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Abstract. Maliciously manipulated inputs for attacking machine learn-
ing methods – in particular deep neural networks – are emerging as a
relevant issue for the security of recent artificial intelligence technolo-
gies, especially in computer vision. In this paper, we focus on attacks
targeting image classifiers implemented with deep neural networks, and
we propose a method for detecting adversarial images which focuses on
the trajectory of internal representations (i.e. hidden layers neurons ac-
tivation, also known as deep features) from the very first, up to the last.
We argue that the representations of adversarial inputs follow a different
evolution with respect to genuine inputs, and we define a distance-based
embedding of features to efficiently encode this information. We train
an LSTM network that analyzes the sequence of deep features embed-
ded in a distance space to detect adversarial examples. The results of
our preliminary experiments are encouraging: our detection scheme is
able to detect adversarial inputs targeted to the ResNet-50 classifier pre-
trained on the ILSVRC’12 dataset and generated by a variety of crafting
algorithms.

Keywords: Adversarial examples; distance spaces; deep features; ma-
chine learning security

1 Introduction

In recent years, Deep Learning, and in general Machine Learning, undergone
a considerable development, and an increasing number of fields largely bene-
fit from its adoption. In particular, deep neural networks play a central role in
many fields spanning from computer vision – with applications such as image [17]
and audio-visual understanding [29], multi-media sentiment analysis [38], auto-
matic video captioning [11], relational reasoning [35], cross-modal information
retrieval [7] – to cybersecurity – enabling malware detection [32], automatic con-
tent filtering [39], and forensic applications [3], just to name a few. However, it
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is known to the research community that machine learning and specifically deep
neural networks, are vulnerable to adversarial examples.

Adversarial examples are maliciously manipulated inputs – often indiscernible
from authentic inputs by humans – specifically crafted to make the model misbe-
have. In the context of image classification, an adversarial input is often obtained
adding a small, usually imperceptible, perturbation to a natural image that leads
the model to misclassify that image. The ease of generating adversarial examples
for machine learning based classifiers poses a potential threat to systems relying
on neural-network classifiers in sensitive applications, such as filtering of violent
and pornographic imagery, and in the worst case even in safety-critical ones (e.g.
road sign recognition for self-driving cars).

Most of the scientific work on the subject focus on two main antithetic aspects
of adversarial examples, which are their generation and the defense against them.
About the latter, many works propose techniques to change the attacked model
in order to be more robust to such attacks (unfortunately without fully solving
the problem).

Recently, an alternative defensive approach has been explored, which is the
detection of adversarial examples. In this setting, we relax the defensive problem:
we dedicate a separate detector to check whether an input is malicious, and we
relieve the model from correctly classifying adversarial examples.

In this work, we propose a detection scheme for adversarial examples in deep
convolutional neural network classifiers, and we conduct a preliminary investi-
gation of its performance. The main idea on which our approach is based is
to observe the trajectory of internal representations of the network during the
forward pass. We hypothesized that intermediate representations of adversarial
inputs follow a different evolution with respect to natural inputs. Specifically,
we focus on the relative positions of internal activations with respect to specific
points that represent the dense parts of the feature space. Constructing a de-
tector based on such information allows us to protect our model from malicious
attacks by effectively filtering them. Our preliminary experiments give an opti-
mistic insight into the effectiveness of the proposed detection scheme. The code
to reproduce our results is publicly available4.

2 Related Work

Adversarial examples One of the first works exploring adversarial examples for
image classifiers implemented with convolutional neural network is the one of
Szegedy et al. [37]. The authors used a quasi-newtonian optimization method,
namely L-BFGS, to find an image xadv close to an original one x in terms of L2
distance, yet differently classified. They also have shown that the obtained ad-
versarial images were also affecting different models trained on the same training
set (cross-model generalization) and also models trained with other yet similar
training sets (cross-training set generalization).

4 https://github.com/fabiocarrara/features-adversarial-det

https://github.com/fabiocarrara/features-adversarial-det
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Crafting algorithms Goodfellow et al. [15] proposed the Fast Gradient Sign
Method (FGSM) to efficiently find adversarial perturbations following the gra-
dient of the loss function with respect to the image, which can be efficiently
computed by back-propagation. Many other methods derived from FGSM have
been proposed to efficiently craft adversarial images. Kurakin et al. [22] proposed
a basic iterative version of FGSM in which multiple finer steps are performed to
better explore the adversarial space. Dong et al. [12] proposed a version of itera-
tive FGSM equipped with momentum which won the NIPS Adversarial Attacks
and Defences Challenge [23] as best attack; this resulted in adversarial images
with an improved transferability among models. Other attack strategies aim to
find smaller perturbations using a higher computational cost. In [30], a Jacobian-
based saliency map is computed and used to greedily identify the best pixel to
modify in order to steer the classification to the desired output. In [28], the clas-
sifier is locally linearized and a step toward the simplified classification boundary
is taken, repeating the process until a true adversarial is reached. Carlini and
Wagner [5] relied on a modified formulation of the adversarial optimization prob-
lem initially formalized by Szegedy et al.[37]. They move the misclassification
constraint in the objective function by adding a specifically designed loss term,
and they change the variable of the optimization to ensure the obtained image
is valid without enforcing the box constraint; Adam is then employed to opti-
mize and find better adversarial perturbations. Sabour et al. [34] explored the
manipulation of a particular internal representation of the network by means of
adversarial inputs, showing that it is possible to move the representation closer
to the one of a provided guide image.

Defensive methodologies In the recent literature, a considerable amount of work
has been dedicated to increasing the robustness of the attacked models to ad-
versarial inputs. Fast crafting algorithms, such as FGSM, enabled a defensive
strategy called adversarial training, in which adversarial examples are generated
on the fly and added to the training set while training [15,20]. While models
that undergo adversarial training still suffer from the presence of adversarial
inputs, the perturbation needed to reach them is usually higher, resulting in
a higher detectability. In [31], the authors proposed to use a training proce-
dure called distillation to obtain a more robust version of a vulnerable model
by smoothing the gradient directions around training points an attacker would
exploit. Other defenses aim at removing the adversarial perturbation via image
processing techniques, such as color depth reduction or median filtering of the
image [40]. Despite performing well on specific attacks with very stringent threat
models, they usually fail on white-box attacks [19].

Adversarial inputs detection is also extensively studied. Despite many de-
tection strategies have been proposed based on detector sub-networks [14,27],
statistical tests [13,16], or perturbation removal [25], yet results are far from
satisfactory for all threat models [6], and adversarial detection still pose a chal-
lenge.

In our work, we focus on feature-based detection scheme. Being Deep Learn-
ing a family of representation-learning methods capable of building a hierarchy
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of features of increasing level of abstraction [24], the relevance of the internal
representation learned by deep models has been proved by many works starting
from [36,2,33]. Typically used for transfer learning in scenarios, they have been
proved to be useful for adversarial detection in [27,9,8,1]. The works most re-
lated to our are [8] and [1]; the former looks at the neighborhood of the input
in the space of CNN internal activations to discriminate adversarial examples,
while the latter proposes to measure the average local spatial entropy on back-
propagated activations, called feature responses, to trace and identify effects of
adversarial perturbations. Our work is still based on internal CNN activations,
but focus on their evolution throughout the forward pass; in particular, we search
for discrepancies between trajectories traced by natural inputs and adversarial
ones.

3 Background

3.1 Attack Model

Biggio et al. [4] categorized the kind of attack based on the knowledge of the
attacker. A zero-knowledge adversary is the one producing adversarial examples
for the classifier while being unaware of the defensive strategy deployed; this
scenario is usually over-optimistic since it considers a very limited adversary,
but is the basic benchmark to test new detection algorithms. Instead, a perfect-

knowledge adversary is aware of both the classifier and the detector and can
access the parameters of both models; this is the worst-case scenario in which
the adversary has full control and on which many of the detection schemes are
bypassed [6]. A half-way scenario is the one with a limited-knowledge adversary,
that is aware of the particular defensive strategy being deployed, but does not
have access to its parameters or training data.

In this preliminary work, we focus on the zero-knowledge scenario and plan
to test our approach in the other scenarios in future work.

3.2 Adversarial crafting algorithms

In this section, we review the algorithms used to craft adversarial examples used
in our experiments. We focus on untargeted attacks, i.e. attacks that cause a
misclassification without caring of the precise class we are promoting instead of
the real one; thus, whenever possible, we employ the untargeted version of the
classification algorithms, otherwise, we resort to the targeted version choosing a
random target class. As distance metric to quantify the adversarial perturbation,
we choose the L∞ distance. Thus, we generated adversarial examples such that

||xadv − x||∞ = max(xadv − x) < ε ,

where x is the natural input, xadv its adversarial version, and ε the chosen
maximum perturbation.
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L-BFGS The first adversarial attack for convolutional neural networks has been
formulated as an optimization problem on the adversarial perturbation [37]:

minimize
η

||η||2 + C · Lt(x+ η)

subject to L <= x+ η <= U
(1)

where η is the adversarial perturbation, Lt(x+η) is the loss relative to the target
class t, and [L,U ] is the validity range for pixels. The box-constrained L-BFGS
algorithm is employed to find a solution. The loss weight C is tuned via grid
search in order to obtain a minimally perturbed image xadv = x + η which is
actually labelled as the target class t.

Fast Gradient Sign Method The Fast Gradient Sign Method (FGSM [15]) al-
gorithm searches for adversarial examples following the direction given by the
gradient ∇xL(x) of the loss function L(x) with respect to the input image x. In
particular, the untargeted version of FGSM sets

xadv = x+ ε · sign(∇xL(x)) .

Following this direction, the algorithm aims to increase the loss, thus decreasing
the confidence of the actual class assigned to x.

Iterative Methods The Basic Iterative Method (BIM) was initially proposed in
[22]. Starting from the natural image x, iterative methods apply multiple steps
of FGSM with a distortion εi <= ε. The untargeted attack performs

x0
adv = x, xi+1

adv = clip(xi
adv + εi∇L(xi

adv)) ,

where clip(·) ensures the image obtained at each step is in the valid range. Madry
et al. [26] proposed an improved version of BIM – referred to as Projected Gra-
dient Descent (PGD) – which starts from an initial acceptable random pertur-
bation.

Iterative FGSM with Momentum The Iterative FGSM with Momentum (MI-
FGSM [12]) won the first place as the most effective attack in the NIPS 2017
Adversarial Attack and Defences Challenge [23]. The main idea is to equip the
iterative process with the same momentum term used in SGD to accelerate the
optimization. The untargeted attack performs

gi+1 = µgi +
∇L(xi

adv)

||∇L(xi
adv)||1

, (2)

xi+1
adv = clip(xi

adv + εi∇L(xi
adv)) , (3)

where x0
adv = x, g0 = 0, and µ is the decay factor for the running average.
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4 Feature Distance Spaces

In this section, we introduce the intuition on which our detection scheme is
based, and we formalize the concept of feature distance spaces.

Our hypothesis states that the positions of the internal activations of the
network in the feature space differ in their evolution from input to output be-
tween adversarial examples and natural inputs. Inspired by works on Euclidean
embeddings of spaces for indexing purposes [41,10], we encode the position of the
internal activations of the network for a particular image in the feature space,
and we rely on this information to recognize it as adversarial or genuine. Rather
than keeping the absolute position of the activations in the space, we claim that
their relative position with respect to the usual locations occupied by genuine
activations can give us insight about the authenticity of the input. We define
different feature distance spaces – one per layer – where dimensions in those
new spaces represent the relative position of a sample with respect to a given
reference point (or pivot) in the feature space. Embedding all the internal rep-
resentations of an input into these spaces enables us to compactly encode the
evolution of the activations through the forward pass of the network and search
for differences between trajectories traced by genuine and adversarial inputs. A
toy example of this concept is depicted in Figure 1, where the dashed red lines
represent the information we rely on to perform the detection.

Fig. 1. Example of the evolution of features while traversing the network that illus-
trates our hypothesis. Each plane represents a feature space defined by the activations
of a particular layer of the deep neural network. Circles on the features space represent
clusters of features belonging to a specific class. Blue trajectories represent authentic
inputs belonging to three different classes, and the red trajectory represent an adversar-
ial input. We rely on the distances in the feature space (red dashed lines) between the
input and some reference points representatives of the classes to encode the evolution
of the activations.
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Pivoted Embedding Let I the image space, f : I → {1, . . . , C} a C-way single-
label DNN image classifier comprised by L layers, and o(l) the output of the
l-th layer, l = 1, . . . , L. For each layer l, we encode the position in the feature
space of its output o(l) by performing a pivoted embedding, i.e. an embedding
in a feature distance space where each dimension represent the distance (or
similarity) to a particular pivot point in the feature space. As pivots, we choose
C points that are representative of the location each of the C classes occupy in

the feature space. Let P(l) = {p
(l)
1 , ...p

(l)
C } the set of C points chosen as pivots in

the activation space of layer l, and d(x, y) a distance function defined over real
vectors; the embedded version e(l) ∈ R

C of o(l) is defined as

e(l) =
(

d
(

o(l),p
(l)
1

)

, d
(

o(l),p
(l)
2

)

, . . . , d
(

o(l),p
(l)
C

))

.

Given an input image, we perform a forward pass of the classifier, collect
the internal activations

(

o(1), . . . ,o(L)
)

, and embed them using the L sets of

pivots P(1), . . . ,P(L), obtaining a L-sized sequence of C-dimensional vectors
E =

(

e(1), . . . , e(L)
)

. Our detector is then a binary classifier trained to discern
between adversarial and natural inputs solely based on E, and it is employed at
test time to check whether the input has been classified reliably by the DNN.

The rationale behind this approach based on class dissimilarity space is to
highlight possible different behaviors of adversarial and original images when
passing throughout the DNN layers. In fact, it is expected that original images,
correctly classified by the network, would follow a path much more similar to that
of the pivots representing their output class rather than adversarial ones which
artificially fall in that class. Consequently, all the other relative distances with
respect to the (C − 1) pivots should evidence some dissimilarities. An overview
of the complete detection scheme is depicted in Figure 2.
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Fig. 2. Scheme of the proposed detection method. The network represented on the top
is the ResNet-50. Given an input image and a set of pivots, our detector outputs a
score representing the probability of the input image being an adversarial input.

Pivot Selection In our approach, the pivots constitute a sort of “inter-layer
reference map” that can be used to make a comparison with the position of a test
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image at each layer in the feature space. Activations of the images belonging to
the training set of the classifier are used to compute some representative points
eligible to be employed as pivots. We propose two strategies for selecting the
pivot points P(1), . . . ,P(L) used for the pivoted embedding.

In the first one, we select as pivot p
(l)
c the centroid of the activations of layer

l of the images belonging to class c

p(l)
c =

1

Kc

Kc
∑

j=1

o
(l)
c,j , (4)

where Kc indicates the cardinality of class c, and o
(l)
c,j is the activation of the

l-th layer produced by the j-th training sample belonging to class c.

In the second strategy, the pivot p
(l)
c is selected as the medoid of the activa-

tions of layer l of the images belonging to class c, i.e. the training sample that
minimize the sum of the distances between itself and all the others sample of the

same class. Formally, assuming O
(l)
c = {o

(l)
c,1, . . . ,o

(l)
c,Kc

} the set of activations of
the l-th layer of the training samples belonging to class c,

p(l)
c = argmin

x∈O
(l)
c

Kc
∑

j=1

||x− o
(l)
c,j ||2 . (5)

The pivots are compute off-line once and stored for the embedding operation.

5 Evaluation Setup

In this section, we present the evaluation of the proposed feature distance space
embeddings for adversarial detection in DNN classifiers.

We formulate the adversarial example detection task as a binary image clas-
sification problem, where given a DNN classifier f and an image x, we assign
the positive label to x if it is an adversarial example for f . The detector D is
implemented as a neural network that takes as input the embedded sequence E

of internal activations of the DNN and outputs the probability p that x is an
adversarial input. We tested both the pivot selection strategies, namely centroid

and medoid ; for the choice of the distance function d(·, ·) used in the pivoted
embeddings, we tested the Euclidean distance function and the cosine similarity
function.

5.1 Dataset

Following the research community in adversarial attacks and defenses, we chose
to run our experiments matching the configuration proposed in the NIPS 2017
Adversarial Attacks and Defenses Kaggle Competitions [23]. Specifically, we se-
lected the famous ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
as the classification task, and we chose the ResNet-50 model pre-trained on
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ILSVRC training set as the attacked DNN classifier. As images to be perturbed
by adversarial crafting algorithms, we selected the DEV image set proposed in
the NIPS challenge, which is composed by 1,000 images that are not in the
ILSVRC sets but share the same label space. We split the images in a train,
validation and test sets respectively counting 700, 100, and 200 images.

For every image, we obtained adversarial examples by applying the crafting
algorithms reported in Section 3.2. We performed the untargeted version of the
attacks and used maximum perturbations ε ∈ { 20

255 ,
40
255 ,

60
255 ,

80
255}. For iterative

attacks, we set εi = 20
255 and performed 10 iterations. Depending on the type

and the parameters of the attack, the attack success rates vary. The detailed
composition of the dataset can be found in Table 1, and an example of adversarial
inputs generated is available in Figure 3.

Original L-BFGS FGSM BIM PGD MI-FGSM

mushroom milk can pineapple toucan freight car hummingbird

Fig. 3. Examples of adversarial perturbation (on top) and inputs (on bottom) gener-
ated by the adopted crafting algorithms. Perturbations are magnified for visualization
purposes.

For each image, we extracted 16 intermediate representations computed by
the ResNet-50 network; we considered only the output of the 16 Bottleneck mod-
ules ignoring internal layers; for more details about the ResNet-50 architecture,
we refer the reader to [18]. Internal features coming from convolutional layers
have big dimensionality due to large spatial information; we reduced their di-
mensionality by applying a global average pooling to each extracted feature.
We then embedded the feature in each layer in the feature distance space as
explained in Section 4 using the cleverhans 5 library. Thus, we obtained a se-
quence of 16 1,000-dimensional features where the i-th feature vector represents
the distances between the i-th internal representation and the 1,000 class pivots
of that particular layer.

Applying this procedure to the whole set of images yielded a dataset of
sequences we used to train our adversarial detector.

5 https://github.com/tensorflow/cleverhans

https://github.com/tensorflow/cleverhans
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Attack ε εi iterations TRAIN VAL TEST Success Rate

Authentic - - - 700 100 200 -
L-BFGS - - - 698 100 200 99.8 %
FGSM 20 - - 682 96 166 94.4 %

40 - - 666 91 163 92.0 %
60 - - 658 93 160 91.1 %
80 - - 654 95 165 91.4 %

BIM 20 - 80 20 10 2,800 400 800 100.0 %
PGD 20 - 80 20 10 2,800 400 800 100.0 %

MI-FGSM 20 - 80 20 10 2,800 400 800 100.0 %

Total - - - 12,458 1,775 3,454 -

Table 1. Details of the adversarial generated for the experiments. The maximum
perturbations ε and εi are expressed in fractions of 255. Statistics for BIM, PGD, and
MI-FGSM are the same for every ε used; thus the aggregated number of images for
those configurations are reported.

5.2 Detector Architecture and Training Details

To capture the evolution of the activations through layers, the architecture of
the detector is composed by an LSTM cell with hidden state size of 100 that
efficiently process the embedded sequence E. The last hidden state of the LSTM
is then fed to a fully connected layer with one output followed by a sigmoid
activation.

As a baseline, we also report the results obtained with a multi-layer percep-
tron network (MLP) which takes as input the concatenation of the 16 1,000-
dimensional features, i.e. a unique 16,000-dimensional vector. The MLP is com-
posed by two layers; the first with 100 neurons and ReLU activation, and the
last one with a single output followed by a sigmoid activation which represents
the probability of the input of being an adversarial example.

Both models are trained with the Adam optimizer [21] for 100 epochs with a
batch size of 128 and a learning rate of 3 · 10−4. We employ a weighted random
sampler to ensure a balanced distribution of authentic images and adversarial
attacks in mini-batches thus avoiding biases towards most present attacks.

5.3 Results

In Figure 4, we report the ROC curves and AUC values for each configuration
of architecture (LSTM or MLP), pivot-selection strategy (medoid or centroids),
and embedding function (Euclidean distance or cosine similarity). The medoid

pivot-selection strategy yields a detector with a very high performance, as we can
notice from the high AUC values obtained by both architectures; this strategy
is also robust to the choice of the embedding function. On the other hand, we
obtained mixed results when using the centroid strategy.
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LSTM + M + cos (AUC=0.988)

LSTM + M + L2 (AUC=0.982)

MLP + M + cos (AUC=0.968)

MLP + M + L2 (AUC=0.975)

LSTM + C + cos (AUC=0.821)

LSTM + C + L2 (AUC=0.818)

MLP + C + cos (AUC=0.832)

MLP + C + L2 (AUC=0.936)

random

Fig. 4. ROC curves for all the configurations of the detection scheme tested. The label
‘M’ stands for the medoid pivot-selection strategy, while ‘C’ for centroid.
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FPR

0.0

0.2
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0.8

1.0
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R

random

FGSM (AUC=0.996)

BIM (AUC=0.997)

L-BFGS (AUC=0.854)

MI-FGSM (AUC=0.997)

PGD (AUC=0.997)

Fig. 5. ROC curves obtained by our best performing model (LSTM + M + cos) for
each type of adversarial attack.
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Method L-BFGS FGSM BIM PGD MI-FGSM Macro-AUC

LSTM + M + cos .854 .996 .997 .997 .997 .968

LSTM + M + L2 .743 .996 .998 .998 1.000 .947
MLP + M + cos .551 .992 .996 .995 .998 .907
MLP + M + L2 .681 .976 .998 .999 1.000 .931

LSTM + C + cos .709 .811 .784 .784 .930 .804
LSTM + C + L2 .482 .854 .819 .816 .872 .769
MLP + C + cos .388 .694 .881 .878 .962 .761
MLP + C + L2 .626 .820 .990 .989 1.000 .885

Table 2. Area Under the ROC Curves (AUC) broken down by attack. The last column
reports the unweighted mean of the AUCs.

The superiority of the medoid strategy is even clearer looking at the AUC
values broken down by attack types and their mean (macro-averaged AUC),
reported in Table 2.

As expected, stronger attacks, i.e. L-BFGS, are more difficult to detect on
average; however, the increased attack performance of L-BFGS is obtained at
a higher computational cost, which is roughly two orders of magnitude higher
with respect to the other attacks in our setup. The perturbations produced by
L-BFGS are usually smaller than other methods (the mean perturbation has
L∞ norm of ∼ 20

255 ) and is visually more evasive, see Figure 3). Still, we are
able to reach a satisfactory level of performance on such attacks while correctly
detecting FGSM-based attacks with high accuracy. Overall, the LSTM-based
detector performs better than the MLP model: the recurrent model has consid-
erably fewer parameters (0.4M vs 1.6M of the MLP) which are shared across
the elements of the sequence; thus, it is less prone to overfitting and also less
computationally expensive.

Figure 5 shows the ROC curves – one per crafting algorithm – obtained by our
best model, i.e. LSTM + medoid + cosine similarity. On FGSM-based attacks,
this detection scheme is able to correctly detect near all the manipulated input,
reaching an equal error rate (EER) accuracy – i.e. the accuracy obtained when
the true positive rate is equal to the false positive rate – of 99%. On images
generated with L-BFGS, our model reaches an EER accuracy of roughly 80%.

6 Conclusions

The vulnerability of deep neural network to adversarial inputs still poses secu-
rity issues that need to be addressed in real case scenarios. In this work, we
propose a detection scheme for adversarial inputs that rely on the internal ac-
tivations (called deep features) of the attacked network, in particular on their
evolution throughout the network forward pass. We define a feature distance
embedding which allowed us to encode the trajectory of deep features in a fixed
length sequence, and we train an LSTM-based neural network detector on such
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sequences to discern adversarial inputs from genuine ones. Preliminary experi-
ments have shown that our model is capable of detecting FGSM-based attacks
with almost perfect accuracy, while the detection performance on stronger and
computational intensive attacks, such as L-BFGS, reaches around the 80% of
EER accuracy. Given the optimistic results obtained in the basic threat model
considered, in future work, we plan to test our detection scheme on more strin-
gent threat models – e.g. considering a limited-knowledge or perfect-knowledge
adversary – and to incorporate more adversarial crafting algorithms – such as
JSMA, DeepFool, and C&W attacks – into the analysis. Moreover, we plan to
extend our insight on the trajectories of adversarial examples in feature spaces
with an extended quantitative analysis.
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Roli, F.: Evasion attacks against machine learning at test time. In: Joint European
conference on machine learning and knowledge discovery in databases. pp. 387–402.
Springer (2013)

5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks.
arXiv preprint arXiv:1608.04644 (2016)

6. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: Bypass-
ing ten detection methods. In: Proceedings of the 10th ACM Workshop on Arti-
ficial Intelligence and Security. pp. 3–14. AISec ’17, ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3128572.3140444, http://doi.acm.org/10.1145/
3128572.3140444

7. Carrara, F., Esuli, A., Fagni, T., Falchi, F., Fernández, A.M.: Picture it in your
mind: Generating high level visual representations from textual descriptions. In-
formation Retrieval Journal 21(2), 208–229 (2017)

https://doi.org/10.1145/2909827.2930786
https://doi.org/10.1145/3128572.3140444
http://doi.acm.org/10.1145/3128572.3140444
http://doi.acm.org/10.1145/3128572.3140444


14 F. Carrara, R. Becarelli, R. Caldelli, F. Falchi, G. Amato

8. Carrara, F., Falchi, F., Caldelli, R., Amato, G., Becarelli, R.: Adversarial image
detection in deep neural networks. Multimedia Tools and Applications pp. 1–21
(2018)

9. Carrara, F., Falchi, F., Caldelli, R., Amato, G., Fumarola, R., Becarelli,
R.: Detecting adversarial example attacks to deep neural networks. In:
Proceedings of the 15th International Workshop on Content-Based Multi-
media Indexing. pp. 38:1–38:7. CBMI ’17, ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3095713.3095753, http://doi.acm.org/10.1145/
3095713.3095753

10. Connor, R., Vadicamo, L., Rabitti, F.: High-dimensional simplexes for supermetric
search. In: International Conference on Similarity Search and Applications. pp. 96–
109. Springer (2017)

11. Dong, J., Li, X., Lan, W., Huo, Y., Snoek, C.G.: Early embedding and late rerank-
ing for video captioning. In: Proceedings of the 2016 ACM on Multimedia Confer-
ence. pp. 1082–1086. ACM (2016)

12. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boosting adversarial
attacks with momentum. arXiv preprint (2018)

13. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial sam-
ples from artifacts. arXiv preprint arXiv:1703.00410 (2017)

14. Gong, Z., Wang, W., Ku, W.S.: Adversarial and clean data are not twins. arXiv
preprint arXiv:1704.04960 (2017)

15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014). arXiv preprint arXiv:1412.6572

16. Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (sta-
tistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280 (2017)

17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Computer Vision
(ICCV), 2017 IEEE International Conference on. pp. 2980–2988. IEEE (2017)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

19. He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defenses:
Ensembles of weak defenses are not strong. arXiv preprint arXiv:1706.04701 (2017)

20. Huang, R., Xu, B., Schuurmans, D., Szepesvári, C.: Learning with a strong adver-
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