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A B S T R A C T

Chestnut crops are threatened by fungal pathogens such as Gnomoniopsis castaneae, which cause significant 
degradation of quality. Early detection of such infections is crucial to maintain the quality of chestnuts in the 
food industry. This study explores the application of Terahertz Time-Domain Hyperspectral Imaging (THz- 
TDHIS) combined with unsupervised learning techniques to identify fungal infections in chestnuts. Unlike 
conventional methods that rely on light attenuation, this approach leverages the unique spectral signatures of 
infected tissues. By employing Principal Component Analysis, K-Means Clustering, and Agglomerative Clus
tering, we effectively differentiate between healthy and infected portions of chestnuts. Our findings indicate that 
spectral features, rather than just intensity variations, provide more reliable markers for infection. In addition, 
we demonstrate that these methods enable the quantification of the degree of infection in chestnuts. The 
robustness of these unsupervised learning methods in handling large and heterogeneous data sets further un
derscores their potential in agricultural applications. This integrated THz-TDHIS and machine learning approach 
presents a promising solution to ensure chestnut quality and safety.

1. Introduction

Chestnut fruits, rich in saccharides, attract insects and fungi, posing a 
significant threat to chestnut crops (Bernárdez et al., 2004). An 
emerging menace to chestnut cultivation, particularly in European re
gions like Italy, is Gnomoniopsis castaneae, a fungal pathogen causing 
discoloration of the chestnut endosperm and subsequent mummification 
and brown rot (Dobry & Campbell, 2023). Additionally, various fungi 
such as Penicillium sp., Aspergillus sp., Fusarium sp., Phomopsis castanea, 
and Sclerotinia pseudotuberosa have been identified in chestnuts globally 
(Bertuzzi et al., 2015; Donis-Gonzalez et al., 2012; Vettraino et al., 2005; 
Washington et al., 1997).

Considering the crucial importance of chestnut quality in the food 
industry, impacting both consumer satisfaction and marketability, the 
early detection of fungal diseases is essential for ensuring food safety. 
Non-destructive techniques, such as spectroscopy, are pivotal for 
assessing chestnut quality (Chen et al., 2013). For example, Corona et al. 

integrated sensory evaluation with Near Infrared (NIR) spectroscopy to 
classify chestnuts based on their quality and suitability for the market 
(Corona et al., 2021). Moscetti et al. demonstrated the efficacy of NIR 
spectroscopy in detecting concealed mold infections (Moscetti et al., 
2014). Additionally, Terahertz (THz) spectroscopy has emerged as a 
valuable method for non-destructively identifying fungal infections in 
chestnuts (Di Girolamo et al., 2021). By analyzing light attenuation and 
physical characteristics like mass and volume, the authors successfully 
differentiated between healthy and infected chestnuts. Similar results 
have been obtained for hazelnuts (Gennari et al., 2023). However, these 
findings heavily rely on the assumption that localized fungal infection 
alters the water content. This assumption is highly debatable, as 
numerous other factors could influence the water content in various 
parts of the fruit (Li et al., 2022; Ruocco et al., 2016). Thus, identifying a 
spectral feature specifically linked to diseased chestnuts would provide a 
more reliable marker of their condition, independent of other variables.

In this context, THz spectroscopy has demonstrated its invaluable 
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utility for investigating the vibrational characteristics of molecules, 
encompassing torsional and rotational modes. Various molecules exhibit 
unique absorption or scattering patterns within the THz range, 
rendering THz radiation an exceptional non-ionizing alternative to X- 
rays for generating detailed images of internal structures within objects 
(Blanchard et al., 2007). THz spectroscopy reveals distinct spectral 
signatures in numerous soft-matter and bio-systems (George & Markelz, 
2013; Mou et al., 2017, 2018; Tielrooij et al., 2009). Recently, it has 
emerged as a potent tool in agricultural applications too (Afsah-Hejri 
et al., 2020). However, THz imaging and spectroscopy are often utilized 
independently, missing the opportunity to augment standard imaging 
with spectral information. Conversely, in our study, we endeavor to 
merge THz imaging with Time-Domain Spectroscopy, i.e., to apply THz 
Time-Domain Hyperspectral Imaging (THz-TDHIS), for more effectively 
delineating the infected areas in a highly heterogeneous system like 
chestnuts.

Managing a substantial volume of data is crucial in such methodol
ogies. Moreover, the intrinsic heterogeneity of these systems can 
obscure spectral characteristics that signify the health or infection status 
of chestnuts. Therefore, we employ various Unsupervised Learning- 
based techniques to tackle these obstacles, which are increasingly 
common in THz imaging applications (Park et al., 2021). Specifically, 
we assess the results of Principal Component Analysis (PCA) (Greenacre 
et al., 2022), K-Means Clustering (KMC), (Hartigan & Wong, 1979) and 
Agglomerative Clustering (AC) (Murtagh & Contreras, 2012). Our 
findings demonstrate that these approaches can effectively differentiate 
between healthy and infected chestnuts, a task not achievable solely 
through signal intensity assessment. Furthermore, all three methods 

produce consistent classification results, highlighting the reliability of 
our conclusions. Finally, we will show that these methods are able to 
quantify the degree of infection of each sample.

2. Materials and methods

2.1. Chestnut samples

Chestnuts Palomina cultivar were harvested from chestnuts forest of 
Montella in Campania region in the province of Avellino during the 
autumn season 2023. 400 μ m thick slices of chestnut fruit were obtained 
by means of a rotatory microtome (Microm HM 350s). The thickness 
resolution of the latter was 50 μ m.

2.2. THz-TDHIS set-up

Room-temperature terahertz transmission measurements were con
ducted with the TeraASOPS spectrometer by Menlo Systems. This sys
tem exploited the principle of Asynchronous Optical Sampling (ASOPS) 
thanks to the use of two ultra-fast femtosecond laser sources which were 
connected to the transmitting and receiving antennas via optical fibers 
(Fig. 1a). This system implemented THz Time Domain Spectroscopy 
(THz-TDS), thus it generated and detected THz pulses in the time 
domain, as the one shown in Fig. 1c. The THz pulses transmitted through 
the sample were attenuated and delayed in time, so they carried infor
mation about the refractive index and absorption spectrum at the 
different frequencies composing the pulse (Lee, 2009). This information 
could be retrieved in the frequency space by applying a Fast Fourier 

Fig. 1. Methods. a) The THz-TDHIS imaging system by Menlo Systems comprises detection and generation components, consisting of two photo-antennas connected 
by optical fibers to two high-repetition femtosecond lasers. A portion of the laser beam is deliberately delayed before reaching the detection photo-antenna to 
perform THz-TDS. b) The power spectrum of the THz pulse transmitted through air. The latter shown in panel c). d) Results of the background removal process on 
three slices of chestnut (upper panel) and a slice of chestnut (lower panel) covered with a piece of peel in the middle. e) A typical graph generated using the ’elbow’ 
method to determine the optimal number of clusters for the KMC analysis. The red circle highlights the point where a sharp change in the SSE function occurs. f) This 
graph features a dendrogram for hierarchical clustering. The red line intersects at the point indicating the largest acceptable dissimilarity before merging. g) The 
’loadings’ from PCA analysis are derived from the eigenvalues and eigenvectors of the covariance matrix.
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transform to the THz time waveform.
The Menlo Systems apparatus was associated with a two- 

dimensional scanning system, whose maximum scanning area was 30 
× 30 cm2. The nominal spectral window of the system was 4 THz. 
However, as seen in Fig. 1b, where we report the power spectrum of the 
pulse transmitted in air, the frequency interval with a significant signal 
was 0.3–1 THz. The scan interval in the time domain was 10 ns. The 
signal to noise ratio was >70 dB (with frequency difference = − 10 Hz, 
sampling rate = 10 MHz, gain = 106, bandwidth = 1.8 MHz, 1000 av
erages). The lateral resolution of the measurement was determined by 
the size of the THz pulse at the focal point, which was approximately 1.5 
mm, and by the step of the scanning system, which could not be less than 
0.1 mm. The in-depth resolution depended on the useable bandwidth of 
the system and was about 0.5 ps, corresponding to 60 μm (in air). The 
maximum depth of analysis was 7.5 mm in air.

2.3. Unsupervised-learning methods

In THz spectral imaging, the transmitted THz optical field are 
captured. We indicated the latter as E(t), for each pixel. Note that the 
latter is a discrete array of values, indexed with i. From this, we calcu
lated two important metrics: the total amplitude, 

∫ ⃒
⃒E(t)

⃒
⃒dt, and the 

spectral amplitude, E(ωi) = |E(ω)|, using a Fast Fourier Transform. Here 
and in the following, the bar will indicate the discretized spectral 
amplitude. We organized all the data from the image into a matrix Ê0 =
{
Eij
}
, where i was the index introduced above and j identified each pixel 

of the image as better shown in Fig. 1 of the Supplementary Material. 
Therefore, Ej indicates the spectrum-array corresponding to pixel j. Here 
and in the following the hat will indicate the matrices. An essential pre- 
processing step was then applied to the matrix to optimize its readiness 
for analysis. This involved normalizing the dataset and removing spectra 
associated with background pixels from the matrix Ê0. The result was a 
new matrix Ê, which was now free from background interference and 
normalized. Below, we outline the pre-processing steps and provide 
further details about these analytical techniques. We applied three Un
supervised Machine Learning techniques — Principal Component 
Analysis (PCA), K-Means Clustering (KMC), and Agglomerative Clus
tering (AC) — each separately on the pre-processed matrix. The goal was 
to determine if each technique could distinguish the healthy from the 
unhealthy portions of chestnuts. We then compared the results obtained 
from all three techniques to evaluate their effectiveness. Below, we 
describe the pre-processing steps in greater detail and provide insights 
into the analysis techniques used.

For the analysis of our spectral data, we introduced two types of data 
normalization. Specifically, with Type 1, we refer to normalization with 
respect to the global maximum of the dataset: 

Ê
N1

=

{
Eij

max(Ê0)

}

=

{
Ej

max(Ê0)

}

, (1) 

In this normalization, each value Eij in the dataset was divided by the 
maximum value present in the entire dataset Ê0. The entire dataset was 
scaled so that the maximum value in the entire dataset became 1, and all 
other values were between 0 and 1. The spectrum containing the 
maximum value in the dataset had a value that reached 1. The other 
spectra had values less than 1 or equal 1 in case of many global maxima.

In the second type of normalization (Type 2), we normalized each 
spectrum Ej to its own maximum: 

Ê
N2

=

{
Ej

max
(
Ej
)

}

. (2) 

In the first normalization (Type 1), we were more sensitive to the 
amplitude fluctuations due to the inhomogeneities of the sample, which 
could be attributed to factors other than changes in the physico- 

chemical composition of the sample (e.g., varying thickness, porosity, 
roughness, water content, etc.). The second procedure (Type 2) natu
rally enhanced the weight of spectral signatures.

Concerning removal of the background pixels, they were discerned 
using KMC. It was performed using unsupervised binary clustering, 
where the algorithm divides the image into two classes: ’background’ 
and ’sample’. With this choice, we were assuming that the background 
spectrum was sufficiently different from the chestnut spectrum to allow 
for clear distinction between the two through binary classification. This 
approach, as depicted in Fig. 1d, effectively distinguished the various 
samples from their backgrounds. However, apart from the vertical cut in 
the lower panel of Fig. 1d, which corresponded to an actual fracture in 
the chestnut slice, we also observed regions of the chestnut that were 
incorrectly classified as background and vice versa (such as the bottom- 
right corner in the upper panel and the horizontal white lines in the 
lower panel). We note that this misclassification was already present at 
the preprocessing stage and hence it affected all the subsequent analysis. 
The misclassification of these pixels can be attributed to several factors, 
including measurement disturbances, background impurities, re
flections, or instrumental noise, which can strongly distort the spectral 
response so to confuse it with that of the background. However, it is 
important to note that these "false" events represent only a small fraction 
of the pixels.

PCA worked by diagonalizing the covariance matrix to identify the 
eigenvectors, known as principal components (Greenacre et al., 2022). 
These principal components were ordered based on the largest eigen
values of the covariance matrix, so the first component captured the 
greatest amount of variance. This algorithm allowed to identify the 
dominant patterns in a data matrix Ê, which had dimensions n × m and 
was formed by measuring m variables across n samples. PCA accom
plished this by decomposing the original data matrix into the product of 
two smaller matrices: the scores matrix and the loadings matrix. In 
mathematical terms, this decomposition separated the data matrix into a 
structured component and a noise component, expressed by the equa
tion (Wold et al., 1987): 

Ê = T̂ P̂
T
+ R̂ 

where the structured component T̂ P̂
T 

captured significant data patterns, 
and the residual matrix R̂ represented nonsystematic noise. The scores 
matrix T̂ reflected the variance among the samples, assigning each a 
coordinate in the principal component space. In contrast, the loadings 
matrix P̂ conveyed how the original variables related to the principal 
components, revealing their correlations. Examples of the calculated 
loadings are shown in Fig. 1g. The residuals matrix R̂ accounted for the 
variation that did not align with the principal components. The scores 
matrix plot distinguished healthy chestnuts from diseased ones. Due to 
significant differences in their features, healthy and diseased samples 
cluster separated in the principal component space, allowing for visual 
identification based on PCA’s dominant patterns.

K-Means Clustering and Agglomerative Clustering were powerful 
clustering algorithms that segmented spectral data into homogeneous 
groups based on their attributes. KMC worked by initially placing a 
predefined number of cluster centroids and assigning each data point to 
the nearest one based on a distance metric, such as Euclidean distance 
(Murtagh & Contreras, 2012). After assigning the points to clusters, it 
recalculated the centroids as the mean of all points in the cluster. This 
iterative process continued until no significant changes occurred, 
providing stable groupings. The elbow method helped choosing the 
optimal number of clusters in KMC by plotting the sum of squared dis
tances from each point to its cluster centroid against different values of 
cluster number K. The optimal K was identified where the plot showed a 
clear bend or "elbow," indicating diminishing returns in reducing vari
ance with additional clusters. Fig. 1e displays a typical graph generated 
using the elbow method to determine the optimal number of clusters for 
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data analysis. In contrast, AC started with each data point as an indi
vidual cluster and progressively merged the closest clusters based on 
their similarity, often using linkage criteria like single, complete, or 
average linkage (Greenacre et al., 2022). This process continued until 
only one cluster remained or a specified number was reached. The 
optimal number of clusters could be determined by analyzing the 
dendrogram, a tree-like diagram that visually depicts the merging pro
cess. To determine the ideal juncture for cutting the dendrogram, it was 
sought a level where the disparity between consecutive heights was most 
noticeable. In the dendrogram, each horizontal line represented a level 
where clusters merged, and the vertical height of the line indicated the 
distance or dissimilarity between the clusters that were merged. If the 
difference in height between two consecutive mergers was significant, it 
meant there was a notable increase in the distance between clusters 
merged at that level compared to those merged in the previous level. 
Fig. 1f illustrates a typical dendrogram from our samples.

Together, these three techniques revealed intrinsic groupings within 
complex spectral datasets, helping to identify subtle differences in 
composition or structure that were crucial in spectroscopic imaging of 
our samples.

3. Results

In this section, we present the outcomes derived from employing the 
PCA, KMC, and AC methodologies on various samples. Initially, we 
examined a healthy chestnut with a strip of peel positioned at its center, 
shown in Fig. 2a. Note the uniform white color indicating its healthy 
status, typically discerned through visual inspection (Ruocco et al., 
2016).

The THz spectroscopic imaging outcomes are delineated in Fig. 2
(b–d). The spatial resolution of these images is 0.15 mm. Utilizing the 
Tera Image software developed by Menlo Systems, the integration of 
|E(t)| for each pixel yielded the image depicted in Fig. 2b. Additionally, 
analogous outcomes were attained when visualizing either the 
maximum or minimum of the THz waveform, a method commonly 
employed in THz imaging analysis (Catapano et al., 2019; Manca et al., 
2023). By employing the PCA method on the spectral amplitudes within 

the frequency range 0–3 THz for each pixel, with normalization pro
cedures of the spectra delineated above, we could reconstruct the image 
presented in Fig. 2c-d. In panels (b-d) of Fig. 2, the blue rectangle in
dicates the chestnut area concealed by the peel. Notice the gray vertical 
irregular shape in Fig. 2a, which results from a fracture in the slice and 
which is perfectly reproduced in all the panels (b-d). However, as 
already noted, there are also limited portions of the chestnut that are 
wrongly classified as background.

These images demonstrate that in all three cases, THz-TDHIS is 
capable of detecting the chestnut fruit beneath the peel. However, 
Fig. 2b reveals that the THz image is highly heterogeneous despite the 
entire fruit slice being healthy. Consequently, this outcome illustrates 
that a simple measurement of transmitted intensity is insufficient for 
unequivocally classifying the chestnut as healthy. This limitation arises 
because transmitted total amplitude is significantly influenced by 
several factors of inhomogeneities (e.g., varying thickness, porosity, 
roughness, water content, etc.). The PCA analysis produced similar 
outcomes when applied to spectra normalized to the maximum value 
among all the transmitted amplitude (Fig. 2c). This is because, also in 
this case, normalizing to the maximum amplitude among all pixels 
accentuated features associated with inhomogeneities, which strongly 
impacted the absolute value of transmitted amplitude. Conversely, when 
employing the second normalization in PCA, thus placing more 
emphasis on spectral features rather than amplitude variations, distinct 
results emerged. In this scenario, as depicted in Fig. 2d, the recon
structed image accurately identified the healthy fruit across all sectors of 
the chestnut slice, except for some small areas which were wrongly 
classified as background already at the preprocessing stage. In the 
following, we will omit the images acquired by measuring the total 
amplitude of the transmitted pulse, as demonstrated in Fig. 2b, and 
concentrate exclusively on the PCA, KMC, and AC methods.

Both healthy and infected fruit slices were examined to demonstrate 
the efficacy of PCA with second normalization in accurately classifying 
them. These findings are presented in Fig. 3(b and c). The spatial reso
lution of these images is 1 mm. The analyzed slices, depicted in Fig. 3a, 
are shown without the chestnut husk, which instead covered the fruit 
slices during the measurements shown in panels (b-c). Similarly to 

Fig. 2. a) Photograph of the chestnut slice covered by a piece of peel, note the uniformity of the fruit color; b) Image of the chestnut obtained by calculating for each 
pixel the total amplitude of the transmitted pulse. The spatial resolution of this image is 0.15 mm. Observe the blue square in the center, indicating the area covered 
by the peel depicted in panel a); c) Score plot obtained by applying the PCA method to the spectral amplitude within the frequency range 0–3 THz of each pixel 
normalizing all the spectral amplitudes to the maximum of the latter across all pixels; d) The same image as in panel d), but with each spectrum normalized to its 
maximum, thereby accentuating the spectral distinctions of each pixel.
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previous observations, THz-TDHSI successfully reconstructed the fruit 
image even beneath the peel. However, it struggled to differentiate be
tween the healthy and partially infected slices when applying PCA to 
spectra normalized to the global maximum (Fig. 3b). Once again, the 
second normalization procedure proved more effective in discerning the 
infection gradient, as illustrated in Fig. 3c.

Finally, we proceeded to examine the outcomes derived from the two 
other methods: K-Means and Agglomerative Clustering. As elucidated in 
Sec. 2.3, for both techniques, it was crucial to determine the number of 
clusters for classifying the spectra. We employed the ’elbow’ method for 
K-Means and the ’dendrogram’ method for AC to ascertain the appro
priate number of clusters. The optimization procedures yielded an 
optimal value of 2 clusters for the first type of normalization and 5 
clusters for the second type. Fig. 4 presents the results obtained using 

these cluster numbers. It is important to note that the optimal number of 
clusters depends on the hyperparameters used to implement the elbow 
method and dendrogram. For this reason, in the Supplementary Material 
we demonstrate that variations in the cluster numbers within a certain 
range do not alter the final outcome of chestnut classification, thus 
confirming the robustness and reliability of the performed analysis.

In panels (a-b) of Fig. 4, we present the results obtained from K- 
Means applied to spectra normalized to the global maximum and spectra 
normalized to their own maxima, respectively. These images reveal that, 
akin to the PCA method, normalizing the spectra to their own maxima 
was crucial for distinguishing healthy sections of the chestnut from the 
infected ones, thereby enhancing the spectral disparities among 
different pixels. Similar results were observed in the case of the AC 
method, underscoring the robustness of an analysis predicated on 

Fig. 3. a) Three slices of chestnut fruit classified by visual inspection: strongly infected (A); partially infected (B); healthy (C). In the remaining panels the images 
refer to these samples but fully covered with a piece of peel. The spatial resolution is 1 mm. b) Score plot obtained by applying PCA on spectral amplitudes within the 
0–3 THz frequency range, normalized to the dataset maximum. c) The same score plot as in panel b), but with each spectrum normalized to its own maximum value, 
thereby accentuating the spectral distinctions of each pixel.

Fig. 4. In panel (a–b) the results of the analysis conducted by means of the K-Means Clustering method are reported: a) spectral amplitude with normalization to the 
maximum transmitted amplitude among all the pixel spectra; b) the same image with each spectrum normalized to its maximum. In panel (c–d) for the same samples 
we report the results obtained by means of the Agglomerative Clustering. As in previous sequence panel c) reports the results obtained with normalization to global 
maximum; d) with normalization to the maximum of each spectrum. Note the different number of clusters for the two normalization procedures as better explained in 
the main text.
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normalizing each spectrum to its own maximum.

4. Discussion

Fig. 5(b–d) and (f-h) display histograms that are used to quantita
tively compare the three analytical techniques. We lack independent 
data on the percentage of healthy areas in the three slices, as the stan
dard methods in agriculture rely mainly on rough visual estimates. To 
enhance the comparison with our THz spectroscopy findings, we con
ducted a more detailed visual analysis by converting a photograph, 
taken prior to the THz measurement, into a binary image. In this process, 
each pixel was classified as either healthy or diseased (white or black) by 
isolating the chestnut slice from its background and applying a threshold 
corresponding to the average RGB value of the original photograph 
(further details are available in the Supplementary Material). The se
lection of this threshold is crucial. The error bars shown in Fig. 5a 
represent an estimate of the variation in the classified portions’ per
centages when this threshold is adjusted by 10%. Additional information 
on the statistical analysis is provided in the discussion below.

These histograms distinguish between pixels representing healthy 
(green bars) and diseased (red bars) chestnuts by establishing an 
appropriate threshold value. For PCA, the threshold was set as the mean 
of the scores, whereas scores below the mean are associated with a 
diseased portion of the chestnut. In the case of KMC and AC, differen
tiation between Type 1 and Type 2 normalization was necessary. With 
Type 1 normalization, there were only two clusters, leading to a binary 
classification where cluster 1 represented healthy pixels and cluster 2 
represented unhealthy pixels. For Type 2 normalization, there are five 
clusters; thus, clusters 4 and 5 were designated as infected pixels, while 
clusters 1 through 3 were designated as healthy pixels.

Starting from graphs in Fig. 5 we could calculate the percentage of 
healthy and unhealthy chestnut. The results are summarized in Table 1. 
Specifically, using Type 1 normalization, samples A, B, and C consisted 
of 32%, 96%, and 92% healthy portions using PCA; 24%, 92%, and 90% 
with K-Means; and 35%, 96%, and 96% with Agglomerative Clustering, 
respectively. Conversely, using Type 2 Normalization, the samples are 

28%, 62%, and 74% healthy with PCA; 28%, 61%, and 79% with K- 
Means; and 25%, 61%, and 73% with Agglomerative Clustering.

To establish the confidence level of these values, we supplemented 
the results with a statistical analysis. We employed two different ap
proaches. As mentioned earlier, the threshold set for the binarized image 
and PCA analysis was crucial. Therefore, we varied it by ±10% to assess 
its impact on the percentage of healthy versus unhealthy areas. The 
resulting errors are shown in Fig. 5 using triangle symbols. However, 
this approach is problematic for KMC or AC due to the discrete nature of 
these methods. Adjusting the threshold by ±10% does not affect the 
histograms, leading to zero error. Consequently, we adopted a different 
approach. The circle-marked errors for PCA, KMC, and AC in Fig. 5 were 
derived by comparing their results to the binarized image, which serves 
as the expected outcome. Specifically, three datasets of binarized images 
were created from the original photograph using the threshold, 
threshold +10%, and threshold − 10%. For each dataset, we calculated 
the maximum error between the dataset and the Unsupervised Learning 
analysis results. The average of these maximum errors across the three 
datasets was then determined. All errors are also reported in Table 1.

This analysis shows that almost all methods used are consistent in 

Fig. 5. (a) Shows the binarized image of Fig. 3a, processed according to the method described in the main text. Panels (b–h) display histograms representing the 
percentage of healthy (green bars) and diseased (red bars) sections of each chestnut, assessed using the binarized image (e), PCA (b, f), K-Means (c, g), and 
Agglomerative Clustering (d, h). Panels (b–d) illustrate results from spectra normalized to the global maximum (Type 1 procedure), while panels (f–h) show results 
from spectra normalized to the maximum of each individual spectrum (Type 2 procedure). Each bar includes a maximum error bar (circles, ϵMax), as described in the 
main text. Additionally, for the binarized image (panel e) and PCA, a second error bar (triangles, ϵVAR) is provided, calculated as detailed in the text.

Table 1 
Percentage of unaffected area as detected by binarization of the photographic 
image and each unsupervised method and for the two types of normalizations, 
together with the errors calculated as explained in the main text. The errors for 
Binary Image correspond to the triangles in Fig. 5, as well as the errors in 
parenthesis for PCA.

Method Unhealthy (A) Partially Healthy (B) Healthy (C)

Binary Image 22 ± 8% 61 ±10% 76 ±9%
Type 1 norm.
PCA 32 ±8 (±2)% 96 ± 28 (±9)% 92 ±13 (±9)%
K-Means 24 ±6% 92 ±31% 90 ±14%
AC 35 ±13% 96 ±35% 95 ±19%
Type 2 norm.
PCA 28 ±7 (±2)% 62 ± 9 (±9)% 74 ±9 (±9)%
K-Means 28 ±6% 61 ± 7% 79 ±7%
AC 25 ±5% 61 ±7% 73 ±7%
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classifying pixels associated with good and bad portions of chestnuts, 
confirming the robustness and reliability of the proposed analytical 
protocol. Additionally, the results once again demonstrate that Type 2 
Normalization is more effective at distinguishing healthy from infected 
regions of the chestnut, while Type 1 Normalization fails to classify 
partially unhealthy chestnuts accurately. Indeed, it is interesting to note 
that the results obtained from the photographic analysis are entirely 
consistent with those obtained from the unsupervised analysis using all 
three methods (PCA, KMC, and AC) with Type 2 Normalization. Finally, 
this outcome is also evident in the larger relative errors associated with 
the Type 1 approach compared to the Type 2 approach.

5. Summary

We have investigated the application of Terahertz Time-Domain 
Hyperspectral Imaging combined with unsupervised learning tech
niques to detect and quantify fungal infections in chestnuts. Chestnuts, 
particularly in regions like Italy, are susceptible to infections from 
fungal pathogens such as Gnomoniopsis castaneae, which cause signifi
cant damage to the crops. Traditional methods for detecting fungal in
fections in chestnuts rely on invasive approaches, such as visual 
inspection after peeling. Recently, optical techniques based on THz 
attenuation measurements have been employed to detect infections in 
unpeeled chestnuts. However, this approach may be imprecise since it is 
based on the hypothesis that fungal infections alter the water content in 
the fruit—a premise that is debatable given the many other factors that 
can influence water content.

In this study, we have utilized THz Time-Domain Spectroscopy and 
Imaging to identify spectral markers that are not influenced by the 
previously mentioned assumptions or by the heterogeneous properties 
of the samples, such as varying thickness, porosity, roughness, and water 
content. To manage the large and complex datasets generated by our 
approach, we have employed various unsupervised learning techniques: 
Principal Component Analysis, K-Means Clustering, and Agglomerative 
Clustering.

We have clearly demonstrated that these three methods help to 
coherently identify and classify the spectral features of healthy and 
infected chestnuts. Additionally, by applying these techniques, it is 
possible to quantify the degree of infection in each sample. This quan
tification is crucial for assessing the extent of damage and for allowing 
an early detection of the infection.

In conclusion, the integration of THz-TDHIS with unsupervised 
learning techniques offers a powerful solution for detecting and quan
tifying fungal infections in chestnuts. In our study, we used chestnut 
slices due to the power limitations of the THz source. However, Fig. 2
demonstrates that we were also able to evaluate the quality of chestnut 
slices hidden by the peel. This serves as a proof-of-concept that our 
technique can be non-invasive if THz sources with adequate power are 
utilized, so to enable a measure of the THz spectra without opening the 
chestnut. Future developments include replacing the emitter with a 
high-powered one to investigate chestnuts in a completely non-invasive 
way. Thus, this approach enhances the ability to ensure chestnut quality 
and safety, providing significant benefits to the food industry and con
sumers. The study highlights the potential of advanced spectroscopic 
imaging combined with machine learning to address complex challenges 
in agricultural quality control.

Supplementary Material

We have included a PDF file as ‘Supplementary Material’, where we 
report: (i) further details on the normalization procedure applied to the 
datasets; (ii) the results of the KMC and AC analysis for different values 
of the cluster numbers; (iii) details on the binarization procedure 
applied to the optical images of the chestnut slices. About the second 
point, the results show the almost independence of the analysis outcome 
of the KMC and AC methods on the optimal number of clusters provided 

by the elbow and dendrogram methods.
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