabilities that an intruder can
exploit to alter the functionality of vehicles. To this purpose, we
introduce CAHOOT, a novel context-aware Intrusion Detection
System (IDS) capable of detecting potential intrusions in both
human and autonomous driving modes. In CAHOOT, context
information consists of data collected at run-time by vehicle’s
sensors and engine. Such information is used to determine
drivers’ habits and information related to the environment, like
traffic conditions. In this paper, we create and use a dataset by
using a customised version of the MetaDrive simulator capable
of collecting both human and AI driving data. Then we simulate
several types of intrusions while driving: denial of service,
spoofing and replay attacks. As a final step, we use the generated
dataset to evaluate the CAHOOT algorithm by using several
machine learning methods. The results show that CAHOOT is
extremely reliable in detecting intrusions.

Index Terms—Automotive, Intrusion Detection System,
Context-aware, Machine learning.

I. INTRODUCTION

Over the years, vehicles functionalities are managed by
increasingly complex software. For instance, vehicles made by
Volkswagen nowadays contain one hundred millions lines of
code [1]. Level 5 autonomous vehicles will contain up to one
billion lines of code [1] because all vehicles’ functionalities
will be electronically managed. Moreover, during the driving
experience, a vehicle is able to collect a lot of information
from its sensors, the Electrical Control Units (ECUs), and also
from the environment. The driver can exploit the connectivity
of the vehicle to read this information through OBD-II and a
mobile connection, while the multimedia functionalities can
be accessed via USB, disc, SD-card, Bluetooth and WiFi.
The European Union Agency for Network and Information
Security (ENISA) defines today’s vehicles as smart car, i.e.,
vehicles that offer enhanced users experience and safety, and
provide connectivity and added-value features [2].

Thus, as for Personal Computer years ago, nowadays,
guaranteeing the security of vehicles is becoming a strong
requirement. In the last decade, there are several papers in
literature that present work on vehicle’s attacks. The most
famous one has been presented at the Black Hat USA 2015 by
Miller and Valasek [3]. In particular, the two researchers were

able to remotely control the wheels of a Jeep Cherokee by
exploiting the Park Assist System (PAS) [4]. Vulnerabilities
not only damage the reputation of car manufacturers but
also their profits (the attack to the Jeep Cherokee forced the
manufacturer Fiat-Chrysler to recall 1,4 million cars in the
USA [5]).

To mitigate the occurrences of such kind of attacks, both
the standard ISO/IEC 27039:2015 [6] and the United Nations
delivered the regulation number 155 [7], UNECE R155, deliv-
ered in 2021, prescribe the introduction of Intrusion Detection
and Prevention Systems (IDPS) as security mechanisms to
monitor the target vehicle for intrusions. In particular, an
Intrusion Detection System (IDS) is able only to alert when
intrusions are detected, while an Intrusion Prevention System
(IPS) tries also to prevent the detected intrusions.

This paper proposes a Context-Aware veHicular intrusiOn
detectiOn sysTem (CAHOOT) paradigm that uses vehicle
sensors to detect and mitigate intrusions in cars. CAHOOT
uses contextual information taking into account the semantics
of in-vehicle messages. For example, if a driver accelerates in
front of an obstacle detected by a sensor, CAHOOT detects
this strange behaviour as a possible intrusion. The sensors’
values are a digital representation of the environment context.

The paper is structured as follows: the next section dis-
cusses about related work. Section III presents the vehicle’s
anatomy and the attack’s model we refer to. Section IV
describes the CAHOOT algorithm and Section V shows the
results of our experiments. Section VI draws the conclusion
of the paper and highlights possible future work.

II. RELATED WORK

In either [8] and [9] the authors developed an IDS that
establishes valid messages based on the road-context for
autonomous vehicles. In particular, they combines CAN mes-
sages with images recorded from the camera to establish the
validity of messages, i.e., to ecognize spoofing attacks on the
steering wheel through two convolutional neural networks.
Public available datasets are used for the evaluation.

Wasicek et al. [10] uses a Bottleneck Neural Network to
read sensors’ values and to determine a vehicle’s anomalous



behaviour. The evaluation is made on a car with installed
a chip tuning into the Engine Control Module (ECM) that
changes its behaviour. Casillo et al. [11] present a Bayesian
Network to detect malicious CAN messages. The dataset
used for the training is generated by the autonomous driving
CARLA simulator [12] whose AI periodically receives attacks.

The methods for detection of sequence context anomalies
comprise different approaches such as process mining that is
used in the work of Rieke et al. [13], hidden Markov models
which are used in the work of Levi et al. [14] and Narayanan et
al. [15], OCSVM is used in the work of Theissler et al. [16],
neural networks are used by Kang et al. [17], detection of
anomalous patterns in a transition matrix are used by Marchetti
et al. [18], and, frequency of appearance of a sequence of
CAN messages is used by Taylor et al. [19] and Kalutarage et
al. [20]. Grimm et al. [21] provide a comprehensive survey on
context-aware security approaches in the vehicular and related
domains, while Al-Jarrah et al. [22] extensively survey the
current state of the art on IDS systems for in-vehicle networks.
Al-Jarrah et al. conclude that currently the area of context-
aware systems is still under-investigated.

CAHOOT extends the existing literature because it is the
first IDS based also on context information able to detect
replay and DoS attack in addition to the spoofing attack.
Moreover, the simulation environment and activity we present
is the only one that take into account simultaneously brakes,
steering and throttle parameters.

III. THE ATTACK MODEL

A lot of information circulate inside and outside vehicles
by using ICT systems that are installed on it. An autonomous
car contains various sensors to keep track of the environment
and the vehicle status [23]. Inside the vehicle, there are also
several ECUs that provide functionalities to the car. Such
ECUs are connected one another through multiple buses, e.g.,
CAN, CAN-FD, FlexRay and Automotive Ethernet. Different
partitions of these busses are connected each other through
gateways. Thus, vehicles are computers on wheels and as
normal computer can be subject to remote attacks. An intruder
may exploit local or remote vulnerabilities of a vehicle to gain
some digital access to it, either locally or remotely.

We consider an intruder able to run the following attacks:
• DoS attack: the intruder is able to deny the driver’s input

through the generation of CAN frames where payloads
values are set to zero for steering, throttle and brakes.

• Spoofing attack: the intruder is able to generate a valid
CAN frame. For example, the forged frame may generate
a valid signal to active an ECU functionality.

• Replay attack: the intruder is able to re-use valid CAN
frames with a malicious or fraudulent aim.

IV. CAHOOT ALGORITHM

The CAHOOT algorithm aims to detect an intruder that
performs both single or multiple attacks among the ones we
listed in the previous section while a car is moving. It is also

able to detect a possible intrusion also when both the intruder
and the driver generated a CAN message with the same values.

CAHOOT uses machine learning (ML) techniques to gen-
erate a model capable to detect intrusions from the value of
the vehicle sensors.

A. Intruder’s Behaviour

To create a model that is as accurate as possible, we assume
that the intruder is able to frequently change the attacks among
the three attacks described in Section III. The duration of each
attack is randomly chosen with an arbitrary minimum and
maximum of steps duration. In addition, the type of attack
is randomly chosen. This allows us to identify both single and
multiple attacks within a target driving session. Listing 1 and
Listing 2 describe intruder’s behaviour model we consider.

Listing 1: Prepare Attack
1 function prepare attack (steering, throttle brake, current attack,

steering history, throttle brake history, index history,
prev steering, prev throttle brake, stop attack time,
min duration, max duration, slot time)

2 should attack change ← stop attack time <= Current timestamp
3 if should attack change
4 {num slots ← Select an integer number between min duration and

max duration
5 stop attack time ← Current timestamp + num slots * slot time
6 current attack = None}
7 (steeringhacked, throttle brakehacked, current attack, index history

, prev steering, prev throttle brake) =
launch attack(current attack, steering history,
throttle brake history, index history, prev steering,
prev throttle brake)

8 steering history ← Append steering to steering history
9 throttle brake history ← Append throttle brake to

throttle brake history
10 return (steeringhacked, throttle brakehacked, current attack,

stop attack time, steering history, throttle brake history,
index history, prev steering, prev throttle brake)

Listing 1 shows the algorithm prepare attack that plans the
duration of each vehicle intrusion. In detail, it checks if the
attack in progress should continue or should be changed, i.e.,
the algorithm compares the current time with the time on
which the attack must be suspended (line 2). In case the attack
should end and be changed with a new type, the algorithm
defines the duration of the new attack as slots of time. The
algorithm randomly choose the number of slots between the
minimum and maximum (line 4). Hence, the attack will stop
at the sum between the actual time and the product between
the number of slots and the length of each slot (lines 5). The
attacks are periodically stopped and substituted with new ones
to simulate multiple attacks in a single driving session.

Regardless of the attack should change or not, the func-
tion launch attack is called (line 7) and returns the new
forged messages alongside with the current type of attack,
the index of the next messages that the replay attack must
repeat, i.e., index history, and the last forged messages
that the spoofing attack must repeat, i.e., prev steering
and prev throttle brake. Next, the inputs steering and
the throttle brake of human/AI are registered in the arrays
steering history and throttle brake history (lines 8 and
9). These arrays may be used later on for the replay attack.
The attack inputs are never appended in the arrays because



the replay attack goal is to mimic the human/AI inputs so the
attack should replay only human/AI inputs.

The algorithm returns the values of steering and throt-
tle brake generated by the intruder, the type of attack ac-
tually in progress, the time on which the attack will be
suspended, the history values of steering and throttle brake,
the index history, prev steering and prev throttle brake
(line 10).

Listing 2: Launch Attack
1 function launch attack (current attack, steering history,

throttle brake history, index history, prev steering,
prev throttle brake)

2 bootstrap ← False
3 if current attack = None
4 {bootstrap ← True
5 current attack ← Randomly select one from ”DoS”, ”Spoofing” and ”Replay”}
6 if current attack = ”DoS”
7 {(steering, throttle brake) ← dos attack()}
8 if current attack = ”Spoofing”
9 {(steering, throttle brake) ← spoofing attack(bootstrap, prev steering,

prev throttle brake)
10 prev steering ← steering
11 prev throttle brake ← throttle brake}
12 if current attack = ”Replay”
13 {(steering, throttle brake, index history) ← replay attack(bootstrap,

steering history, throttle brake history, index history)}
14 return (steering, throttle brake, current attack, index history,

prev steering, prev throttle brake)

Listing 2 depicts the algorithm launch attack. It is in charge
of maintaining active and in progress attack or decide which
attack should be run. The Spoofing and Replay attack need the
variable bootstrap that represents if the attack is in progress or
not, i.e., the variable tracks if a new attack must be launched or
a previous attack must continue. The variable is False in case
the attack is in progress (line 2) and True when the attack is not
running (line 4). In case an attack is not in progress, the type of
attack is randomly chosen between DoS, Spoofing and Replay
(line 5). Once the bootstrap variable is established, based on
the current attack value, an attack is launched (lines 6 to 13).
Keep note that in case of spoofing attack, the prev steering
and prev throttle brake variables are updated with the most
recent hacked messages generated (lines 10 and 11).

Finally, the launch attack returns the steering and throt-
tle brake values chosen by the attack, the current type of
attack, the index history selected by the Replay attack function
last time it is launched and the previous pair of steering and
throttle brake used by the Spoofing attack (line 14).

B. Instances Extraction Paradigm
To train the model to detect intrusion, CAHOOT re-

quires a dataset that contains both legit and forged
messages for each functionalities we aim to consider,
i.e., steeringlegit, steeringhacked, throttle brakelegit and
throttle brakehacked, with also the sensors’ values (Table I).

The instances of the dataset are extracted to generate the
final dataset on which the messages are organized in pairs
and, each pair is labelled as T when it is composed by
steeringlegit and throttle brakelegit or as F in all the other
cases (Table II). The organization in pairs allows CAHOOT to
detect possible intrusion that may happen when the intruder
is going to send the same message sent by the driver. In
fact, let us suppose that the driver wants to go straight, i.e.,

steeringlegit is equal to 0, and the intruder starts a DoS
attack, i.e., steeringhacked is equal to 0 (Table I, row 3). The
steering message sent by the intruder is considered as legit
because it is equal to the driver’s one. However, the algorithm
raises an alert based on the values of throttle brakelegit and
throttle brakehacked that should be different (Table II, rows
9 and 10). On the other hand, if both the messages in the pair
are equal (Table I, row 4), for instance because the intruder is
trying to perform a DoS attack, then CAHOOT only inserts
into the dataset one instance labelled with T (Table II, row
11). In this way, it prevents the DoS by discarding the flow
of not legit messages.

Hence, on the initial dataset we run the
instances extraction function (Listing 3) whose output is
the dataset insextracted that contains the final created dataset.

As first step, the algorithm reads each instance of the
initial dataset ins (line 3) to organize the messages in two
arrays. The first array contains tuples composed by steering
message alongside with a boolean value representing mes-
sage’s legitimacy. The second array contains tuples composed
by throttle brake message alongside with a boolean value
representing message’s legitimacy.

The two arrays are used to organize all the instances
in the initial dataset in such a way that legit and hacked
messages are clearly distinguishable: the legit messages are
inserted in the arrays (lines 10 and 11), while the hacked
messages are inserted only if they are other than the respective
legit ones (lines from 12 to 15). From instance the mes-
sages steeringlegit, steeringhacked, throttle brakelegit and
throttle brakehacked are removed (line 16). Thus, instance
now contains the engine runtime and the sensors’ values.

The algorithm creates several instances based on instance,
one instance per each combination of the steering and throt-
tle brake messages present respectively in steering array
and throttle brake array (lines 19 and 20). Then, each
generated instance is labeled “T” in case it contains only
messages from the driver or “F” in case it contains at least one
message from the intruder (lines from 21 to 24). Next, each
labeled instance is added to the insextracted dataset (line 25).
After all the instances present in ins are read, the algorithms
return the dataset insextracted (line 26).

Listing 3: Instances Extraction Paradigm
1 function instances extraction (ins)
2 insextracted ← empty array
3 for each instance in ins
4 {steeringlegit ← instance[”steeringlegit”]
5 steeringhacked ← instance[”steeringhacked”]
6 throttle brakelegit ← instance[”throttle brakelegit”]
7 throttle brakehacked ← instance[”throttle brakehacked”]
8 steering array ← empty array
9 throttle brake array ← empty array

10 steering array ← steering array
⋃

(steeringlegit, True)
11 throttle brake array ← throttle brake array

⋃
(throttle brakelegit, True)

12 if steeringlegit != steeringhacked

13 {steering array ← steering array
⋃

(steeringhacked, False)}
14 if throttle brakelegit != throttle brakehacked

15 {throttle brake array ← throttle brake array
⋃

(throttle brakehacked, False)}
16 remove from instance the columns ”steeringlegit”, ”steeringhacked”,

”throttle brakelegit”, ”throttle brakehacked”
17 for each (steering, is steering legit) in steering array



TABLE I: Example of instances before run Instances Extraction Paradigm

timestamp steeringlegit steeringhacked throttle brakelegit throttle brakehacked ...

01/01/2022 12:00:00.000 0,695 0,403 0,020 -0,001 ...
01/01/2022 12:00:00.100 0,045 0,494 -0,042 -0,533 ...
01/01/2022 12:00:00.200 0,0 0,0 -0,042 0,0 ...
01/01/2022 12:00:00.300 0,0 0,0 0,0 0,0 ...

TABLE II: Example of instances after run Instances Extraction
Paradigm

timestamp steering throttle brake ... label

01/01/2022 12:00:00.000 0,695 0,020 ... T
01/01/2022 12:00:00.000 0,695 -0,001 ... F
01/01/2022 12:00:00.000 0,403 0,020 ... F
01/01/2022 12:00:00.000 0,403 -0,001 ... F
01/01/2022 12:00:00.100 0,045 -0,042 ... T
01/01/2022 12:00:00.100 0,045 -0,533 ... F
01/01/2022 12:00:00.100 0,494 -0,042 ... F
01/01/2022 12:00:00.100 0,494 -0,533 ... F
01/01/2022 12:00:00.200 0,0 -0,042 ... T
01/01/2022 12:00:00.200 0,0 0.0 ... F
01/01/2022 12:00:00.300 0,0 0.0 ... T

18 {for each (throttle brake, is throttle brake legit) in
throttle brake array

19 {instance[”steering”] ← steering
20 instance[”throttle brake”] ← throttle brake
21 if is steering legit == True and is throttle brake legit == True
22 {instance[”label”] ← ”T”}
23 else
24 {instance[”label”] ← ”F”}
25 insextracted ← insextracted

⋃
instance}}}

26 return insextracted

C. Model generation

The Model Generation paradigm uses the Instances Extrac-
tion paradigm to generate the training and the test datasets
(Listing 4). Going more into detail, once the dataset is ran-
domly split in a training set and a test set (line 2), the instances
are extracted for the training and test (lines 3 and 4). We run
the extraction paradigm separately on the training set and the
test set to make sure that all combinations of steering and
throttle brake messages from the same original instance are
not distributed between the training set and the test set, but
remain in the same set. The appearance of extracted instances
of the same original in both training and test sets causes a
data leakage [24]. Data leakage happens when information
present in the training set is unexpectedly present also in the
test set. Next, the best features are selected using a Feature
Selection (FS) paradigm that ranks all features applying the
Gain Ratio [25] (GR) approach (line 5). Those features with
rank equal to zero are discarded (line 6), the other are passed
to the ML algorithm which returns a trained model (line 7).

Listing 4: Model Generation
1 function generate model(inslabelled)
2 (instrain, instest) ← split randomly the instances as training and testing sets

from inslabelled

3 ins extractedtrain ← instances extraction(instrain)
4 ins extractedtest ← instances extraction(instest)
5 ranking ← GR(instances)
6 features>0 ← discard features with rank = 0 from ranking
7 model ← MLAlgorithm(ins extractedtrain with features features>0,

ins extractedtest with features features>0)
8 return model

V. CAHOOT EVALUATION

To evaluate CAHOOT, we exploited the driving simulator
MetaDrive [26]. It is a driving simulator written in Python
to train a neural network for autonomous driving through
Reinforcement Learning [27]. MetaDrive is able to generate
infinite driving scenarios with procedural generation of maps
and different traffic flows. Inside the simulator is present a
pre-trained Artificial Intelligence (AI).

We modify the MetaDrive simulation workflow with the
introduction of an intruder. The in vehicle communication is
simulated by a set of messages made of two different Python
lists: the first one contains the steering messages while the
second list contains the throttle/brake messages sent. Both lists
represent messages sent by the intruder and the driver. The
intrusion workflow for each step of the simulation works as
follows: 1) While the driver sends the inputs, an intruder forges
fake messages of steering wheel and throttle/brake; 2) The
steering wheel and the throttle/brake messages of the intruder
and the driver are sent to the set of messages; 3) CAHOOT
reads from the set the messages and establishes which ones are
the legit messages and which ones are the hacked messages;
4) Steering wheel and throttle/brake messages from the set
are transmitted to the wheels and the vehicle component
responsible for applying the throttle/brake; 5) The set of
messages is emptied and ready to be filled with messages from
the next step.

Keep note that even if in the intrusion workflow are present
both the messages forged by the intruder and the messages
legit, CAHOOT do not need both legit and forged messages
for the detection phase. In case the intruder stops forging
messages, CAHOOT would receive only the legit messages
and establishes their legitimacy.

The dataset generated using the MetaDrive simulator con-
tains the features in Table III.

A. Machine Learning algorithms

The CAHOOT paradigm is implemented by using several
Python libraries to implement different ML algorithms. We test
Random Forest and Neural Network Multi-Layer Perceptron
(MLP). Random Forest do not require any settings of parame-
ters. Even with the default ones, the performance obtained by
these methods could be satisfactory. However, MLP requires
that some parameters must be set and fine-tuned to obtain the
best results, e.g., the architecture of the layers, the number of
batches and so on.

We normalize training and test set to speed up the model
training process using the z-score normalization [28] proce-
dure. To improve the neural network performance, we use
the embeddings for categorical values as explained in [29].



TABLE III: Features description

Feature Description Example Unit

Speed Speed of the vehicle 55 km/h
Throttle brake Amount of throttle or braking 0,55 N/A

Steering Rotation of the steering wheel -0.25 N/A
Last position x/y Position of the vehicle at coordinate x/y 125 N/A

Dist to left/right side Distance from the left/right lane 0,423 m
Fuel consumption Fuel consumption since the start of the driving session 33,12 N/A

Engine runtime minute/second/millisecond Minutes/second/millisecond elapsed from engine start 39 minutes/s/ms
Yaw rate Angular acceleration on vertical axis 0.089661 N/A

Project distance/velocity to vehicle n x/y Vehicle’s projection distance/velocity to the n-th nearest vehicle on coordinate x/y 0.187 N/A

Categorical values are the engine runtime milliseconds, engine
runtime seconds and the engine runtime minutes. The remain-
ing features are continuous. We then create data loaders for
training set and test set with batches of size equal to 2048.

The architecture of the MLP contains 4 layers and the sizes
of the hidden layers are respectively 2048, 1024 and 512. We
then search the best learning rate using the algorithm LRFinder
present in FastAI [30]. Finally, we use this learning rate in the
model training. We trained the model for 480 epochs.

B. Experiments setup

The experiments run on a Virtual Machine with an Intel(R)
Xeon(R) using 16 threads, 157 GB of RAM and CentOS
Linux 7 as OS. To evaluate CAHOOT, in the experiments we
use several metrics: Accuracy, Precision and Recall. Accuracy
represents how often the model is making a correct prediction.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

TP (True Positive) is the number of instances where at least
one sensor’s value is hacked that are correctly predicted. TN
(True Negative) is the number of instances where all the
sensors’ values are legit that are correctly predicted. FP (False
Positive) is the number of instances where all the sensors’
values are legit but incorrectly predicted. FN (False Negative)
is the number of instances where at least one sensor’s value
is hacked but incorrectly predicted.

Precision measures the ability of the classifier not to predict
as hacked an instance that is legit. It is calculated as follows:

Precision =
TP

TP + FP
(2)

Recall measures the ability of the classifier to find all hacked
instances. It is calculated as follows:

Recall =
TP

TP + FN
(3)

We randomly split the dataset in a training set of 85% of
instances and a test set of the remaining 15%. We have fed
each ML method with the same training set and tested with
the same test set. The dataset contains drivings made by an
AI and 5 human drivers using a Thrustmaster TMX [31]. In
the dataset are present 107 driving sessions made by humans.
To demonstrate the validity of CAHOOT, we also simulated
further human drivings using data augmentation techniques.
Data augmentation are methods to generate synthetic patterns
starting from a dataset [32].

TABLE IV: Features selected by CAHOOT (percentage of
each rank w.r.t. the sum of the ranks of the features)

Features Rank percentage

Train
Human and AI

Train
Human

steering 46,7% 43,0%
throttle brake 32,4% 37,3%
speed 7,4% 7,3%
yaw rate 6,6% 5,6%
fuel consumption 2,3% 2,0%
last position y 1,3% 1,2%
last position x 0,9% 0,9%
engine runtime minute 0,5% 0,2%
engine runtime second 0,5% 0,5%
dist to left side 0,4% 1,1%
project distance to vehicle 1 y 0,3% -
dist to right side 0,2% 0,5%
project velocity to vehicle 0 y 0,2% 0,3%

While the driver is driving the simulated vehicle, the
intruder sends steering and throttle brake messages. We
decided to simulate attacks with several success rates, i.e.,
0%, 20% and 40%. Also, to simulate multiple attacks on each
driving session, we set the maximum and duration of an attack
respectively to 2 and 1 slots.

We aim to detect the instances that contain at least one sen-
sor’s value hacked from the steering and the throttle brake.

C. Evaluation without data augmentation

In the following, we first evaluate CAHOOT training it by
using the human and AI driving sessions. Then, the training is
done by using only human driving sessions. Table IV contains
the list of features selected by CAHOOT. To better distinguish
features rankings, each feature rank is shown as a percentage
of the sum of all the ranks.

The training CAHOOT using human and AI drivings lever-
ages the steering and throttle brake messages. The worse
features are the distance from the right lane and the projection
of velocity of the nearest vehicle in the y axis. The engine
runtimes minutes and seconds are at the half of the table while
the engine runtime milliseconds was discarded.

The MLP is trained with a learning rate of 0,00023.
In Table V, we make a comparison among Random Forest

and MLP. When CAHOOT is trained using human and AI
drivings, the table shows that Random Forest (Table V (a))
obtained the best accuracy while MLP (Table V (b)) is the
most balanced model, obtaining similar Precision and Recall.

To better understand on which circumstances Random For-
est best performs, we calculated the accuracy grouped by



entity, i.e., human or the AI is driving the car, and by type of
attack, i.e., DoS, spoofing and replay. Table V (a) shows that
the model has difficulty in the identification of the instances
where the AI drives the car. On the other hand, the model
has an excellent accuracy on instances where the human is
driving. AI makes continuous and sudden driving adjustments,
whereas humans tend to make gradual changes. Graduality
makes human drivings predictions more accurate. The most
difficult type of attack to identify is the replay attack while
the spoofing is the most easiest to identify.

Because on human drivings the algorithm obtains high
accuracy, we tried to improve the results by training and testing
using only drivings made by humans.

Table IV contains the list of features selected by CAHOOT.
As before, the first six highest ranked features are steering,
throttle brake, speed, yaw rate, fuel consumption and
last position y. However, engine runtimes seconds and min-
utes are no longer at the half of the table and ranking fourth to
last and last respectively. Also, the projection with the nearest
vehicles obtained a rank equal to zero, except for the projection
of velocity to the nearest vehicle in the y axis.

The MLP is trained with a learning rate of 0,00016 obtained
using the LRFinder algorithm. Table V shows that Random
Forest obtained the best accuracy. Testing only the human
drivings, the model trained with both human and AI drivings
obtains slightly better accuracy w.r.t. the model trained using
only human drivings. The AI reacts almost instantly to intru-
sions making it the ideal driver. Thus, the model trained with
also AI drivings is better at detecting legitimate messages.
Moreover, Table V (a) shows that replay attack is the most
difficult to recognize, while spoofing attack is the simplest to
recognise with a Recall nearly perfect, i.e., 99,78%.

D. Evaluation with data augmentation

There are several data augmentation techniques on litera-
ture [32]. However, some techniques may produce dataset not
realistic. For example, jittering, i.e. the application of noise to
the dataset, may produce driving sessions in which the driver
never comes to a complete stop at stop signs. To synthesize
additional human driving sessions, we use data augmentation
techniques which guarantee that at each driving session the
fuel consumed by a vehicle since the start of the driving ses-
sion can not decrease over time, i.e., at the i-th instance of the
session fuel consumption[i] ≥ fuel consumption[i − 1].
Hence, we simulate additional human driving sessions using
two data augmentation techniques: time warping uses a cubic
spline that stretches or contracts the temporal dimension of
the driving session [33], window warping stretches by 2 or
contracts by 1

2 a random window of the time series [34].
Hereafter, the procedure to generate the augmented test set.
1) Preparation of the dataset for Data Augmentation:

because we want to augment human drivings to generate new
synthetic human drivings, every AI drivings from the entire
dataset are discarded. Either the training set and the test set
contain hacked messages of steering and throttle brake.
We do not need to augment the hacked messages because

we can simply randomly generate new hacked messages.
Hence, the hacked messages are discarded and the resulting
dataset saved in dataset legit. New hacked messages of the
augmented data will subsequently be randomly generated.
The data augmentation methods that will be used contract
and/or stretches the time. Hence, even the features which
represent the engine runtime will be consequently altered. The
stretching and contracting is made by the data augmentation
to generate new driving sessions that represent respectively
a longer and smaller driving route in a time frame equal to
the time before the data augmentation occurs. The engine
runtime stretched and contracted will report to the machine
learning method these time changes defeating the purpose of
the data augmentation in the first place. To address this issue,
the original engine runtime features are stored in a separate
array and subsequently be used for the augmented datasets.
Finally, the function returns the dataset legit, the array of
engine runtimes and the index of the driving sessions.

2) Augmentation of the dataset: the data augmentation
method augmented function will be applied to the original
dataset, i.e., either training and test set. The augmented train-
ing set will be used to simulate the replay attacks, but will not
be used to train the model. First, an array with the augmented
datasets is created. To increase further the dataset, each data
augmentation method can be performed multiple times. At
each repetition, an array dataset augmented that will contain
the dataset augmented is created. Then, at each driving ses-
sion is applied the augmented function and the augmented
driving session is appended to dataset augmented. Next, the
augmented engine runtimes are substituted with the original
engine runtimes. The augmented dataset is added to the
array of augmented datasets. Once the augmented function
is repeated repeat times, the array of augmented datasets is
returned.

3) Insert of hacked messages: the augmented instances that
are part of the test set need hacked messages. Hence, we
will create a test set from each augmented dataset on which
the instances have attached new hacked messages. First, the
array that will contains the augmented test set is created.
To populate this array, the procedure must pick from each
augmented dataset in datasets augmented the corresponding
augmented instance of each test set instance. Note that the
procedure use instances from the test set of human drivings
only. Then, the index of the augmented instance is obtained
and passed to the function generate intrusion responsible
for the generation of new hacked messages for the aug-
mented instance. The function is explained later on. Then,
an instance augmented attacked is defined and contain the
augmented values alongside with the hacked messages. Hence,
instance augmented attacked can be now appended to the
augmented test set. Once all the augmented test set instances
are appended, the original test set is appended to the aug-
mented test set.

The last function to explain is generate intrusion. The func-
tion randomly generates hacked messages for the augmented
test set instance. First, an attack between DoS, replay and



TABLE V: Accuracy, precision and recall comparison of CAHOOT using different ML methods

Random Forest
Acc Prec Rec Acc Prec Rec

Train Human and AI drivers Train Human drivers

95,50% 95,98% 97,87% 97,03% 97,30% 98,60%

Test only human drivers

97,25% 97,57% 98,64% N/A

Test only AI drivers

82,70% 85,54% 92,46% N/A

Test only Replay attack

93,36% 95,34% 95,46% 95,49% 96,69% 97,05%

Test only DoS attack

96,26% 95,83% 98,90% 97,15% 97,15% 98,74%

Test only Spoofing attack

96,73% 96,62% 99,11% 98,24% 97,91% 99,78%

(a) Results on Random Forest

MLP
Acc Prec Rec Acc Prec Rec

Train Human and AI drivers Train Human drivers

93,81% 95,74% 95,70% 95,30% 96,84% 96,63%

Test only human drivers

95,73% 97,23% 96,83% N/A

Test only AI drivers

79,86% 85,60% 87,80% N/A

Test only Replay attack

90,32% 94,59% 91,83% 92,14% 95,55% 93,42%

Test only DoS attack

94,70% 95,57% 96,85% 95,58% 96,68% 96,87%

Test only Spoofing attack

96,12% 96,79% 98,07% 97,77% 97,97% 99,08%

(b) Results on MLP

spoofing attacks is randomly chosen. Then, the chosen attack
is launched. In particular in the spoofing attack, the attack
is launched obtaining a random steering and a random throt-
tle brake values. In case the attack is Replay attack, the arrays
with driver’s history of previous steering and throttle brake
values must be built. The procedure determines the index
start of the current driving session based on the variable
index, i.e., the index of the augmented test instance. The
previous augmented instances for the current driving session
are the instances starting from the instance with the index
start index and ending with the instance that has index
index minus 1. Then, the procedure collects the previous
steering and throttle brake values of the augmented instances
for the current driving session. Next, the procedure execute the
function “replay attack” and returns the result. The function
choose randomly an instance index from the current driving
session.

We evaluate CAHOOT using a test set augmented by 3x,
5x, 7x and 9x, i.e., the test set is made by the original test set
and the augmented test sets using the window and time warp
methods repeated respectively 1 time, 2 times, 3 times and 4
times. The number of human driving session presents in the
test sets augmented by 3x, 5x, 7x and 9x are respectively 321,
535, 749 and 963 human driving sessions. We use Random
Forest as ML algorithm because it obtained the best accuracy
in all the previous tests.

Fig. 1: Comparison of Attack Identification test bed with test
set augmented.

In the first experiment, CAHOOT is trained using the human

drivings and the AI drivings (Figure 1). The bar plot shows that
the test set without data augmentation, i.e., 1x, loose 9,49%
of accuracy with the respect to the test set augmented 3x. The
use of data augmentation amplify noises present on the dataset
which leads to a deterioration in identification. On the other
hand, the accuracies, the precisions and recalls of the 5x, 7x
and 9x are similar. Hence, CAHOOT’s accuracy degradation
is less affected by noise as the dataset grows. The attack
type that obtained the lowest accuracy is replay attack with
a minimum accuracy of 75,08% and a maximum of 79,92%.
The attack type with the highest accuracy is spoofing attack
with an accuracy that ranges between 86,72% and 89,39%.

In the last experiment, CAHOOT is trained and tested using
only the human drivings (Figure 2).

Fig. 2: Comparison of Attack Identification test bed trained
using only human drivings with test set augmented.

The bar plot shows that the test set without data augmen-
tation, i.e., 1x, loose 10,82% of accuracy with the respect to
the test set augmented 3x. Accuracy, the precision, and recall
measures of the 5x, 7x and 9x are similar as previously seen
in the previous experiments. The attack type that obtained the
lowest accuracy is replay attack with a minimum accuracy of
74,87% and a maximum of 80,26%. On the other hand, the
attack with the highest accuracy is once again the spoofing
attack in a range between 86,76% and 89,86%.

VI. CONCLUSION

In this paper, we presented CAHOOT, a context-aware
IDS able to detect intrusions into a sequence of in-vehicle



messages related to a driver’s driving style. We evaluated the
performance of CAHOOT using several metrics. CAHOOT
obtained high scores in all the configuration, especially using
Random Forest. Compared respectively to the lowest and
the highest score of the main context-aware IDSs, CAHOOT
performed on spoofing attack the best and second best score
proving its reliability. Moreover, we adopted data augmenta-
tion techniques to increase the number of human drivings to
demonstrate that CAHOOT performs well with larger datasets.

As future work, we will improve CAHOOT to work on
more complex scenarios and to identify how many data should
be collected from the human and AI drivers. In addition, we
will consider new driving scenarios, e.g., the drivers will be
instructed to drive fast like being late for an appointment.
Furthermore, we aim to refine the algorithm to detect which
sensor of the car is being attacked.
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