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Abstract

This work introduces a reduced order modeling (ROM) framework for the solution of parameterized second-order linear
lliptic partial differential equations formulated on unfitted geometries. The goal is to construct efficient projection-based ROMs,
hich rely on techniques such as the reduced basis method and discrete empirical interpolation. The presence of geometrical
arameters in unfitted domain discretizations entails challenges for the application of standard ROMs. Therefore, in this work
e propose a methodology based on (i) extension of snapshots on the background mesh and (ii) localization strategies to
ecrease the number of reduced basis functions. The method we obtain is computationally efficient and accurate, while it
s agnostic with respect to the underlying discretization choice. We test the applicability of the proposed framework with
umerical experiments on two model problems, namely the Poisson and linear elasticity problems. In particular, we study
everal benchmarks formulated on two-dimensional, trimmed domains discretized with splines and we observe a significant
eduction of the online computational cost compared to standard ROMs for the same level of accuracy. Moreover, we show
he applicability of our methodology to a three-dimensional geometry of a linear elastic problem.

2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Reduced basis method; Discrete empirical interpolation method; Proper orthogonal decomposition; Immersed method; Isogeometric
nalysis; Trimming

1. Introduction

In recent years, unfitted domain methods have attracted a lot of attention. The main idea behind these methods is
mbedding a geometric representation into a simple background domain. A wide class of immersed and embedded
ethods fall within this category, where the geometry is decoupled from the discretization of the solution. This

s the case, for example, in the immersed boundary method [1], the immersed interface [2], the fictitious domain
nd finite cell method [3], CutFEM [4], the Shifted Boundary Method [5,6], and others. Some of the challenges
nvolved in immersed methods have been the focus of research activities in the past, such as numerical integration
nd imposition of boundary conditions. We further refer the reader to the review in [7].

Moreover, great efforts have been devoted in the research area of design-oriented simulation. Isogeometric
nalysis (IGA) was introduced in [8] and has been successfully applied in several fields of computational science
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and engineering. The idea behind IGA is to adopt the same representation employed in Computer Aided Design
(CAD), such as B-splines and their rational variants (NURBS), for the approximation of the solution in finite element
analysis. This paradigm provides a unified framework from design to analysis that is capable of simplifying the
clean-up and meshing of geometric models. A review of isogeometric methods can be found in [8,9]. One of the
main challenges in IGA is dealing with boundary representations (B-rep). Commercial CAD software are currently
using B-reps for solid modeling, that is, the solid is only modeled by its boundary. Since the volumetric description
is missing, such boundary representations are not analysis-suitable [10–12]. In the context of IGA, immersed
methods have become particularly popular since they circumvent the need to construct volumetric parameterizations
by simply embedding B-reps into a background domain [13–17]. Furthermore, immersed isogeometric methods
bear connections to Boolean operations and trimming. In CAD, spline parameterizations are commonly trimmed
in order to represent complex geometric shapes. The result of trimming operations are unfitted meshes, since
the parameterization is defined in the original background domain. As trimming is the prevailing technology to
represent complex shapes in CAD, its treatment is crucial to achieve a unified design-through-analysis framework
and tackle geometries that are relevant from an industrial viewpoint. The reader is further referred to [18] for a
detailed review and current challenges on trimming. Moreover, we refer to previous works addressing the challenges
posed by trimming in the analysis, such as numerical integration [19–24], conditioning [25] and stabilization
techniques [26,27].

One further aspect to be considered is that in many cases partial differential equations (PDEs) need to be solved
ultiple times for several parametric configurations. This is the case in a real-time and many-query context arising,

or example, in design optimization, uncertainty quantification, control, and other applications. Efficient reduced
rder modeling techniques are essential to establish a suitable offline/online procedure that achieves a computational
peedup. To this end, projection-based reduced order models (ROMs) have been successfully employed in a wide
ange of domains for the solution of parameterized PDEs.

In the past years, there have been several successful applications of IGA in the context of reduced order modeling
echniques [28]. The fields of application span from fluid dynamics [29,30], to parabolic problems [31] and cardiac
lectrophysiology [32]. Moreover, ROMs were constructed using IGA on complex, multipatch geometries and
sotopological meshes in [33]. The combination of reduced basis methods (RB) and IGA has been particularly

otivated by their combined advantages to solve PDEs on parameterized geometries [34]. The interested reader is
eferred to [35,36] for a thorough discussion on reduced basis methods as well as to our previous work [37] in the
ontext of isogeometric ROMs and domain decomposition. We also refer to [38] in the context of IGA and tensor
rain compression for parameterized geometries. On the other hand, the combination of unfitted domain methods
ith ROMs and in particular IGA is still in its infancy. Model reduction within an embedded framework was
rst investigated in [39] for uncertain parameterized geometries, where a fictitious domain method was combined
ith Proper Generalized Decomposition (PGD) and also in [40] for interfaces evolving in time, where a low-rank

pproximation was formulated for snapshot compression. Recently, ROMs were combined with CutFEM [41,42]
nd the Shifted Boundary Method [43–45] for parameterized geometries. These works address aspects related to
mbedded methods, such as definition of solutions on a common mesh through suitable extension and transportation
f snapshots on the background domain. Their main advantage is that they avoid remeshing and overcome the need
or reference domain formulations typically used for ROMs on parameterized geometries, where the snapshots are
apped to a reference domain and the transformation depends highly on the given problem at hand. Nevertheless,

hese works do not resolve the nonaffine dependence of differential operators and transport maps on the geometrical
arameters, i.e., do not make use of hyper-reduction techniques, which is essential for an efficient offline/online
ecomposition. In the context of unfitted finite elements, hyper-reduction was combined with ROMs for PDE-
onstrained optimization in [46]. However, the combination of reduced basis and isogeometric methods formulated
n unfitted geometries has not been thoroughly investigated in previous studies.

In this work, we propose a full reduction framework for nonaffine problems on parameterized unfitted geometries
hat relies on hyper-reduction techniques to achieve an efficient solution on the fly. The proposed framework is
gnostic with respect to the chosen discretization and can be applied in combination with finite element as well as
sogeometric methods formulated on unfitted domains.

Our contribution falls within the context of projection-based ROMs, while we employ the Proper Orthogonal
ecomposition (POD) to construct reduced basis spaces. We remark that the RB method is based on the assumption

f affine dependence of the operators on the parameters. Since we are interested in parameterized geometries,

2



M. Chasapi, P. Antolin and A. Buffa Computer Methods in Applied Mechanics and Engineering 410 (2023) 115997

v
f
a
b
i
t
o

u
o
m
t
R
a

2

w
d
T

p

m
b

this assumption is not always fulfilled. To recover the affine dependence on the geometrical parameters we rely
on the empirical interpolation method (EIM) [47] and in particular its discrete variant (DEIM) for vectors and
matrices [48,49]. We recall that the solution of PDEs on parameterized embedded domains necessitates proper
extension of solutions to a common mesh. In this respect, our approach is inspired by previous studies on snapshot
extension techniques [41,43]. The extended solutions for varying geometrical parameters may exhibit discontinuities
for different values of the parameters. In fact, it is inefficient to construct a reduced basis approximation with a
single, linear subspace since a very large set of global reduced basis functions is required to achieve a sufficient
accuracy. It should be noted that even for a large dimension of the basis the approximation properties may be poor
and characterized by oscillatory behavior as discussed in [50] and references therein.

On the other hand, strategies based on the idea of local reduced bases have been proposed in the past to circum-
ent these shortcomings. Local ROMs based on clustering of solution snapshots were first introduced in [51] and
urther proposed, for example, in the context of discrete empirical interpolation [52], cardiac electrophysiology [53]
nd bifurcation problems [54]. In this work, we propose a parameter-based partitioning of snapshots. This approach
ears connections to hp-reduced basis methods introduced in [55,56] for elliptic and parabolic PDEs and later
n [57] for empirical interpolation. We also refer to [58,59] for adaptive local reduced bases. Finally, we illustrate
he methodology with numerical experiments employing spline discretizations on trimmed geometries. The features
f the proposed ROM framework are summarized as follows:

• It is agnostic to the underlying discretization and cutting operations performed on parameterized unfitted
domains.
• It enables an efficient offline/online decomposition for nonaffine problems with geometrical parameters based

on hyper-reduction. The latter is applied to the algebraic structure of the differential operators and combined
with interpolation to ensure a fast and less intrusive treatment of nonaffine dependencies.
• It allows to construct efficient ROMs based on a localization strategy. The online cost is low, as the dimension

of the local problems is small and one can easily switch between subspaces in the online phase.

We structure this contribution as follows: Section 2 provides a brief review of the main concepts related to
nfitted domain discretizations formulated on parameterized geometries. Section 3 presents the generic framework
f parameterized linear elliptic PDEs considered throughout this work. In Section 4 we discuss the reduced basis
ethod for PDEs on unfitted geometries, in particular the snapshots extension, reduced space construction and

he discrete empirical interpolation method. In Section 5 we present the localization strategy to construct efficient
OMs. Section 6 provides several numerical experiments in order to assess both the computational efficiency and
ccuracy of the proposed methodology. Finally, the main conclusions are summarized in Section 7.

. Unfitted domain discretization of geometrically parameterized problems

In this section we provide a brief overview of some basic concepts related to unfitted boundary methods, which
ill constitute the basis of the methods to be developed along the manuscript. Let us denote as Ω (µ) ⊂ Rd the
omain in which we want to solve our PDE problem at hand, where d is the spatial dimension, either 2D or 3D.
his physical domain is described by a set of geometrical parameters µ ∈ P ⊂ RM , where P is the space of

parameters and M > 0 is the number of parameters. In this work we assume that Ω (µ) is built by cutting a master

domain Ω̂0(µ) with a series of K > 0 domains
{
Ω̂i (µ)

}K

i=1
, all of them potentially dependent on the geometrical

arameters µ, as (see Fig. 1)

Ω (µ) = Ω̂0(µ) \
K⋃

i=1

Ω̂i (µ) . (1)

In order to deal with such generic domain parameterizations in a way that is compatible with reduced order
odeling techniques we rely upon unfitted domain methods. Thus, we assume that Ω (µ) is immersed in a larger

ackground domain Ω0, as

Ω (µ) ⊂ Ω ⊂ Rd
∀µ ∈ P , (2)
0
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Fig. 1. Geometrical setting: The geometrically parameterized domain Ω (µ), built through subtraction operations, is embedded in the
ackground domain Ω0.

hat is independent of the geometrical parameters. Ω0 is the base upon which we create a discrete functional space
Vh,0, that is independent of µ, defined in a general way as

Vh,0 = span
{
Bi , i = 1, . . . ,Nh,0

}
, (3)

here {Bi }
Nh,0
i=1 is a basis of the space, being Nh,0 = dim

(
Vh0

)
. Then, for a given set of geometrical parameters µ,

e want to solve our problem of interest on the domain Ω (µ), and for that purpose we introduce a smaller space
Vh(µ), defined as

Vh(µ) = span
{
Bi ∈ Vh,0 | supp(Bi ) ∩ Ω (µ) ̸= ∅

}
, (4)

eing Nh(µ) = dim(Vh(µ)). Clearly it holds Nh(µ) ≤ Nh,0. Using such a space for discretizing a differential
roblem on Ω (µ), the domain partition (i.e. meshing) is decoupled from the solution discretization, which renders
his family of methods flexible alternatives to traditional boundary fitted techniques. Furthermore, it is worth
ighlighting that the basis functions are defined on Ω0, and so, their definition remains unchanged, not depending on
he geometrical parameters. In what follows we will rely upon our previous works for the computation of integrals
rising from unfitted domain discretizations [21,60].

From the definition (4), it is clear that a set of basis functions may be inactive (those whose support does not
ntersect Ω (µ)). They do not contribute to the solution discretization and therefore they will be just simply not
onsidered. In addition, that set of functions depends on the particular choice of µ, and may change from problem
o problem. We will further elaborate on this aspect and its implications in the context of efficient reduced order

odeling in Section 4.

emark 1. The numerical experiments discussed in Section 6 are based on the use of spline discretizations
i.e., Isogeometric Analysis [8]). Therefore, in those examples we assume Ω0 to be a Cartesian product domain,
s, for instance, the bounding box of all the possible domains Ω (µ). We define a Cartesian mesh in such domain
see Fig. 1) upon which the discretization spline space is built. However, the framework presented above and used
n the following sections is completely agnostic with respect to the discretization chosen for Vh,0, and it can be
pplied in combination with other unfitted domain techniques as, e.g., the Finite Cell Method [3], CutFEM [4], or
he aggregated unfitted domain method [61].

In addition, due to the fact that in Section 6 we limit our discussion to the Poisson and linear elasticity problems,
here we assume that Vh,0 ⊂ H 1(Ω0). However, the method introduced in this work applies to other problems and
pace choices.

emark 2. As it will be illustrated in the example of Section 6.2.1, the geometry Ω (µ) can be further transformed
sing a mapping F : Ω × P → Rs , with s ≥ d , in a similar way as proposed in [21].
0
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3. Parameterized model problem

In the following, we introduce a generic linear elliptic PDE that will serve as model problem for our exposition.
e consider the following equation:

Lu = f in Ω (µ), (5)

quipped with proper boundary conditions on the boundary ∂Ω (µ). We suppose that we have the well-posed discrete
eak formulation of the parameterized problem in Eq. (5) as: find uh ∈ Vh(µ) such that

a(uh, vh;µ) = f (vh;µ), ∀vh ∈ Vh(µ), (6)

here a(·, ·;µ) : Vh(µ) × Vh(µ) → R is a bilinear, continuous, and coercive form and f (·;µ) : Vh(µ) → R
s a linear and continuous functional associated to a parameterized PDE for every µ ∈ P . The space Vh(µ) is a
iscrete subspace whose choice depends in general on the boundary conditions. In the case where Dirichlet boundary
onditions are imposed on an unfitted part of the boundary, a suitable stabilization technique must be adopted, as
or example the one introduced in [27,60]. Note that in the numerical experiments discussed in Section 6 we will
onsider homogeneous Dirichlet and Neumann boundary conditions for ease of exposition, while we will impose
irichlet boundary conditions on the part of the boundary that coincides with the boundary of the background
omain ∂Ω (µ)∩∂Ω0 and not on the unfitted part of ∂Ω (µ). From the algebraic viewpoint, the discrete approximation
eads to the following parameterized linear system of dimension Nh(µ) = dim(Vh(µ))

A(µ)uh(µ) = f(µ), (7)

here A ∈ RNh (µ)×Nh (µ) is the stiffness matrix corresponding to the differential operator, f ∈ RNh (µ) is the vector
epresenting the source term and uh(µ) ∈ RNh (µ) is the solution vector. In Section 6 we will consider two model
roblems to validate the methods, namely the Poisson and linear elasticity problems. From now on, we refer to the
roblem (6) as high-fidelity or full order model (FOM). We are interested in solving Eq. (7) for different values
f the parameter vector µ (order of at least hundreds) and analyze different geometrical representations. Driven by
his, in the next sections we will turn to reduced order models as a means of tackling parameterized problems in
n efficient manner.

. Reduced basis method for PDEs on parameterized unfitted geometries

In the context of parameterized PDEs, the main idea behind projection-based reduced order models (ROMs) is
o approximate the solution of FOMs based on a linear combination of global reduced basis functions. The latter
an be obtained from selected solutions of the FOM, which are referred to as snapshots. In the following we will
iscuss the key features related to unfitted domain discretizations and briefly review some basic concepts in order
o obtain an effective model order reduction.

.1. Snapshots extension

The solution of problems on parameterized unfitted domains might vary highly over the parameter space P . Let
s consider a spline discretization as an illustrative example. In fact, as the active domain Ω (µ) depends on µ,
he support of B-spline basis is also µ-dependent: the basis functions that are active or inactive may change for
ifferent values of the parameters. An example of a trimmed univariate B-spline basis is illustrated in Fig. 2. Let us
ow consider a geometrical parameter µ affecting the location of the elements cut away from the Cartesian mesh
pon which the spline discretization is built. The trimmed basis comprises basis functions that are cut and depicted
n blue dotted lines in Fig. 2. The active basis functions with full support inside the domain (0, µ) are depicted
n blue color, while the inactive functions, outside of (0, µ) are shown in grey. For different values of µ, different
asis functions are fully or partially active.

Thus, when solving problem (7) we seek a solution uh(µ) in a spline space Vh(µ) (4) whose set of active basis
unctions depends on the parameters µ and the same holds for its dimension Nh(µ). Indeed, depending on the
arameters µ, the set of active basis functions may change for different snapshots. Practically, this implies that the
napshot solution vectors uh(µ) obtained from (7) might have different length. This fact will hinder the formation

f snapshots matrices for constructing a reduced basis by techniques such as the Proper Orthogonal Decomposition

5
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Fig. 2. Univariate B-spline basis for different parameters µ1, µ2, µ3 defining the trimming location. The functions depicted in blue are fully
ctive, in dotted blue are trimmed active and in grey are inactive. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

POD). Therefore, a suitable extension of the solution vectors uh(µ) has to be performed in order to render all
ectors of the same length. Since the background domain Ω0 and the associated space Vh,0 remain unchanged by

the cutting operation (1), it is convenient to extend the snapshot solutions of (7) to the background domain Ω0. In this
aper, we consider a trivial extension of the snapshot solutions to zero in the inactive regions of the domain Ω0. We
emark that a thorough discussion and investigation of other possible extensions in the context of projection-based
educed order models are given in [41]. Since the latter work concluded that the trivial extensions only slightly
ffects the eigenvalues decay, i.e., the dimension of the reduced basis, the zero extension is the choice we adopt in
his work, although other alternatives are also possible. Therefore, the extended version of the full order problem
FOM) (7) reads

Â(µ)̂uh(µ) = f̂(µ). (8)

he size of this extended problem is µ-independent, being Â ∈ RNh,0×Nh,0 and ûh(µ), f̂,∈ RNh,0 .

.2. Reduced basis problem

In order to solve the FOM problem (8) using ROM techniques, we seek for a reduced basis V ∈ RNh,0×N where
N is the reduced space dimension that is ideally chosen to be N ≪ Nh,0. Throughout this work we will consider
he POD to construct the reduced basis V, while other techniques, such as the Greedy algorithm [36] can also be
sed. The POD will be briefly reviewed in Section 4.3. The Galerkin reduced basis problem reads: find uN ∈ VN
uch that

a(uN , vN ;µ) = f (vN ;µ), ∀vN ∈ VN , (9)

here VN denotes the reduced basis space spanned by V. Thus, using the reduced basis V, the solution ûh(µ) can
e approximated as

û (µ) ≈ Vu (µ), (10)
h N

6
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where uN (µ) ∈ RN is the solution vector of the reduced problem. To obtain a projection-based ROM from (8), the
esidual is enforced to be orthogonal to the subspace VN such that

VT (Â(µ)VuN (µ)− f̂(µ)) = 0. (11)

hus, the reduced basis approximation leads to the linear system

AN (µ)uN (µ) = fN (µ), (12)

here the reduced matrices and vectors are given as

AN = VT Â(µ)V, fN = VT f̂(µ). (13)

emark 3. By introducing the snapshots extension, we construct a reduced basis with global basis functions that
re defined on the µ-independent background domain Ω0. The solution of the reduced problem in (12) is likewise
efined on the background domain. Its values inside the inactive regions are not relevant and can be discarded
uring the analysis.

The reduced problem (12) has size N , which makes it suitable for fast online solution given many different
arameters µ ∈ P . Nevertheless, beyond the size of the problem, (12) still requires the assembly of the FOM
atrix Â(µ) and vector f̂(µ) for each parameter µ, that is in principle expensive. Therefore, a crucial aspect for the

fficiency of the ROM is the assumption that both Â(µ) and f̂(µ) depend affinely on the parameters µ. Unfortunately
ue to the fact that µ encodes geometrical parameters, neither of Â(µ) and f̂(µ) can be affinely decomposed as
unctions of µ in general. Instead we will approximate them as

Â(µ) ≈
Qa∑

q=1

θa
q (µ)Âq , f̂(µ) ≈

Q f∑
q=1

θ f
q (µ)̂fq , (14)

here
{
θa

q (µ)
}Qa

q=1
and

{
θ

f
q (µ)

}Q f

q=1
are µ-dependent parameter functions and Âq ∈ RNh,0×Nh,0 and f̂q ∈ RNh,0 are µ-

ndependent matrices and vectors, respectively. In order to build the approximation (14), we rely on hyper-reduction
echniques, such as the empirical interpolation method (EIM) [47,62] and its discrete variant (DEIM) for vectors and

atrices [48,49] to recover the affine dependence. In particular, our goal is to provide an efficient and non-intrusive
rocedure that is agnostic to parameter-dependent cutting operations for rapid online evaluation of the coefficients
a
q (µ), θ f

q (µ) in Eq. (14). In this work, we will exploit interpolation with radial basis functions (RBFs) [63] for
ast online evaluation of the parameter-dependent functions in Eq. (14). This allows to obtain infinite or piecewise
moothness depending on the chosen type of RBFs. The hyper-reduction procedure will be further discussed in
ection 4.4. Introducing the affine approximation (14) into (13), the reduced matrix AN ∈ RN×N and the right-hand
ide vector fN ∈ RN are computed for a given parameter µ as

AN (µ) =
Qa∑

q=1

θa
q (µ)VT ÂqV, fN (µ) =

Q f∑
q=1

θ f
q (µ)VT f̂q . (15)

he matrices
{
VT ÂqV

}Qa

q=1 and vectors
{
VT f̂q

}Q f
q=1 are µ-independent and can be pre-computed once and stored

uring the offline phase. During the online phase, we solve the reduced problem (12) for a given value of µ. To
his end, we first compute the coefficients θa

q (µ), θ f
q (µ) in the affine approximation of (14), assemble the reduced

atrix AN (µ) and vector fN (µ) as in (15) and then solve the linear system (12). Finally, the solution referred to
he space Vh,0 is reconstructed through (10). It should be highlighted that ideally Q f , Qa ≪ Nh,0 and therefore the
nline assembly in the form of (15) is inexpensive.

So far we have introduced two approximations with respect to the original problem (7): the reduced solution
nd the affine approximations of Â(µ) and f̂(µ). To build such reduction framework there are two crucial steps,
amely, the construction of the reduced basis V and the creation of the approximate affine decompositions in (14).
n this work, the reduced basis V is constructed by means of the POD and its generation is detailed in Section 4.3.
n the other hand, the affine approximations (14) are performed based on the DEIM and will be elaborated in
ection 4.4. Nevertheless, the construction of the reduced basis V on the extended domain Ω0 required by unfitted

omain discretizations results in a manifold that is highly nonlinear on the parameters µ. The same holds also for

7
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the affine approximations of Â(µ) and f̂(µ). In fact, the approximation of a nonlinear solution manifold with a global
inear subspace may be accurate only for a very high number of basis functions, which hinders the construction
f efficient ROMs. Therefore, we will provide a localization strategy to construct local bases that can be switched
nline in an efficient manner. We further elaborate the localized reduced basis method in Section 5.

.3. Proper orthogonal decomposition

In this section we briefly review the Proper Orthogonal Decomposition (POD) technique. The reader is referred
o [35,36] for a more detailed exposition. Let us first set our notation for the POD approach based on the singular
alue decomposition (SVD) algorithm that we will use a few times later. The SVD of a matrix S ∈ Rm×n reads:

S = UΣZT , (16)

here the orthogonal matrices U ∈ Rm×m and Z ∈ Rn×n contain the left and right singular vectors of S, respectively,
nd Σ ∈ Rm×n is a diagonal matrix containing the positive singular values of S sorted in descending order. For
≥ n, the correlation matrix is defined as C = ST S ∈ Rn×n . The following eigenvalue problem can be then

erived:

Cψ i = σ 2
i ψ i , i = 1, . . . , r. (17)

ere, σ 2
i are the nonzero eigenvalues of the correlation matrix C sorted in nondecreasing order and ψ i ∈ Rn×n are

he associated normalized eigenvectors being r ≤ n the rank of S. The POD basis of dimension P is then obtained
from the first P eigenvectors of the correlation matrix as

ζ j =
1
σ j

Sψ j , j = 1, . . . , P, (18)

here ζ j ∈ Rm . The POD basis is orthonormal by construction and its dimension P can be chosen such that
he projection error induced by the POD, that is, the energy captured by the neglected modes, is smaller than a
rescribed tolerance ϵP O D [36]. Therefore, it is sufficient to choose P as the smallest integer such that

1−
∑P

i=1 σ 2
i∑r

i=1 σ 2
i
≤ ϵP O D. (19)

In order to construct a POD basis V for the approximation in (10) we assume to have a sufficiently fine and
roperly selected training sample set Ptrain = {µ1, . . . ,µNs } ⊂ P of dimension Ns = dim(Ptrain). Using this
ample set, we form the solution snapshots matrix Su ∈ RNh,0×Ns

Su = [̂u1, . . . , ûNs ], (20)

here the vectors û j ∈ RNh,0 represent the solutions ûh(µ j ) extended to the background domain Ω0 for j =
, . . . , Ns . The reduced basis V = [ζ 1, . . . , ζ N ] ∈ RNh,0×N is then extracted with the POD as shown above in
qs. (16)–(19).

emark 4. We remark that also other techniques, such as the Greedy algorithm, can be in principle used to construct
he reduced basis. In this work we focus on the POD since our interest lies in addressing its shortcomings related
o parameterized unfitted geometries, i.e., the slow decay of the singular values of the SVD. Similarly to advection
ominated problems with slowly decreasing Kolmogorov n-widths, the effective model reduction is a challenging
ask. In fact, the proposed framework bears connections to such type of problems that need to be tackled efficiently
rom the reduction viewpoint.

.4. Discrete empirical interpolation method

The key feature to ensure efficiency of the reduced basis method is the affine parametric assumption discussed
reviously, which allows to decompose the stiffness matrix and right-hand side vector with respect to the parameters
. As a very first step, an affine approximation in the form of Eq. (14) is constructed with the discrete empirical

nterpolation method (DEIM) for matrices and vectors. The reader is further referred to [49,64] for a detailed

verview of this procedure.

8
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Similar to the solution, the same extension is performed to form the snapshots matrices in the DEIM procedure.
et us consider the stiffness matrix Â(µ) and right-hand side f̂(µ) obtained by extending A(µ) and f(µ) to zero

nside inactive regions. Following [49], the matrices Âq for q = 1, . . . , Qa and vectors f̂q for q = 1, . . . , Q f in (14)
re obtained by applying the POD procedure described in Section 4.3. In the following, we assume that we have
sufficiently fine training sample set Pd

train = {µ1, . . . ,µN d
s
} ⊂ P of dimension N d

s = dim(Pd
train) and apply the

OD to the vectorization k̂(µ) = vec(Â(µ)) and to the vectors f̂(µ) for each µ ∈ Pd
train . We denote the snapshots

atrices Sa ∈ RN 2
h,0×N d

s and S f ∈ RNh,0×N d
s upon which the POD bases are built as

Sa = [̂k1, . . . , k̂N d
s

], S f = [̂f1, . . . , f̂Nd
s

], (21)

here k̂ j = vec(Â(µ j )) and f̂ j = f̂(µ j ), for j = 1, . . . , N d
s . It should be highlighted that the procedure depends

n the sparsity pattern associated to the background domain Ω0 and only non-zero entries are considered for the
mplementation. The reader is further referred to [49] for a detailed discussion on implementation aspects. After
erforming the SVD to the matrices Sa and S f , the number of affine terms Qa and Q f can be determined by
rescribing a tolerance ϵd

P O D and applying the expression (19). Note that hyper-reduction in general requires a
igher level of accuracy (i.e., ϵd

P O D < ϵP O D) to obtain reduced basis approximations that are not impaired by the
ccuracy of the DEIM approximations [36].

emark 5. In this work, we first consider the DEIM procedure to obtain affine approximations and then construct
reduced basis space with the POD approach. The solution snapshots in Eq. (20) are obtained by solving (8)

nd exploiting (14). Such solution is performed offline and its evaluation is nevertheless inexpensive provided that
Q f , Qa ≪ Nh,0. We further refer to the discussion in [49,65] regarding the preservation of the non-singularity of
he stiffness matrix for µ ∈ P by the affine approximation. It is worthwhile highlighting that for the sake of offline
avings one can construct the snapshots matrices for both the DEIM approximations (21) and the reduced basis (20)
imultaneously in case the reduced space is built with the POD. More details on this alternative option are given
n [49]. Note that our strategy is intended to be also applicable with other techniques, e.g. the Greedy algorithm,
hus we do not further investigate this option here.

Now, a strategy to efficiently compute the parameter-dependent coefficients θa
q (µ), q = 1, . . . , Qa and θ

f
q (µ),

= 1, . . . , Q f , in (14) is needed. Following the empirical interpolation procedure [47], we set ourselves at using the
agic points [62]. Let us focus on the stiffness matrix first. A Greedy algorithm [36] that minimizes the interpolation

rror over the snapshots is used to select a collection of Qa matrix entries, which we denote as Ja . These entries
ulfill exactly the interpolation constraint for the matrix Â(µ), i.e., for each (i, j) ∈ Ja

Qa∑
q=1

θa
q (µ)[Âq ]i, j = [Â(µ)]i, j . (22)

he interpolation constraint for the vector f̂(µ) reads, for each i ∈ J f

Q f∑
q=1

θ f
q (µ)[̂fq ]i = [̂f(µ)]i . (23)

ote that the well-posedness of the DEIM procedure follows from [48] and [36, Theorem 10.1]. In order for
qs. (22)–(23) to be efficiently computed online, we need to assure that for a given µ ∈ P their right-hand side
an be rapidly computed on the fly. However, the following aspects should be considered:

• This evaluation requires to assemble online the matrix and vector associated to a collection of Qa matrix
and Q f vector entries given a new value of µ. Depending on the parametric complexity, i.e. the number of
functions Qa, Q f , this operation can be costly.
• In the context of finite element methods, the PDE operators are in practice assembled employing a reduced

mesh that benefits from the local support of basis functions [49]. However, the goal of our work is to provide
a strategy that is independent of the underlying discretization.
• In the case of unfitted domains, the magic points selected by DEIM may correspond to active or cut functions.
The latter are identified during integration and assembly and may change depending on µ. Therefore, efficient

9



M. Chasapi, P. Antolin and A. Buffa Computer Methods in Applied Mechanics and Engineering 410 (2023) 115997

s

i

b

c

w
t
a
f
i
ω

W
d
t
p
p
m

e
a
T
T
d

5

a
f
s
o
b

implementation of this operation requires several intrusive techniques in the high-fidelity approximation and
assembly routines [46]. In what follows, we aim to provide a non-intrusive procedure that is completely
agnostic to the cutting operations, i.e., it is independent of the number of cut basis functions and cut domains.

To this end, our approach is inspired by interpolation-based ROMs that have been a subject of research in previous
tudies [28,66]. In particular, the online computation of the coefficients θa

q (µ) and θ
f

q (µ) can be made more efficient
by:

1. pre-computing the values of
{
θa

q (µ)
}Qa

q=1
and

{
θ

f
q (µ)

}Q f

q=1
in (22)–(23) during the offline phase for each

µ ∈ Pd
train ,

2. using such computations to train a fast interpolation method during the offline phase,
3. evaluating efficiently the interpolants during the online phase for any given µ ∈ P .

In the following we adopt radial basis functions (RBFs) for the interpolation [63], due to their capability to
nterpolate scattered data, although the use of other methods is of course also possible. The procedure is identical for

oth
{
θa

q (µ)
}Qa

q=1
and

{
θ

f
q (µ)

}Q f

q=1
, therefore we will consider from now on only the first one to keep the exposition

oncise. During the online phase, the function
{
θa

q (µ)
}Qa

q=1
in (14) is approximated as

θa
q (µ) ≈

Nd
s∑

j=1

ωa
q, jφq, j (

µ− µ j


2), q = 1, . . . , Qa . (24)

here φq, j denotes the radial basis function associated to the j th center parameter point µ j and ∥·∥2 represents
he Euclidean norm. There are several alternatives for radial basis functions, such as Gaussian, multi-quadratic,
nd others. In the numerical experiments discussed in Section 6 we will use cubic radial basis functions. These
eature piecewise, higher-order smoothness without spurious oscillations. It should be noted that the number of
nterpolation parameter points coincides with the number of training parameter samples N d

s . The unknown weights
a
q, j are computed during the offline phase such that they fulfill the interpolation constraint exactly for µk ∈ Pd

train

Nd
s∑

j=1

ωa
q, jφq, j (

µk − µ j


2) = θa

q (µk), k = 1, . . . , N d
s , q = 1, . . . , Qa . (25)

e refer the reader to [63], where the unique solvability of the underlying linear system is analyzed. Note that
epending on the type of radial basis functions, polynomials may be augmented to the above definition to render
he problem uniquely solvable [67]. We remark that the condition number of the matrix associated to the RBF
roblem grows with the number of interpolation points and preconditioning techniques [68] or tuning of shape
arameters [69] may be needed for large data sets. However, the localization strategy we propose in Section 5
itigates this effect to some extent, since we partition the data set to construct local approximations.
We recall that in the context of unfitted domain discretizations, the construction of affine approximations on the

xtended domain Ω0 results in a manifold that is nonlinear on the parameters µ. Thus, constructing one global
pproximation may lead to a high number of affine terms Qa, Q f . This impedes the overall efficiency of the ROM.
he same holds also for the construction of the reduced basis V and its dimension N discussed in Section 4.2.
herefore, we will introduce a localization strategy to construct accurate, local approximations while containing the
imension of the reduced problem.

. Localization strategy

In the following we will present a strategy to construct efficient ROMs based on localized reduced bases. Our
pproach is inspired by problems with moving fronts and discontinuities, where local subspaces are constructed
or the DEIM and reduced basis approximation [51–53]. This allows the approximation with multiple, smaller
ubspaces and switching between different local bases in the online phase. Since online evaluations depend only
n the dimension of the local bases, one can construct more efficient ROMs compared to a single, global reduced

asis approach. The main steps involved in the proposed strategy are:

10
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1. setup a clustering strategy to partition separately the parameters, i.e. the associated snapshots, for the DEIM
and reduced basis approximations,

2. for each cluster combination train local DEIM approximations and reduced bases during the offline phase as
discussed in Section 4,

3. during the online phase, select the cluster with the smallest distance to a given µ ∈ P and solve the reduced
problem (12).

.1. Parameter-based clustering

Having in mind problems formulated on parameterized unfitted geometries, the question that arises is how
o partition snapshots obtained by extension such that the solution can be approximated by a local subspace of
ufficiently small dimension. For this purpose we formulate a parameter-based partitioning strategy.

Let us first present the main idea behind the proposed strategy. We assume that we have Nc partitions that are
centered around fixed points, i.e. centroids, µ̄1, . . . , µ̄Nc in the parameter space P . We will discuss later how to
obtain those. Then let us recall the cut domains Ω̂i (µ) for i = 0, . . . , K in (1) and define the following distance
or a given µ ∈ P

D(µ, k) = max
i

dist(∂Ω̂i (µ̄k) ∩ ∂Ω̂i (µ)), k = 1, . . . , Nc. (26)

n what follows we set ourselves to assign a given parameter vector µ to the partition k that minimizes D(µ, k).
his strategy allows us to form partitions comprising unfitted discretizations with similar active and inactive regions.

n order to ensure the efficient computation of the above operation, we assume that ∃C > 0 such that

max
i

dist(∂Ω̂i (µ̄k) ∩ ∂Ω̂i (µ)) ≤ C
µ− µ̄k

2
2 , k = 1, . . . , Nc, i = 0, . . . , K . (27)

hat is, the maximum distance between boundaries is bounded by the distance between the parameters in the
uclidean norm. To this end, the natural choice is to use the parameters as indicator for grouping together snapshots.
e remark that in this work we focus on unfitted domain discretizations, where active basis functions may vary

or different values of the parameters µ. In fact, the proposed strategy can be also adapted to other cases where the
iscontinuity or variability of the solutions stems, for example, from the underlying physical problem.

Let us now discuss how to obtain a partition of the parameter space in Nc subspaces as P =
⋃Nc

k=1 Pk . In
ractice, we consider the partitioning applied to the discrete counterpart of the parameter space. Moreover, in what
ollows we opt for an automatic partitioning with the k-means clustering algorithm [70], although other partitioning
echniques are also possible [55,56,58]. Then the i th snapshot, i.e., the i th column of the matrices (20) and (21) is
ssigned to a specific cluster k if µi ∈ Pk . Note that neighboring snapshots can be added to each cluster to obtain
verlapping clusters with smooth transitions from one cluster to another. In the numerical experiments of Section 6
e will not consider overlaps between clusters, although this is in principle possible [51]. In the following, we will

onsider a separate partitioning for the DEIM approximation, as this allows to render the dimension of the local
ases associated to the DEIM approximations independent of the dimension of the local reduced bases obtained
ith the POD.

.2. Offline phase

We now present in detail the offline steps involved in the localization strategy. First, we consider the DEIM
pproximation and the parameter set Pd

train = {µ1, . . . ,µN d
s
} ⊂ P introduced in Section 4.4. The first step in

he offline phase is to partition the matrix Pd
train into N d

c submatrices corresponding to subregions Pd
k ⊂ P for

= 1, . . . , N d
c . The k-means algorithm starts by choosing random cluster centers (i.e. centroids) {µ̄d

k }
N d

c
k=1. Then the

artition is performed such that ∀µ ∈ Pd
train

Pd
k = {µ | if arg min

i

µ− µ̄d
i

2
2 = k}, k = 1, . . . , N d

c . (28)

he cluster centroids are updated iteratively until the algorithm converges such that

µ̄d
k =

1⏐⏐Pd
k

⏐⏐ ∑
d

µ, k = 1, . . . , N d
c . (29)
µ∈Pk
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The k-means clustering minimizes the distance between each parameter vector and the cluster’s centroid with respect
to the Euclidean norm ∥·∥2. We refer the reader to [51, Algorithm 5] for a detailed overview of the k-means
algorithm. The snapshots are then grouped into the same clusters as their corresponding parameters following the
assumption in (27). Thereafter, the DEIM procedure and RBF interpolation described in Section 4.4 is performed
separately for each cluster. In the numerical experiments, we will adopt the same number of clusters for the DEIM
approximation of the stiffness matrix and right-hand side, although in principle this could be chosen differently.
The offline localization procedure for the DEIM approximations is presented in Algorithm 1.

Algorithm 1 Localized DEIM procedure

1: procedure [{µ̄d
k }, {Âk

q}, {̂fk
q}, {ω

a
q, j,k}, {ω

f
q, j,k}] = OFFLINE(Pd

train, N d
c , ϵd

P O D)

2: {µ̄d
k }

N d
c

k=1, {Pd
1 , . . . ,Pd

Nd
c
} ← k-means clustering (Pd

train, N d
c )

3: Local DEIM basis functions, indices and interpolation weights:
4: for k = 1, . . . , N d

c do
5: for µ ∈ Pd

k do
6: Compute Â(µ), f̂(µ) with full order model
7: Sk

a = [Sk
a, Â(µ)]; Sk

f = [Sk
f , f̂(µ)]

8: end for
9: Âk

q ← POD(Sk
a, ϵ

d
P O D); J k

α ← DEIM-indices(Âk
q ) , q = 1, . . . , Qa

10: f̂k
q ← POD(Sk

f , ϵ
d
P O D); J k

f ← DEIM-indices(̂fk
q ), , q = 1, . . . , Q f

11: ωa
q, j,k ← RBF(Pd

k , Sk
a, Âk

q ,J k
α ) (25), q = 1, . . . , Qa , j = 1, . . . , dim(Pd

train)
12: ω

f
q, j,k ← RBF(Pd

k , Sk
f , f̂k

q ,J k
f ) (25), q = 1, . . . , Q f , j = 1, . . . , dim(Pd

train)
13: end for
14: end procedure

Once the local DEIM approximations are constructed, the next step in the offline phase is to construct local
educed bases. We consider the parameter set Ptrain = {µ1, . . . ,µNs } ⊂ P and the solution snapshots matrix
efined in Eq. (20). The partitioning is performed in the same manner as before, that is, we seek Nc partitions
orresponding to subregions Pk ⊂ P , k = 1, . . . , Nc. Then, the k-means algorithm initially selects random cluster
entroids {µ̄k}

Nc
k=1 that are updated iteratively following the steps in Eqs. (28) and (29). In order to evaluate (14),

e select the local DEIM approximation by minimizing the distance between a given parameter µ ∈ Ptrain and the
lusters’ centroids such that:

l = arg min
i

µ− µ̄d
i

2
2 , i = 1, . . . , N d

c . (30)

Once the snapshots matrix is constructed, each snapshot is assigned to the same cluster as its respective parameter.
hen we construct local reduced bases and project all possible combinations of full order arrays obtained by DEIM
nto each local subspace as described in Section 4. Algorithm 2 presents the offline localization procedure to
onstruct the reduced bases. Note that the input DEIM arrays refer to the output of Algorithm 1.

Since the number of clusters has to be chosen in advance, the k-means variance can be considered to choose
he optimal number during the offline phase. In this work, we adopt this criterion for the parameter vectors. The
-means variance reads

V =
Nc∑

k=1

∑
µ∈Pk

µ− µ̄k

2
2 . (31)

he same criterion holds also for the DEIM approximations by replacing the sum over N d
c clusters and evaluating

he Euclidean distance to the centroids µ̄d
k for µ ∈ Pd

k . As the number of clusters increases, the variance is expected
o decrease rapidly until it reaches a plateau. One can choose the number of clusters based on this elbowing effect
f the variance, that is, the smallest integer for which a transition from a steep slope to a plateau occurs. We further
efer the reader to [54] for a thorough discussion on this criterion. It is worthwhile noting that the optimal choice
f clusters depends to some extent on the given problem at hand, that is, the targeted accuracy and computational

peedup. We now summarize the steps of the offline phase as follows:

12
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Algorithm 2 Localized reduced basis procedure

1: procedure [{µ̄k}, {A
k,k̄
N ,q}, {f

k,k̄
N ,q}] = OFFLINE(DEIM ARRAYS,Ptrain, Nc, ϵP O D)

2: {µ̄k}
Nc
k=1, {P1, . . . ,PNc } ← k-means clustering (Ptrain, Nc)

3: Local reduced basis functions and reduced arrays:
4: for k = 1, . . . , Nc do
5: for µ ∈ Pk do
6: Full order arrays:
7: l = arg mini

µ− µ̄d
i

2
2, i = 1, . . . , N d

c

8: {{Âl
q}

Qa
q=1, {θ

a
q,l(µ)}Qa

q=1} ← assemble Â(µ) using (14) and (24)

9: {{̂fl
q}

Q f
q=1, {θ

f
q,l(µ)}

Q f
q=1} ← assemble f̂(µ) using (14) and (24)

10: ûh(µ)← solve FOM in (8)
11: Solution snapshots:
12: Sk

u = [Sk
u, ûh(µ)]

13: end for
14: Vk ← POD(Sk

u, ϵP O D);
15: for k̄ = 1, . . . , N d

c do
16: {{Ak,k̄

N ,q}
Qa
q=1, {f

k,k̄
N ,q}

Q f
q=1} ← projection of full order arrays onto Vk (15)

17: end for
18: end for
19: end procedure

1. We partition the parameters Pd
train into clusters for a given number of clusters N d

c .
2. We construct the snapshots matrices Sk

a , Sk
f with k = 1, . . . , N d

c for the DEIM approximations by solving the
FOM. Each snapshot (i.e. column of Sk

a , Sk
f ) is assigned to the same cluster as its corresponding parameter.

3. We construct local DEIM approximations and store the basis functions and interpolation weights for each
cluster.

4. We partition the parameters Ptrain for a given number of cluster Nc.
5. We construct the solution snapshots matrix Sk

u with k = 1, . . . . . . , Nc by solving the problem (8) exploiting
the affine form of Eq. (14). Each snapshot (i.e. column of Sk

u) is assigned to the same cluster as its
corresponding parameter.

6. We construct local reduced bases for each cluster applying the POD technique.
7. We construct local ROMs for all cluster combinations, that is, by projecting each local DEIM approximation

onto each local reduced basis space.

.3. Online phase

In the online phase, for a given parameter µ ∈ P , we switch between DEIM approximations and local bases
uch that the distance to the respective cluster centroid is minimized following Eq. (30). In this way, the online
valuation depends only on the dimension of the local bases. Note that in case the reduced basis is constructed with
he Greedy algorithm, an additional transformation of the basis is done as discussed in [59]. It should be highlighted
hat since both DEIM and reduced basis approximations are localized, during the offline phase we project and store
ll possible cluster combinations when pre-computing the matrices

{
VT ÂqV

}Qa

q=1 and vectors
{
VT f̂q

}Q f
q=1 in (15).

hen, during the online phase we pick the operators associated to the selected clusters. Thus, the primary goal in
onstructing local, low-dimensional reduced bases is to reduce the online computational cost at the price, however,
f additional offline effort associated to constructing and storing multiple reduced bases. We remark that the online
ost might vary between different clusters depending on the dimension of the associated local basis and the number
f affine terms. In the presented algorithms and numerical experiments, the respective dimensions N , Qa, Q f refer

o the number of local functions in the selected cluster. The online phase is given in Algorithm 3. Note that the

13
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input ROM arrays refer to the output of Algorithm 2 and RBF arrays to the output of the RBF interpolation in
Algorithm 1.

Algorithm 3 Online phase

1: procedure [uN ] = ONLINE(ROM ARRAYS, RBF ARRAYS, {µ̄d
k }

N d
c

k=1,µ)
2: l = arg mini

µ− µ̄d
i

2
2 , i = 1, . . . , N d

c

3: m = arg min j
µ− µ̄ j

2
2 j = 1, . . . , Nc

4: Reduced order arrays:
5: compute θa

q,l(µ), q = 1, . . . , Qa (24)
6: compute θ

f
q,l(µ), q = 1, . . . , Q f (24)

7: AN (µ) =
∑Qa

q=1 θa
q,l(µ)Al,m

N ,q; fN (µ) =
∑Q f

q=1 θ
f

q,l(µ)fl,m
N ,q

8: uN ← solve reduced linear system in (12)
9: end procedure

6. Numerical experiments

In this section we present some numerical experiments for the Poisson and linear elasticity problems to assess
he performance of the proposed methodology in constructing efficient reduced order models for PDEs defined
n parameterized unfitted geometries. As discussed in Section 2, we make use of spline discretizations that are
uilt upon a Cartesian mesh (see Remark 1). However, the method is agnostic to the underlying discretization
nd perfectly suitable for other choices. We further refer the reader to [8,9] and references therein for a detailed
eview on splines and isogeometric analysis in general as well as to our previous works on trimming using
sogeometric analysis [71–73]. The results have been obtained using the open-source Octave/Matlab isogeometric
ackage GeoPDEs [74] in combination with the open-source library redbKIT [75] and the re-parameterization tool

for integration of trimmed geometries presented in [21,60]. It is worthwhile remarking that we adopt a simple
diagonal pre-conditioning to limit the consequences of trimming on the condition number while a more detailed
discussion is provided in [76]. Unless stated otherwise, we approximate the parameter-dependent coefficients in
(14) using cubic RBFs to compute (24) and employ Latin hypercube sampling [77] to select the parameters for our
training and test sets. Table 1 summarizes the notation defined in the previous sections and used in the numerical
experiments.

6.1. The Poisson problem

Let us first consider the Poisson equation on a parameterized domain. The continuous formulation of the problem
reads in strong form: for any µ ∈ P , find u ∈ H 1

0,ΓD
(Ω (µ)) such that⎧⎪⎪⎨⎪⎪⎩

−∆u = f in Ω (µ)
u = 0 on ΓD(µ)
∂u
∂n

= 0 on ΓN (µ),

(32)

here ΓD(µ) ⊂ ∂Ω (µ) ∩ ∂Ω0 denotes the Dirichlet part of the boundary. We define H 1
0,ΓD

(Ω (µ)) ⊂ H 1(Ω (µ)) as
he subspace of H 1(Ω (µ)) such that functions vanish on the Dirichlet boundary. The Neumann part of the boundary
s ΓN (µ) and it holds that Γ D(µ) ∪ Γ N (µ) = ∂Ω (µ) and ΓD(µ) ∩ ΓN (µ) = ∅. Furthermore, f ∈ L2(Ω (µ)) is
he source term and n the outward unit normal to the boundary ∂Ω (µ). For simplicity of exposition, we assumed
bove homogeneous Dirichlet and Neumann boundary conditions without loss of generality. We can now write the
iscrete weak formulation of the parameterized problem as: find uh ∈ Vh such that
a(uh, vh;µ) = f (vh;µ), ∀vh ∈ Vh, (33)

14
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Table 1
Overview of parameters employed for the numerical experiments.

N dimension of reduced basis
Qa number of affine terms for stiffness matrix
Q f number of affine terms for right-hand side vector
Nh,0 degrees of freedom of the background domain
N d

s dimension of training sample for DEIM approximations
Ns dimension of training sample for POD
Nc number of clusters for reduced basis
N d

c number of clusters for DEIM approximations
Nt dimension of test sample for error analysis

Fig. 3. Example 6.1.1: Exemplary solution snapshots for µ = [0.5, 0.9, 1.5].

here Vh ⊂ H 1
0,ΓD

(Ω (µ)) is the finite-dimensional subspace spanned by a B-spline basis. The associated
arameterized bilinear form a(·, ·;µ) and the linear functional f (·;µ) read:

a(uh, vh;µ) =
∫
Ω(µ)
∇uh · ∇vh dΩ ,

f (vh;µ) =
∫
Ω(µ)

f vh dΩ .

(34)

.1.1. Square with circular hole: 1D geometrical parameterization
The first example we consider is a two-dimensional problem with a single geometrical parameter. The model

s defined on a rectangular domain Ω0 = (0, 2)2, which is trimmed by a circular curve of radius R = 0.3. The
rimmed domain Ω (µ) is parameter-dependent, where µ ∈ [0.5, 1.5] is a parameter representing the coordinates of
he center of the circular hole. The hole is centered at (µ, µ) and therefore moves along one diagonal of the square

0. Homogeneous Dirichlet boundary conditions are imposed on the left boundary of the domain and a constant
ource term is set as f = 1. The geometry is discretized with cubic C2-continuous B-splines using a mesh with
2 elements per direction over a Cartesian grid, resulting in Nh,0 = 1225 degrees of freedom. We remark that the
adius of the hole is fixed and the trimming causes the number of active basis functions to change slightly for the
roblem at hand. However, different basis functions are active depending on the location of the circular hole. The
olution of the FOM is depicted in Fig. 3 for three different values of the parameter µ. Although we have chosen
simplified setup, the solution of the problem varies significantly for different values of the parameter depending

n the location of the trimmed region. Therefore, constructing an efficient ROM for this problem poses challenges
o traditional reduced basis methods.

Let us first consider the standard case where a global ROM is constructed, in order to show that such an approach
s not feasible for our problem. Given the above parameterization, the extended stiffness matrix Â(µ) and right-hand
ide vector f̂(µ) depend on the geometric parameter in a nonaffine way. Therefore, they can be approximated by
EIM to obtain an affine expansion of the given matrix and vector, respectively, as discussed in Section 4.4. Fig. 4
epicts the error decay of the DEIM approximations for varying dimension of the training set used to compute the
OD basis, namely N d

s = [50, 100, 250, 500]. The error analysis is performed based on a test set of dimension
Nt = 100 by computing the mean relative error in the L∞ norm between the full order operators and the DEIM

a f
pproximations, while the coefficients θq (µ), q = 1, . . . , Qa and θq (µ), q = 1, . . . , Q f are computed exactly
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Fig. 4. Example 6.1.1: Error decay of global DEIM approximations in L∞-error norm for right-hand side vector (a) and matrix (b) based
on POD tolerance of ϵd

P O D = 10−7.

sing Eqs. (22)–(23). Observing the results in Fig. 4, it is evident that the training set needs to be sufficiently rich
i.e. N d

s ≥ 100) to achieve an accuracy of the order 10−5. The results indicate that a large number of basis functions
Qa and Q f needs to be selected to achieve accuracy of the ROM that is not impaired by the error of the DEIM
pproximation. In fact, a large number of DEIM terms is known to reduce significantly the efficiency of the ROM,
hat is, the online cost within the RB framework [57]. For the problem at hand, this motivates the localized strategy
ntroduced in Section 5 to contain the number of selected basis functions.

Now we consider the strategy presented in Section 5. To perform the localized DEIM approximation, the
napshots matrices Sa and S f are subdivided considering the vector of parameters as a cluster indicator. We recall
hat the dimensionality of the training set Pd

train should be chosen sufficiently high for each cluster. Fig. 5 shows
he decay of the singular values of the POD for the DEIM approximations with respect to the maximum number of
elected basis functions (Qa , Q f ) over all clusters for a given number of clusters N d

c . It is evident that the number of
ffine terms is significantly reduced by using local subspaces. In Table 2 we compare the selected number of affine
erms for different number of clusters. Here, we use the same number of clusters for the matrix and right-hand side,
lthough in principle this could be different. As discussed in Section 5, the number of terms may differ between
lusters. Thus, we only depict the minimum and maximum number of terms over all clusters.

Let us now assess the performance of the localization strategy in constructing a reduced basis with the POD. The
olution snapshot matrix Su is subdivided into clusters considering a training set of dimension Ns = 250 as indicator,
hat is, the solutions are assigned to the same cluster as their respective parameters. We consider the number of
lusters for the DEIM approximations fixed to N d

c = 16 and show the singular values decay in Fig. 6(a) for different
umber of clusters Nc with respect to the maximum number of RB functions over all clusters. We observe that the

lustering leads to a significant reduction of the RB functions N . Moreover, we perform an error analysis of the
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Fig. 5. Example 6.1.1: Comparison of singular values decay between global and local DEIM approximations for right-hand side vector (a)
and matrix (b) using different number of clusters.

Table 2
Example 6.1.1: DEIM approximations for different number of clusters.
Comparison in terms of minimum and maximum number of basis
functions over all clusters for the matrix (Qa) and right-hand side
vector (Q f ) based on POD tolerance ϵd

P O D = 10−7.

N d
c min. Qa max. Qa min. Q f max. Q f

1 349 349 124 124
4 118 122 38 39
8 62 66 21 23

12 42 47 15 18
16 31 38 11 15

problem solution uh on a test sample of dimension Nt = 100 constructed based on uniformly distributed random
oints in the parameter space. Fig. 6(b) shows that a small number of clusters (Nc = 4) is sufficient to achieve
ROM with accuracy of 10−5 and a local reduced basis with maximum dimension of N = 35 over all clusters,

ompared to the global ROM that requires N = 182 functions. Moreover, increasing the number of clusters further
mproves the accuracy, while the dimension of the basis is reduced as shown in Fig. 7.

Table 3 compares the efficiency of the ROMs. We observe that increasing the number of clusters Nc reduces
ignificantly the number of RB functions while it does not impair dramatically the online cost. Furthermore, the

olution obtained with the local ROMs is illustrated in Fig. 8 for the same values of the parameter µ as in Fig. 3.

17
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f

Fig. 6. Example 6.1.1: Singular values decay for different numbers of clusters (a) and relative error vs. maximum number of reduced basis
unctions (N ) over all clusters (b).

Fig. 7. Example 6.1.1: Decay of relative error vs. maximum number of reduced basis functions (N) for different numbers of clusters.

Fig. 8. Example 6.1.1: ROM solutions for µ = [0.5, 0.9, 1.5] and N d
c = Nc = 16.
18
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Table 3
Example 6.1.1: Comparison of ROMs in terms of number of reduced
basis functions (N) and computational cost for different numbers of
clusters Nc and N d

c = 8 with POD tolerance ϵP O D = 10−5.

Nc min. N max. N Online CPU time [ms]

1 182 182 879.0
4 33 35 94.0
8 10 17 85.7

12 6 12 86.6
16 4 9 93.9

Fig. 9. Example 6.1.2: Comparison of singular values decay between global and local DEIM approximations for right-hand side vector (a)
and matrix (b) using different numbers of clusters.

6.1.2. Square with circular hole: 2D geometrical parameterization
To illustrate the applicability of the methodology for multiple parameters, we consider a 2D geometrical

parameterization for our problem. The parameter vector µ = [µ1, µ2] represents the position of the center (µ1)
nd the radius of the hole (µ2) in the range (µ1, µ2) ∈ [0.5, 1.5]× [0.25, 0.35], while the circular hole is centered
t (µ1, µ1). This causes the number of active degrees of freedom to vary significantly between snapshots, which
ntroduces a strong complexity to the solution’s manifold. Note that the 2D parameter vector acts as indicator for
lustering the snapshots.

In fact, the number of affine terms selected by the global DEIM is much higher than the 1D parameterization as
epicted in Fig. 9. The use of local subspaces significantly reduces the maximum number of affine terms over
ll clusters. Fig. 10 shows that the number of RB functions is effectively reduced without compromising the
19
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Table 4
Example 6.1.2: Comparison of global and local ROM with N d

c = Nc = 16 in terms
of maximum number of basis functions over all clusters and computational cost.
POD tolerance set to ϵd

P O D = 10−7 for the DEIM approximation and ϵP O D = 10−5

for the reduced basis.

max. Qa max. Q f max. N Online CPU time [ms] speedup

local 107 59 17 122 17.6x
global 1024 282 201 251 9.1x

Fig. 10. Example 6.1.2: Singular values decay for different number of clusters (a) and relative error vs. maximum number of reduced basis
functions (N ) over all clusters (b) for N d

c = Nc = 16.

Fig. 11. Example 6.1.2: Solution snapshots corresponding to selected cluster centroids for µ1 = [1.2214, 0.7562, 0.5237] and µ2 =

[0.2851, 0.2715, 0.3268].

accuracy. The error analysis is performed on a test sample of dimension Nt = 100 for a fixed number of clusters
N d

c = Nc = 16. Moreover, the solution snapshots for three exemplary cluster centroids computed by k-means are
depicted in Fig. 11. In Table 4, we compare the performance between the local and global ROMs: a 17.6x speedup
is achieved with the local ROM, versus a speedup of 9.1x for the global ROM, both with respect to the FOM.

Finally, in Fig. 12 we show the error analysis of the problem solution uh with respect to the H 1 norm using
again a test sample of dimension Nt = 100 and a fixed number of clusters N d

c = Nc = 16. We remark that the POD
basis is constructed such that it minimizes the squared projection error with respect to the algebraic counterpart of
the H 1 norm [36, Proposition 6.2]. Similarly to the previous test cases, the singular values decay rapidly and the

reduction is more effective in the case of localization.
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Fig. 12. Example 6.1.2: Singular values decay for different number of clusters (a) and relative error in H1 norm vs. maximum number of
reduced basis functions (N ) over all clusters (b) for N d

c = Nc = 16.

6.2. Linear elasticity

Let us now briefly recall the equations of linear elasticity on a parameterized domain. We consider an isotropic
parameterized solid Ω (µ) ⊂ Rd with elastic deformations described in terms of a stress tensor σ , a small strain
ensor ε, the body force vector f and the unknown displacement field u. The Dirichlet and Neumann part of the
oundary of the domain ∂Ω (µ) are denoted by ΓD(µ) and ΓN (µ), respectively, while n is the outward unit normal to
he boundary. Similarly to the previous case of the Poisson problem, homogeneous Dirichlet and Neumann boundary
onditions are assumed, with ΓD(µ) ⊂ ∂Ω (µ) ∩ ∂Ω0. The continuous formulation of the problem in strong form
eads: for any µ ∈ P , find u ∈ [H 1

0,ΓD
(Ω (µ))]d such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−div(σ (u)) = f in Ω (µ)
σ (u) = 2µ̃ε(u)+ λ̃(div(u))I in Ω (µ)

ε(u) =
1
2

(∇u + (∇u)T ) in Ω (µ)

u = 0 on ΓD(µ)
σ (u) · n = 0 on ΓN (µ).

(35)

ere, the Lamé coefficients µ̃ and λ̃ can be expressed with respect to the Young modulus E and Poisson coefficient
as

µ̃ =
E

2(1+ ν)
, λ̃ =

Eν

(1+ ν)(1− 2ν)
. (36)

The discrete weak formulation of the parameterized problem in Eq. (35) can be expressed in a similar manner to
the Poisson problem as: find uh ∈ Vh such that

a(uh, vh;µ) = f (vh;µ), ∀vh ∈ Vh, (37)

where Vh ⊂ [H 1
0,ΓD

(Ω (µ))]d is a vector subspace spanned by a B-spline basis. Then the parameterized bilinear
orm a(·, ·;µ) is given as:

a(uh, vh;µ) =
∫

2µ̃ε(uh) : ε(vh) dΩ +
∫

λ̃div(uh)div(vh) dΩ , (38)

Ω(µ) Ω(µ)
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Fig. 13. Example 6.2.1: Geometry of the multi-perforated quarter cylinder.

and the linear functional f (·;µ) reads:

f (vh;µ) =
∫
Ω(µ)

f · vh dΩ . (39)

6.2.1. Multi-perforated quarter cylinder
In this example we assess the performance of the proposed procedure for geometries with multiple trimmed

regions. For this purpose, we consider a two-dimensional geometry of one-quarter cylindrical ring with multiple
holes. The model is defined in Fig. 13. The trimmed domain Ω (µ) is parameter-dependent, where µ = r ∈ [0.1, 0.2]
s a parameter representing the radius of the circular holes in the pre-image domain, that is a Cartesian grid as
iscussed in Section 2, Remark 1. In this case, we make use of a spline mapping F to obtain the actual geometry
see Remark 2).

Homogeneous Dirichlet boundary conditions are imposed on all four boundaries of the domain and the body
orce is set to f = [ fx , fy] = [2xy, 2xy]. The Young modulus and Poisson coefficient are given as E = 1.0 and
ν = 0.3, respectively. The geometry is discretized with quadratic C1-continuous B-splines employing a mesh with
32 elements per direction of the Cartesian grid, resulting in Nh,0 = 2312 degrees of freedom. The number of active
degrees of freedom changes significantly for different values of the parameter and our problem is characterized by
strong solution variations in different regions of the parameter space.

In order to construct the affine approximations and reduced bases, we consider a sufficiently rich training set
of dimension N d

s = 1000 and Ns = 500, accordingly. It should be noted that these dimensions refer to the global
snapshot matrices, that is the number of snapshots in each cluster after partitioning should be sufficiently high to
obtain accurate approximations. Fig. 14 shows the k-means variance (31) computed for different numbers of clusters
N d

c . It is observed that the variance does not decrease significantly after 10 clusters, therefore this number is chosen
as the optimal one.

Table 5 summarizes the results of the comparison between the local and global ROM. The number of
basis functions is reduced significantly for both the affine approximations and the reduced basis. Regarding the
performance of the ROMs, the results indicate that a 130x speedup is achieved with the local ROM, versus a
speedup of 16.5x for the global ROM, both with respect to the FOM. Note that as expected, the overall efficiency
of the ROM depends highly on the number of affine terms Qa, Q f . Compared to the results of the previous example
in Table 4, the number of affine terms is much lower here, which leads to a significantly higher speedup of the
local ROM.

Moreover, Fig. 15 depicts the singular values and error decay for the ROM with global and local reduced basis
based on a test sample of dimension Nt = 30. Similarly to the previous test cases for the Poisson problem, we
observe a rapid decay for the local ROM. Moreover, we obtain an accuracy of the order 10−5 for the local reduced

1
basis with maximum dimension of N = 16 over all clusters. In Fig. 16, the error analysis with respect to the H
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Fig. 14. Example 6.2.1: K-means variance versus number of clusters N d
c .

Table 5
Example 6.2.1: Comparison of global and local ROM with N d

c = Nc = 10 in terms
of maximum number of basis functions over all clusters and computational cost.
POD tolerance set to ϵd

P O D = 10−7 for the DEIM approximation and ϵP O D = 10−5

for the reduced basis.

max. Qa max. Q f max. N Online CPU time [ms] Speedup

local 36 20 16 36.7 130x
global 260 117 198 291 16.5x

Fig. 15. Example 6.2.1: Decay of singular values (a) and relative error vs. maximum number of reduced basis functions (N ) over all clusters
b) for N d

c = Nc = 10.

orm results in accuracy of the order 10−4 for the local reduced basis with maximum dimension of N = 31 over all
lusters. As in the previous example, the reduced basis is constructed also here such that it minimizes the squared
rojection error with respect to the algebraic counterpart of the H 1 norm. Finally, the solutions of the local ROM are
ompared to the FOM for three different values of the test sample in Fig. 17. It can be observed that the solutions
ary highly for different values of the parameter. The results indicate a good qualitative agreement with the FOM.
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Fig. 16. Example 6.2.1: Decay of singular values (a) and relative error in H1 norm vs. maximum number of reduced basis functions (N )
ver all clusters (b) for N d

c = Nc = 10.

Fig. 17. Example 6.2.1: Solution computed with the FOM (top) and local ROM (bottom) with N d
c = Nc = 10 clusters for three parameter

values from the test sample µ = [0.1106, 0.1440, 0.1981].

6.2.2. Cube with spherical inclusion
This example aims to demonstrate the applicability of our approach to three dimensional geometries. For this

purpose we consider a cube with a spherical inclusion. The model is defined in Fig. 18(a). The geometric parameter
we consider here is the radius of the sphere µ = R ∈ [0.5, 1.5], while the sphere is centered at the center of the
ube.

We impose homogeneous Dirichlet boundary conditions on the bottom of the cube as depicted in Fig. 18(a).
he body load is set to f = [ fx , fy, fz] = [0, 0,−10]. The Young modulus and Poisson coefficient are given

as E = 100 and ν = 0.3, respectively. The geometry is discretized with quadratic C1-continuous B-splines and
he mesh consists of 8 elements per direction over a Cartesian grid, resulting in Nh,0 = 3000 degrees of freedom.
ig. 18(b) shows the k-means variance (31) computed for different numbers of clusters N d

c . Similarly to the previous

est case, we observe that the variance does not decrease significantly after 10 clusters.
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Fig. 18. Example 6.2.2: Geometry of cube with spherical inclusion (a) and k-means variance versus number of clusters N d
c (b).

In the following, we will investigate the reducibility of the problem at hand. For this purpose, we consider a
training set of dimension N d

s = 250 for the affine decomposition and Ns = 100 for the reduced basis. Moreover,
Fig. 19(a) depicts the singular values decay of the DEIM approximation for the stiffness matrix versus the maximum
number of basis functions Qa over all clusters. It is evident, that the maximum number of the DEIM basis functions
over all clusters is reduced effectively to Qa = 35 with N d

c = 8 clusters, while the global approach requires
Qa = 180. A similar behavior can be observed for the reduced basis in Fig. 19(b). The dimension of the reduced
basis with Nc = 8 clusters is reduced from N = 35 to N = 14 basis functions. It should be noted that the depicted
decay corresponds to the cluster with the maximum number of basis functions for all cases. The decay is more
rapid for the local ROMs, which implies that the solution can be captured with less basis functions and the problem
at hand is more effectively reducible with the proposed localization strategy.

7. Conclusions

We have presented a novel reduced basis framework in the context of second-order linear elliptic PDEs defined
on parameterized unfitted domains. Our approach is based on projection-based ROMs and techniques such as the
reduced basis method and discrete empirical interpolation [36,49]. The latter ensures an efficient offline/online
procedure for problems formulated in parameterized geometries. To construct efficient ROMs for PDEs formulated
on parameterized unfitted geometries, we proposed a methodology based on extension of snapshots within the cut
regions and a localization strategy that reduces the dimension of the reduced basis. The presented framework allows
an efficient offline/online decomposition with low online cost, while it is perfectly suitable for any discretization
choice within an unfitted framework.

We have studied numerically the performance of the proposed methodology using the Poisson and linear elasticity
problems. For this purpose, we considered trimmed spline discretizations by exploiting the re-parameterization tool
for integration of cut elements in [21,60]. We observed a significant reduction of the computational cost in the
online phase compared to standard ROMs, while we obtained accurate reduced basis approximations for problems
distinguished by parameterized cut regions and strong variability of the solutions. Finally, we have applied the
proposed strategy to a three-dimensional geometry in order to investigate the potential of our framework to achieve
effective reduction.

From the model reduction point of view, an interesting research direction for the future is the application
of Greedy algorithms to construct localized reduced bases and error certification driven by a posteriori error

estimators. Moreover, the extension to more involved problems, such as fourth-order PDEs, and complex geometrical
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Fig. 19. Example 6.2.2: Comparison of singular values decay for DEIM approximations of the stiffness matrix (a) and reduced basis
approximation over all clusters (b) using different numbers of clusters.

representations is a further topic of interest. To the best of the authors’ knowledge, this work comprises the
first general methodology allowing reduced order modeling in the context of parameterized trimmed domains in
isogeometric analysis. The proposed strategy paves the way for several applications involving complex shapes within
a parametric framework, such as design, shape and topology optimization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The financial support of the Swiss Innovation Agency, Switzerland (Innosuisse) under Grant No. 46684.1 IP-EE
is gratefully acknowledged. We would also like to thank Prof. Andrea Manzoni (Politecnico di Milano, Italy) and
Dr. David Knezevic (Akselos S.A.) for fruitful discussions.

References

[1] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[2] Z. Li, K. Ito, The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, SIAM,

Philadelphia, 2006.
[3] J. Parvizian, A. Düster, E. Rank, Finite cell method, Comput. Mech. 41 (1) (2007) 121–133.
[4] E. Burman, S. Claus, P. Hansbo, M.G. Larson, A. Massing, CutFEM: Discretizing geometry and partial differential equations, Internat.

J. Numer. Methods Engrg. 104 (7) (2015) 472–501.
[5] A. Main, G. Scovazzi, The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems, J.

Comput. Phys. 372 (2018) 972–995.
[6] A. Main, G. Scovazzi, The shifted boundary method for embedded domain computations. Part II: Linear advection–diffusion and

incompressible Navier–Stokes equations, J. Comput. Phys. 372 (2018) 996–1026.
[7] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239–261.
[8] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,
Comput. Methods Appl. Mech. Engrg. 194 (2005) 4135–4195.

26

http://refhub.elsevier.com/S0045-7825(23)00121-4/sb1
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb2
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb2
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb2
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb3
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb4
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb4
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb4
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb5
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb5
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb5
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb6
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb6
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb6
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb7
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb8
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb8
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb8


M. Chasapi, P. Antolin and A. Buffa Computer Methods in Applied Mechanics and Engineering 410 (2023) 115997
[9] J.A. Cottrell, T.J.R. Hughes, A. Reali, Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl.
Mech. Engrg. 196 (2007) 4160–4183.

[10] H.A. Akhras, T. Eljuedj, A. Gravouil, M. Rochette, Isogeometric analysis-suitable trivariate NURBS models from standard B-rep
models, Comput. Methods Appl. Mech. Engrg. 307 (2016) 256–274.

[11] S. Klinkel, M. Chasapi, Isogeometric analysis of solids in boundary representation, in: Novel Finite Element Technologies for Solids
and Structures, Springer, Cham, 2020, pp. 153–197.

[12] M. Chasapi, L. Mester, B. Simeon, S. Klinkel, Isogeometric analysis of 3D solids in boundary representation for problems in nonlinear
solid mechanics and structural dynamics, Internat. J. Numer. Methods Engrg. 123 (2021) 1228–1252.

[13] K. Höllig, U. Reif, J. Wipper, Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal. 39 (2) (2001)
442–462.

[14] D. Schillinger, L. Dedé, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, T.J.R. Hughes, An isogeometric design-through-analysis
methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput.
Methods Appl. Mech. Engrg. 249 (2012) 116–150.

[15] D. Elfverson, M.G. Larson, K. Larsson, CutIGA with basis function removal, Adv. Model. Simul. Eng. Sci. 5 (2018) 1–19.
[16] E. Rank, M. Ruess, S. Kollmannsberer, D. Schillinger, A. Düster, Geometric modeling, isogeometric analysis and the finite cell method,

Comput. Methods Appl. Mech. Engrg. 249–252 (2012) 104–115.
[17] M. Meßmer, T. Teschemacher, L.F. Leidinger, R. Wüchner, K.-U. Bletzinger, Efficient CAD-integrated isogeometric analysis of trimmed

solids, Comput. Methods Appl. Mech. Engrg. 400 (2022) 115584.
[18] B. Marussig, T.J.R. Hughes, A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects, Arch.

Comput. Methods Eng. 25 (2018) 1059–1127.
[19] A.P. Nagy, D.J. Benson, On the numerical integration of trimmed isogeometric elements, Comput. Methods Appl. Mech. Engrg. 284

(2015) 165–185.
[20] L. Kudela, N. Zander, T. Bog, S. Kollmannsberger, E. Rank, Efficient and accurate numerical quadrature for immersed boundary

methods, Adv. Model. Simul. Sci. 2 (2015) 1–22.
[21] P. Antolin, A. Buffa, M. Martinelli, Isogeometric analysis on V-reps: First results, Comput. Methods Appl. Mech. Engrg. 355 (2019)

976–1002.
[22] S.C. Divi, C.V. Verhoosel, F. Aurrichio, A. Reali, E.H. van Brummelen, Error-estimate-based adaptive integration for immersed

isogeometric analysis, Comput. Math. Appl. 80 (2020) 2481–2516.
[23] P. Antolin, X. Wei, A. Buffa, Robust numerical integration on curved polyhedra based on folded decompositions, Comput. Methods

Appl. Mech. Engrg. 395 (2022) 114948.
[24] P. Antolin, T. Hirschler, Quadrature-free immersed isogeometric analysis, Eng. Comput. 38 (2022) 4475–4499.
[25] B. Marussig, R. Hiemstra, T.J.R. Hughes, Improved conditioning of isogeometric analysis matrices for trimmed geometries, Comput.

Methods Appl. Mech. Engrg. 334 (2018) 79–110.
[26] D. Elfverson, M.G. Larson, K. Larsson, A new least squares stabilized Nitsche method for cut isogeometric analysis, Comput. Methods

Appl. Mech. Engrg. 349 (2019) 1–16.
[27] A. Buffa, R. Puppi, R. Vázquez, A minimal stabilization procedure for isogeometric methods on trimmed geometries, SIAM J. Numer.

Anal. 58 (2020) 2711–2735.
[28] F. Garotta, N. Demo, M. Tezzele, M. Carraturo, A. Reali, G. Rozza, Reduced order isogeometric analysis approach for PDEs, in:

Quantification of Uncertainty: Improving Efficiency and Technology, in: Lecture Notes in Computational Science and Engineering, vol.
137, 2020, pp. 153–170.

[29] A. Manzoni, F. Salmoiraghi, L. Heltai, Reduced basis isogeometric methods (RB-IGA) for the real-time simulation of potential flows
about parametrized NASA airfoils, Comput. Methods Appl. Mech. Engrg. 284 (2015) 1147–1180.

[30] F. Salmoiraghi, F. Ballarin, L. Heltai, G. Rozza, Isogeometric analysis-based reduced order modelling for incompressible linear viscous
flows in parametrized shapes, Adv. Model. Simul. Eng. Sci. 3 (2016) 21.

[31] Z. Zhu, L. Dedé, A. Quarteroni, Isogeometric analysis and proper orthogonal decomposition for parabolic problems, Numer. Math.
135 (2017) 333–370.

[32] S. Fresca, A. Manzoni, L. Dedé, A. Quarteroni, POD-enhanced deep learning-based reduced order models for the real-time simulation
of cardiac electrophysiology in the left atrium, Front. Physiol. 12 (2021) 679076.

[33] T. Maquart, W. Wenfeng, T. Elguedj, A. Gravouil, M. Rochette, 3D volumetric isotopological meshing for finite element and isogeometric
based reduced order modeling, Comput. Methods Appl. Mech. Engrg. 362 (2020) 112809.

[34] D. Devaud, G. Rozza, Certified reduced basis method for affinely parametric isogeometric analysis NURBS approximation, in: Spectral
and Higher Order Methods for Partial Differential Equations, in: Lecture Notes in Computational Science and Engineering, vol. 119,
2017, pp. 41–62.

[35] J.S. Hesthaven, G. Rozza, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer, 2016.
[36] A. Quarteroni, A. Manzoni, F. Negri, Reduced Basis Methods for Partial Differential Equations. An Introduction, in: Unitext, vol. 92,

Springer, 2016.
[37] M. Chasapi, P. Antolin, A. Buffa, Reduced order modelling of nonaffine problems on parameterized NURBS multipatch geometries,

2022, arXiv, arXiv:2211.07348.
[38] I. Gabriel, D. Loukrezis, H. De Gersem, Tensor train based isogeometric analysis for PDE approximation on parameter dependent

geometries, Comput. Methods Appl. Mech. Engrg. 401 (2022) 115593.
[39] A. Nouy, M. Chevreuil, E. Safatly, Fictitious domain method and separated representations for the solution of boundary value problems
on uncertain parameterized domains, Comput. Methods Appl. Mech. Engrg. 200 (45) (2011) 3066–3082.

27

http://refhub.elsevier.com/S0045-7825(23)00121-4/sb9
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb9
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb9
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb10
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb10
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb10
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb11
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb11
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb11
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb12
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb12
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb12
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb13
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb13
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb13
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb14
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb14
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb14
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb14
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb14
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb15
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb16
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb16
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb16
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb17
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb17
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb17
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb18
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb18
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb18
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb19
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb19
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb19
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb20
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb20
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb20
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb21
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb21
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb21
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb22
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb22
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb22
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb23
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb23
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb23
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb24
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb25
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb25
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb25
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb26
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb26
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb26
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb27
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb27
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb27
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb28
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb28
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb28
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb28
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb28
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb29
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb29
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb29
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb30
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb30
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb30
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb31
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb31
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb31
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb32
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb32
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb32
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb33
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb33
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb33
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb34
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb34
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb34
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb34
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb34
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb35
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb36
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb36
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb36
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://arxiv.org/abs/2211.07348
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb38
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb38
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb38
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb39
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb39
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb39


M. Chasapi, P. Antolin and A. Buffa Computer Methods in Applied Mechanics and Engineering 410 (2023) 115997
[40] M. Balajewicz, C. Farhat, Reduction of nonlinear embedded boundary models for problems with evolving interfaces, J. Comput. Phys.
274 (2014) 489–504.

[41] E.N. Karatzas, F. Ballarin, G. Rozza, Projection-based reduced order models for a cut finite element method in parametrized domains,
Comput. Math. Appl. 79 (2020) 833–851.

[42] E.N. Karatzas, G. Rozza, A reduced order model for a stable embedded boundary parametrized Cahn–Hilliard phase-field system based
on cut finite elements, J. Sci. Comput. 89 (9) (2021).

[43] E.N. Karatzas, G. Stabile, L. Nouveau, G. Scovazzi, G. Rozza, A reduced basis approach for PDEs on parametrized geometries based
on the shifted boundary finite element method and application to a Stokes flow, Comput. Methods Appl. Mech. Engrg. 347 (2019)
568–587.

[44] E.N. Karatzas, G. Stabile, L. Nouveau, G. Scovazzi, G. Rozza, A reduced-order shifted boundary method for parametrized incompressible
Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg. 370 (2020) 113273.

[45] X. Zeng, G. Stabile, E.N. Karatzas, G. Scovazzi, G. Rozza, Embedded domain reduced basis models for the shallow water hyperbolic
equations with the shifted boundary method, Comput. Methods Appl. Mech. Engrg. 398 (2022) 115143.

[46] G. Katsouleas, E.N. Karatzas, F. Travlopanos, Discrete empirical interpolation and unfitted mesh FEMs: Application in PDE-constrained
optimization, Optimization (2022) 1–34.

[47] M. Barrault, Y. Maday, N.C. Nguyen, A.T. Patera, An ‘empirical interpolation’ method: Application to efficient reduced-basis
discretization of partial differential equations, C. R. Acad. Sci., Paris I 339 (2004) 667–672.

[48] S. Chaturantabut, D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput. 32 (2010)
2737–2764.

[49] F. Negri, A. Manzoni, D. Amsallem, Efficient model reduction of parametrized systems by matrix discrete empirical interpolation, J.
Comput. Phys. 303 (2015) 431–454.

[50] N. Sarnaa, P. Benner, Data-driven model order reduction for problems with parameter-dependent jump-discontinuities, Comput. Methods
Appl. Mech. Engrg. 387 (2021) 114168.

[51] D. Amsallem, M.J. Zahr, C. Farhat, Nonlinear model order reduction based on local reduced-order bases, Internat. J. Numer. Methods
Engrg. 92 (2012) 891–916.

[52] B. Peherstorfer, D. Butnaru, K. Willcox, H.-J. Bungartz, Localized discrete empirical interpolation method, SIAM J. Sci. Comput. 36
(1) (2014) A168–A192.

[53] S. Pagani, A. Manzoni, A. Quarteroni, Numerical approximation of parametrized problems in cardiac electrophysiology by a local
reduced basis method, Comput. Methods Appl. Mech. Engrg. 340 (2018) 530–558.

[54] M. Hess, A. Alla, A. Quaini, G. Rozza, M. Gunzburger, A localized reduced-order modeling approach for PDEs with bifurcating
solutions, Comput. Methods Appl. Mech. Engrg. 351 (2019) 379–408.

[55] J.L. Eftang, A.T. Patera, E.M. Rønquist, An hp certified reduced basis method for parametrized elliptic partial differential equations,
SIAM J. Sci. Comput. 32 (2010) 3170–3200.

[56] J.L. Eftang, D.J. Knezevic, A.T. Patera, A hp certified reduced basis method for parametrized parabolic partial differential equations,
Math. Comput. Model. Dyn. Syst. 17 (4) (2011) 395–422.

[57] J.L. Eftang, B. Stamm, Parameter multi-domain hp empirical interpolation, Internat. J. Numer. Methods Engrg. 90 (2012) 412–428.
[58] B. Haasdonk, M. Dihlmann, M. Ohlberger, A training set and multiple bases generation approach for parameterized model reduction

based on adaptive grids in parameter space, Math. Comput. Model. Dyn. Syst. 17 (4) (2011) 423–442.
[59] Y. Maday, B. Stamm, Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces, SIAM J. Sci. Comput.

35 (2013) A2417–A2441.
[60] X. Wei, B. Marussig, P. Antolin, A. Buffa, Immersed boundary-conformal isogeometric method for linear elliptic problems, Comput.

Mech. 68 (2021) 1385–1405.
[61] S. Badia, F. Verdugo, A.F. Martín, The aggregated unfitted finite element method for elliptic problems, Comput. Methods Appl. Mech.

Engrg. 336 (2018) 533–553.
[62] Y. Maday, N.C. Nguyen, A.T. Patera, S.H. Pau, A general multipurpose interpolation procedure: The magic points, Commun. Pure

Appl. Anal. 8 (1) (2009) 383–404.
[63] M.J.D. Powell, The Theory of Radial Basis Functions Approximation in 1990, Advances in Numerical Analysis II: Wavelets, Subdivision

Algorithms and Radial Functions, Oxford University Press, Oxford, 1992, pp. 105–210.
[64] D. Wirtz, D.C. Sorensen, B. Haasdonk, A posteriori error estimation for DEIM reduced nonlinear dynamical systems, SIAM J. Sci.

Comput. 36 (2) (2014) A311–A338.
[65] G. Stewart, J. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.
[66] S. Georgaka, G. Stabile, K. Star, G. Rozza, M.J. Bluck, A hybrid reduced order method for modelling turbulent heat transfer problems,

Comput. & Fluids 208 (2020) 104615.
[67] M.D. Buhmann, Radial basis functions, Acta Numer. (2000) 1–38.
[68] R. Beatson, J. Cherrie, C. Mouat, Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration, Adv.

Comput. Math. 11 (1999) 253–270.
[69] B. Fornberg, J. Zuev, The runge phenomenon and spatially variable shape parameters in RBF interpolation, Comput. Math. Appl. 54

(3) (2007) 379–398.
[70] A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm, Pattern Recognit. 36 (2) (2003) 452–461.
[71] L. Coradello, P. Antolin, R. Vázquez, A. Buffa, Adaptive isogeometric analysis on two-dimensional trimmed domains based on a

hierarchical approach, Comput. Methods Appl. Mech. Engrg. 264 (2020) 112925.
[72] L. Coradello, J. Kiendl, A. Buffa, Coupling of non-conforming trimmed isogeometric Kirchhoff–Love shells via a projected super-penalty
approach, Comput. Methods Appl. Mech. Engrg. 387 (2021) 114187.

28

http://refhub.elsevier.com/S0045-7825(23)00121-4/sb40
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb40
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb40
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb41
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb41
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb41
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb42
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb42
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb42
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb43
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb43
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb43
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb43
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb43
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb44
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb44
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb44
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb45
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb45
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb45
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb46
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb46
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb46
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb47
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb47
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb47
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb48
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb48
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb48
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb49
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb49
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb49
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb50
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb50
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb50
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb51
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb51
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb51
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb52
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb52
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb52
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb53
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb53
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb53
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb54
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb54
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb54
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb55
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb55
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb55
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb56
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb56
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb56
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb57
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb58
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb58
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb58
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb59
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb59
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb59
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb60
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb60
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb60
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb61
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb61
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb61
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb62
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb62
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb62
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb63
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb63
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb63
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb64
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb64
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb64
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb65
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb66
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb66
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb66
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb67
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb68
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb68
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb68
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb69
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb69
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb69
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb70
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb71
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb71
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb71
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb72
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb72
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb72


M. Chasapi, P. Antolin and A. Buffa Computer Methods in Applied Mechanics and Engineering 410 (2023) 115997
[73] A. Buffa, O. Chanon, R. Vázquez, An a posteriori error estimator for isogeometric analysis on trimmed geometries, IMA J. Numer.
Anal. (2022) 1–29.

[74] R. Vázquez, A new design for the implementation of isogeometric analysis in octave and Matlab: GeoPDEs 3.0, Comput. Math. Appl.
72 (2016) 523–554.

[75] F. Negri, redbKIT version 2.2, 2016, http://redbkit.github.io/redbKIT/.
[76] F. de Prenter, C.V. Verhoosel, G.J. van Zwieten, E.H. van Brummelen, Condition number analysis and preconditioning of the finite

cell method, Comput. Methods Appl. Mech. Engrg. 316 (2017) 297–327.
[77] M.D. McKay, R.J. Beckman, W.J. Conover, Comparison of three methods for selecting values of input variables in the analysis of

output from a computer code, Technometrics 21 (2) (1979) 239–245.
29

http://refhub.elsevier.com/S0045-7825(23)00121-4/sb73
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb73
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb73
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb74
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb74
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb74
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://redbkit.github.io/redbKIT/
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb76
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb76
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb76
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb77
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb77
http://refhub.elsevier.com/S0045-7825(23)00121-4/sb77

	A localized reduced basis approach for unfitted domain methods on parameterized geometries
	Introduction
	Unfitted domain discretization of geometrically parameterized problems
	Parameterized model problem
	Reduced basis method for PDEs on parameterized unfitted geometries
	Snapshots extension
	Reduced basis problem
	Proper Orthogonal Decomposition
	Discrete Empirical Interpolation Method

	Localization strategy
	Parameter-based clustering
	Offline phase
	Online phase

	Numerical experiments
	The Poisson problem
	Square with circular hole: 1D geometrical parameterization
	Square with circular hole: 2D geometrical parameterization

	Linear elasticity
	Multi-perforated quarter cylinder 
	Cube with spherical inclusion


	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


