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Abstract. Much is still unknown about marine plankton abundance
and dynamics in the open and interior ocean. Especially challenging is
the knowledge of gelatinous zooplankton distribution, since it has a very
fragile structure and cannot be directly sampled using traditional net
based techniques. In the last decades there has been an increasing interest
in the oceanographic community toward imaging systems. In this paper
the performance of three different methodologies, Tikhonov regulariza-
tion, Support Vector Machines, and Genetic Programming, are analyzed
for the recognition of gelatinous zooplankton. The three methods have
been tested on images acquired in the Ligurian Sea by a low cost under-
water standalone system (GUARD1). The results indicate that the three
methods provide gelatinous zooplankton identification with high accu-
racy showing a good capability in robustly selecting relevant features,
thus avoiding computational-consuming preprocessing stages. These as-
pects fit the requirements for running on an autonomous imaging system
designed for long lasting deployments.

Keywords: pattern recognition, gelatinous zooplankton, underwater imag-
ing, feature selection, underwater camera, GUARD1, autonomous vehicle

1 Introduction

Invasions of macro gelatinous zooplankton, jellies hereafter, have been reported
as possible causes of major ecosystem changes and regime shifts with lasting
ecological, economic and social consequences [9], as in the case of the invasion of
the ctenophore Mnemiopsis in the Black Sea [3]. Monitoring jellies is certainly
of importance for both marine ecologists and managers. Classical sampling with
towed plankton nets is not appropriate for these delicate organisms, and is usu-
ally expensive. To overcome these shortcomings, imaging techniques can be used
for monitoring this group. Underwater images acquisition quality is affected by
the environment (e.g. water turbidity, light reflection or lack of natural light,
presence of non-relevant objects as fishes, litter, algae, mucilage), the species
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characteristics (e.g. transparence, size) and the adopted technologies (e.g. instru-
ments sensibility, sensor noise, field of view, lighting systems). Another crucial
issue concerns the kind of platform hosting the imaging system (e.g. fixed, towed,
mobile). In this paper a low cost underwater stand-alone system for image ac-
quisition and elaboration is presented. GUARD1 has onboard image elaboration
capability for the recognition of jellies and it is designed to autonomously oper-
ate on both fixed and mobile platforms. Its low cost, low volume and low power
consumption make it an ideal system for long lasting deployments. Figure 1
shows the developed system GUARD1. Experiments and performance compar-
ison of three methodologies for the recognition of gelatinous zooplankton, to
be run onboard GUARD1, have been carried on the collected datasets, namely
Tikhonov Regularization (TR), Support Vector Machines (SVM) and Genetic
Programming (GP). The goal is to compare TR and GP, which are well estab-
lished in literature but not commonly used in underwater images classification,
with SVM, which is a benchmark in the field. All the three approaches select and
use the most relevant image features in order to optimize the recognition perfor-
mances and the computational cost. The methods have been validated within a
cross-validation framework based on a ground-truth set of images. The experi-
ments results prove that GUARD1 is a valid support for underwater imaging of
jellies and guarantees high recognition performances.

2 Imaging acquisition device

The GUARD1 system is a low-cost stand-alone instrument endowed with a long-
life battery pack and designed for installation on different platforms (e.g. fixed,
towed, autonomous) [7]. It is fully programmable for being effective in a large
range of applications. The image acquisition frequency is programmable and
the battery pack life is preserved by a stand-by status between image acquisi-
tions. The acquisition parameters are programmable as well (e.g. ISO, exposure
time, focal length, iris aperture). The acquired images are analyzed (onboard)
for extracting relevant information. The communication system is still under in-
vestigation and it will be released in the next months. The system consists of five
modules. The acquisition component (i) is based on a programmable consumer
camera. It is endowed with a lighting system (ii) that is turned on only if the
natural light is not sufficient for the specific acquisition purposes. The elabora-
tion and storage module (iii) consists of a CPU board running the algorithms for
image elaboration (relevant features extraction) and pattern recognition (iden-
tification of relevant image content). The image elaboration algorithms run at
scheduled time intervals on groups of images (not on single images), for saving
up the battery pack (iv), whose capacity is designed to adapt to the specific
deployment characteristics (e.g. duration, acquisition frequency). The control
module (v) manages the operational workflows of acquisition, image elaboration
and communication blocks, and can be programmed through a remote controller.
GUARD1 has been tested on fixed and floating platforms so far, always achieving
good performances in terms of stability, robustness and long endurance.
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Fig. 1: The GUARD1 autonomous imaging system in two different configurations:
mounted on a rosette (left) and onboard an Arvor (right).

3 Image processing and recognition

The dataset used for the experiments consists of 640x480 pixels images acquired
by GUARD1 every 5 minutes in coastal waters at 5 m depth, from May to
August 2013, during several ctenophores blooms in the Ligurian sea. It has 211
positive examples containing gelatinous zooplankton specimens and 211 negative
examples containing only water, fishes, suspended particulate, litter and algae.

3.1 Feature extraction

Every image has been processed in order to extract the features used by the
pattern recognition task, as shown in Figure 2. Histogram adjustment based on
the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm [8]
is performed, for improving contrast between background and foreground items.
The foreground is then segmented from the background using a box-shaped
moving average filter with an area of size comparable with the size of expected
objects (20 pixels), implemented through the integral image approach [10]. The
foreground binary map is post-processed by opening/closing morphology oper-
ators to remove small dots and fill small gaps. All the connected foreground
regions (blobs) are further filtered to select those with prominent edges along
the boundary. Edge detection is performed with a filtering process based on the
Sobel operator [11] combined with the spatial analysis of the filter response,
in order to select an adaptive threshold for labelling edge pixels. The validated
blobs have a minimum percentage of edge pixel along the boundary. The compu-
tational complexity of image enhancement, binarization and blob segmentation
is O(n), where n is the number of pixels in the image. The segmentation process
is tuned in order to identify all foreground objects potentially containing jellies
specimens, allowing an unavoidable incidence of false alarms. At this stage of
the process, high false positive rates are acceptable to keep the detection rate as
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Fig. 2: Feature extraction steps: original image (extreme left), binarized image (center
left), segmented image (center right), labeled image (extreme right).

high as possible. The false positive rate is greatly reduced by the classification
step based on feature extraction. The extracted features belong to two groups:
geometrical, based on the shape of the blob, and textural, based on the grey
levels distribution inside (and outside) the blob. The geometrical features are:
length of the minor semiaxis (sAxm), bounding box minor dimension (axm),
bounding box major dimension (axM ), eccentricity related to the semiaxis ratio
(ecc). All these features are extracted in constant time (O(1)) once the blobs are
identified. Other geometrical features, computed in O(n), are the blob solidity
defined as the area ratio between the blob and its convex hull (sol), area (areap),
perimeter (per), radius histogram shape index defined as the ratio between the
standard deviation and the mean value of the boundary (hstI ), enthropy (ent).
The textural features, extracted in O(n), are: exterior-interior contrast defined
as absolute difference between the averaged grey levels inside/outside the blob
(ctrs), grays level standard deviation (stdg1 ), contrast index defined as the ra-
tio between standard deviation and mean of the grey levels (stdg), gray levels
enthropy (entg). The cost of feature extraction is modest with respect to the
global cost, as most of the features are obtained by counting simple pixel at-
tributes (e.g.(x, y) position of gray value).

3.2 Image Recognition

The recognition problem is a binary classification problem, where the classifier
returns 1 if the blob identified in Section 3.1 contains a jellies specimen, 0 other-
wise. The methods compared in this work are Elastic Net based on Tikhonov reg-
ularization [4], Support Vector Machines [2], and Genetic Programming [5]. Par-
ticular focus has been put on the feature selection performance of each method,
in order to identify the most suitable features capable to discriminate jellies from
other floating objects present in the images. In the following paragraphs, the set
E = {(x1, y1), . . . , (xn, yn)} consisting of n examples xi ∈ X ⊆ Rp, i = 1, . . . , n,
each one characterized by p features and by a label denoted with yi ∈ Y = {0, 1}
will be considered for training and validation of the methods.

Tikhonov regularization (TR). The presented TR method formulation is
described in [4] and it gives stable results even in presence of low cardinality
datasets. According to the problem delineation above, the relation between x
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and y is modeled as y = β · x. Under these assumptions, the empirical risk is
estimated through the least square as (β · x − y)2. The aim of the TR method
is to determine a sparse model β∗ of cardinality much smaller than p for which
the expected risk is small. The core of the method is the minimization of the
objective function defined by Zhou and Hastie [12]:

1

n
‖Y −Xβ‖22 + µ‖β‖22 + τ‖β‖1 (1)

where X is the matrix containing the examples xi and Y is the vector containing
the labels yi. The first term in (1) expresses the empirical risk. The second and
third terms enforce the stability and uniqueness of the minimizing solution by
penalizing respectively the l2-norm and the l1-norm of the model vector β. The
non-negative parameters µ and τ are called the regularization parameters. The
model selection procedure is based on a K-Fold cross validation (CV) scheme [1]
defined on the set of n examples. The validation error is evaluated as the av-
erage error over different subsets for each regularization parameters pair. The
optimal parameter pair (τopt, µopt) is selected as the one minimizing the valida-
tion error. Each classifier resulting form the CV returns a test error and a list of
selected features. TR method produces stable solutions with good generalization
performances by selecting groups of relevant correlated features [12].

Support Vector Machines (SVM). Complete description of this method can
be found in [2]. SVM provide a supervised learning approach that permits to
separate high dimensional data in both linear and non-linear classification tasks.
Separation derives from the search for an optimal hyperplane maximizing the
margin between positive and negative examples. In the case of linear separable
data, the optimal hyperplane is searched in data space. In non-linear separable
data scenarios, kernel based functions are used in order to perform classification
in the feature space. The presented SVM method provides a classification based
on Radial Basis Functions (RBF) Gaussian kernels. Considering two samples xi
and xj , the kernel function κ is defined as:

κ(xi, xj) = exp(γ||xi − xj ||22) (2)

RBF based classifier involves generally two parameters: C, the soft margin pa-
rameter of the SVM common to all kernels, and γ the kernel key parameter.
The tuning of C and γ is performed through a K-fold CV process selecting the
values achieving the best correct detection score. SVM also allows for Recursive
Feature Elimination (RFE) in order to collect a subset of key features. RFE
experiments have been performed with a linear kernel SVM, in order to achieve
an overall view of the features relevance rather than high performances.

Genetic Programming (GP). GP is an evolutionary computation method-
ology capable of learning how to accomplish a given task. GP generates the
task solutions starting from an initial population of randomly generated func-
tions, based on a set of mathematical primitives, constants and variables. The
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initial solutions are improved by miming the selection processes that occur nat-
urally in biological systems through the Selection, Crossover and Mutation ge-
netic operators [5]. In the proposed method, the set of mathematical operators
S = {+,−, ∗, /, sqrt, log, sin, cos, tan, atan} is used to generate binary classi-
fiers expressed as mathematical functions, whose variables correspond to the
features discussed in Section 3.1. An initial population of randomly computed
binary classifiers is created. Each generated classifier C is evaluated on the set
of examples E. The classifier evaluation is obtained through the fitness function

F (C) =
1

|E|
∑

(x,y)∈E

JC(x)− y, JC(x) =

{
1 if eval(C(x)) > 0
0 otherwise

, (3)

where eval(C(x)) returns a real number obtained by instantiating the variables of
the classifier C with the features x ∈ X corresponding to the example (x, y) ∈ E.
Classifiers better fitting the examples in E have higher probability of generat-
ing the new classifiers, i.e. the next generation of functions. New classifiers are
generated through random mutation and crossover of the fittest classifiers. The
process of forming new offspring populations of classifiers ends when a specified
number of generations is reached. The more the procedure iterates through the
subsequent generations, the higher is the probability to have evolved classifiers
better fitting the set E. The best classifier of the final generation is selected and
the whole procedure is repeated within the CV framework. A statistic analysis of
the variables occurring in the classifiers resulting from the CV process identifies
the most relevant features, as described in [6]. Within the statistical analysis,
it is assumed that all the features have the same probability to appear in the
classifiers (null hypothesis). Features for which the null hypothesis is rejected
with p-value smaller than a selected value are deemed to be relevant, i.e. they
appear in the evolved classifiers more times than by chance.

4 Recognition results

The experiments have been performed within a K-fold cross-validation (CV)
framework [1] in order to estimate the generalization performance of the three
methodologies. The structure of the CV scheme is based on a 10 -fold stratified
cross validation and a nested random-sub-validation procedure, where 75% of
the fold items is randomly selected for ten times. The set E of positive and neg-
ative examples discussed in Section 3 has been used as ground truth within
the CV framework. The performance of the three investigated methods has
been estimated by computing the average and standard deviation of Accuracy
ACC = TP+TN

TP+FN+FP+TN , True Positive Rate TPR = TP
TP+FN , False Positive

Rate FPR = FP
FP+TN and False Negative Rate FNR = FN

FN+TP , where TP,
FP, TN and FN represent True Positive, False Positive, True Negative and False
Negative recognitions respectively. The CV framework has been also used to es-
timate the reliability of the relevant features identified by the three methods. A
summary of the feature selection results is shown in Table 1. Each entry of the
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table is the percentage with which the corresponding feature has been selected
in the experiments runs. The last row of the table shows only the features whose
p-value is smaller than 10−10. The detection results are shown in Table 2.

Table 1: Occurrence percentage of the features selected by the methods.

PR method sAxm entg stdg axm axM ecc sol areap per hstI ent ctrs stdg1

TR 100 97 79 100 100 100 100 100 100 26 91 62 80
RFE SVM 100 100 34 100 100 80 100 100 100 0 100 32 54
GP 63 - - 50 31 50 - - - - - - -

Table 2: Average and standard deviation (in brackets) of the performance indicators
for each recognition methods.

PR method ACC TPR FPR FNR

TR 0.859 (0.056 ) 0.835 (0.074 ) 0.116 (0.069 ) 0.165 (0.074 )
SVM 0.847 (0.061 ) 0.844 (0.084 ) 0.149(0.090 ) 0.155 (0.084 )
GP 0.856 (0.045 ) 0.846 (0.089 ) 0.135 (0.059 ) 0.154 (0.089 )

5 Discussion and Future Work

The three methods do not show significant performances differences in terms
of prediction accuracy and performance indicators. The results of the three ap-
proaches are satisfactory, as they strongly enhance the precision of the simple
blob analysis, and provide good generalization capability. On the contrary, dif-
ferences are evident in terms of selection of the relevant features. The capability
of selecting a small and robust set of relevant features is crucial for avoiding
computational-consuming pre-processing tasks, according to the requirements of
the autonomous imaging system presented in Section 2. In this study, as shown
in Table 1, GP selects the smallest set of features by providing an accuracy and
a false positive rate similar to the other two methodologies, as shown in Table
2. In order to improve the effectiveness of the three recognition approaches and
to understand more deeply the behaviour differences, an accurate analysis of the
correlation among features and between features and labels is now in progress.
In this framework, a study on the influence of the different extracted features on
the recognition rate will be conducted, together with the analysis of the incre-
mental cost of including extra features in the classifiers. Moreover, a richer set
of image features will be investigated. A further step for improving the overall
efficacy of the system will be the implementation of a multi-class classifier for
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discriminating among different taxa of gelatinous zooplankton, where biometric
features will be involved instead of only geometric and textural features.
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