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Abstract: Substitution of the chlorido ligand of cyclometalated [Pt (5-R-1,3-di(2-pyridyl) benzene)Cl]

(R = methyl, mesityl, 2-thienyl, or 4-diphenylamino-phenyl) by 4-phenylthiazole-2-thiolate leads to

related thiolato complexes, which were fully characterized. Their photophysical properties were

determined in degassed dichloromethane solution. The emission color of the novel complexes can be

easily tuned by the nature of the substituents on the terdentate ligand, as is the case for the parent

chlorido complexes. Their luminescence Quantum Yield is high, with that of the compounds with

the 2-thienyl or 4-diphenylamino-phenyl substituents being much higher than that of the related

chloride complexes. The platinum complex with the cyclometalated 5-(2-thienyl)-1,3-di(2-pyridyl)

benzene was used as the emitter for the fabrication of a yellow solution-processable OLED.

Keywords: coordination compounds; cyclometalated platinum(II) complexes; dipyridyl benzene ligand

1. Introduction

Transition metal complexes can find very useful applications in different fields because
of the luminescence characteristics provided by the presence of the heavy metal atom. In
fact, this allows for an efficient intersystem crossing which populates the excited triplet
states, from which radiative emission can occur, even if theoretically forbidden. These
appealing luminescence properties of transition metals, such as Platinum [1,2], can find
application in different fields, from the production of light-emitting devices [3–5] to the
use as dyes for bio-imaging and as biological probes [6–8]. In particular, this phenomenon
can be observed in the case of cyclometalated Pt(II) complexes belonging to the family
of [Pt(dpyb)Cl] compounds (dpyb = 1,3-di(2-piridyl) benzene, structure of the complex
in Figure 2). The terdentate dpby chelating ligand offers a rigid environment around the
platinum center, hampering non-radiative decays which could take place in the excited
states. As a consequence, the absolute phosphorescence Quantum Yield of these com-
plexes in deaerated solution reaches very high values (Φlum = 0.60 for the unsubstituted
[Pt(dpyb)Cl] [9]).

The main fields in which the emission characteristics of this family of Pt(II) com-
plexes have been tested until now, and can be furtherly exploited within, are the produc-
tion of sensing devices and OLEDs [10–16], photodynamic therapy [17,18] and for bio-
imaging [19–23]. Remarkably, the emission color of the compounds (and therefore also of
the prepared devices) can be tuned by varying the substituents on the main scaffold of the
terdentate ligand. Different substituents can be introduced on both the central benzene
ring and the pyridines. Depending on the electron-donating or accepting properties of the
substituents, the HOMO-LUMO gap of the complex can be modified and therefore the
emission color can be tuned.
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Thanks to the cyclometalating carbon atom in the trans position with respect to the
ancillary Cl ligand in the square planar geometry of these compounds, the chloride can
be easily replaced by other anionic species. Up to now, various ligands have been in-
troduced in this way including isothiocyanates [11,22–24], azides [25], acetylides [26–32],
isocyanides [33–35], phenolates [36] and thiolates [37–41]. While substitution with NCS
or an acetylide maintains high Quantum Yields, the presence of a thiolate brings about
different effects. A simple thioacetate [40] or differently substituted thiophenolates [37]
result in a much lower Quantum Yield with respect to the parent chlorido compound, while
1-phenyl-1H-tetrazole-5-thiolate [41] provides a record value of 0.90.

Another possibility is to introduce substituents (such as 4-NPh2-phenyl [42]) on the
pyridyl rings of the NˆCˆN ligands, leading to the expansion of the aromatic system and to
higher QY (also in this case, up to 0.90).

In this work, we presented four new complexes bearing a new sulfur-based ancil-
lary ligand, namely a 4-phenylthiazole-2-thiolate. These complexes present different sub-
stituents on the benzene ring of the NˆCˆN ligand, i.e., a methyl, a mesityl, a 2-thienyl and
a 4-diphenylamino-phenyl group (structure of the complexes in Figure 1).

– –
– –

–

 

–

–

–

– –

Figure 1. Structure of complexes Pt1–Pt4; in red, the new thiolate employed as ancillary ligand.

All complexes were characterized from the absorption and luminescence point of
view (Figures S7–S18), and compound Pt3 was employed for the production of a yellow
solution-processable OLED device.

2. Results and Discussion

Starting with the already known chlorido complexes PtCl1–PtCl4 ([9,43], structures
in Figure 2), four new compounds were synthesized with 4-phenylthiazole-2-thiolate as
the ancillary ligand on the Pt(II) center (Figure 1). For all Pt1–Pt4 complexes, UV-Vis
absorption spectra were registered, together with emission, excitation, absolute Quantum
Yield and lifetime measurements; the luminescence studies were carried out in deaerated
dichloromethane solutions. Since the long-living triplet states of the platinum(II) complexes
are efficiently quenched by molecular oxygen, three Freeze–Pump–Thaw (FPT) cycles were
performed to remove the O2 present in the air and in the solution.

–

–
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molar extinction coefficients (ε); the spectra and a table with ε values are reported in the 
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Figure 2. Structure of complexes [Pt(dpby)Cl] and PtCl1–PtCl4.
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2.1. Photophysical Properties

Figure 3 shows the UV-Vis absorption spectra of the four new compounds Pt1–Pt4,
while Figure 4 reports their normalized emission spectra; in both cases, the complexes were
studied as dichloromethane solutions with a concentration of 1 × 10−6 M. The absorption
spectra in CH2Cl2 at different concentrations were registered in order to calculate the
molar extinction coefficients (ε); the spectra and a table with ε values are reported in the
Supplementary Information. For all complexes, no aggregation was observed neither in
absorption nor in the emission measurements.

–

–
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Figure 3. UV-Vis absorption spectra of Pt1–Pt4 in dichloromethane, at a concentration of 1 × 10−6 M.
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Figure 4. Emission spectra of Pt1–Pt4 in dearated dichloromethane, at a concentration of 1 × 10−6 M.

The emission wavelengths, a comparison of the Quantum Yields before and after the
FPT cycles, and the lifetimes are reported in Table 1, together with the values corresponding
to the parent chlorido complexes PtCl1–PtCl4. Complete data and spectra are reported in
the Supplementary Information.
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Table 1. Key luminescence values for complexes PtCl1–PtCl4 and Pt1–Pt4.

Complex λmax, em/nm Φlum before FPT/% Φlum after FPT/% τ/µs

PtCl1 1 505 - 68 7.8

PtCl2 1 501 - 62 7.9

PtCl3 1 548 - 54 20.5

PtCl4 2 557 - 29 9.0

Pt1 3 503 2.5 65 7.9

Pt2 3 498 3.5 55 7.7

Pt3 3 545 3.0 89 19.1

Pt4 3 554 2.5 72 13.6
1 From Ref. [9]. Luminescence Quantum Yields were determined by the method of continuous dilution, using
quinine sulfate in 1 M H2SO4 as the standard; the estimated uncertainty is 20% or better. 2 From Ref. [43].
Luminescence Quantum Yield determined using [Ru(bpy)3]Cl2 as the standard. 3 This work; measured in
dichloromethane solution (10−6 M) using a C11347 Quantaurus Hamamatsu Photonics K.K spectrometer.

It can be observed that the substitution of chloride with the 4-phenylthiazole-2-thiolate
ligand exerts a very limited effect on the emission wavelength of the complexes, since a
difference of only a few nm is present. Thus, the spectral region in which emission occurs is
mainly determined by the substituent on the terdentate ligand. Nevertheless, by looking at
Pt3 and Pt4, an important effect on the absolute Φlum can be noticed upon the substitution
of chloride with thiolate. Considering the reference values taken from literature [9,43],
both the thienyl- and the 4-NPh2-phenyl-substituted complexes undergo a remarkable
increase in Φlum, from 54% to 89% and from 29% to 72%, respectively. Up to now, since very
few studies exist in the field of NCN-Pt(II) complexes bearing thiolate ancillary ligands,
it was not possible to point out a general trend in the QY values. Nevertheless, it can
be noticed that the highest values among Pt1–Pt4 were reached in the case of electron-
rich substituents such as 2-thienyl and 4-NPh2-phenyl. As a future perspective, new
thiolates and substituents could be tested, together with a theoretical investigation of the
photophysical properties of such complexes.

Considering the lifetimes, it can be pointed out that the presence of the thiazole-
based ancillary ligand did not bring about a change in the values in the case of Pt1

(7.9 µs vs. 7.8 µs), Pt2 (7.7 µs vs. 7.9 µs) and Pt3 (19.1 µs vs. 20.5 µs); instead, only for
Pt4 was a remarkable increase observed, from 9.0 µs to 13.6 µs.

2.2. OLED Device Produced with Pt3

Since the novel complexes bearing a 4-phenylthiazole-2-thiolate ligand (Pt1–Pt4) are
characterized by a high solubility in chlorinated solvents, they represent good candidates
for application in the production of solution-processable devices, obtaining thin films of
the compound by means of the spin-coating technique. Therefore, Pt3, i.e., the complex
showing the highest value of Quantum Yield in the new class of dyes, was employed for
the production of a solution-processable OLED device.

The EL spectrum of the OLED is shown in Figure 5. The OLED emission is in the
yellow region, with CIE coordinates of (0.42, 0.52). The EL spectrum closely matches the
emission of Pt3 at a concentration of 1 × 10−6 M in dichloromethane (Figure 5). There is
no significant contribution to the EL emission bands from the TBPi electron-transporting
(hole-blocking) or TCTA binder layers, which is in agreement with a good charge carrier
confinement within the EML and complete energy transfer from the excited states of TCTA
(formed by charge carrier recombination) to the Pt complex.

The luminance as a function of the applied voltage of the OLED is shown in Figure 6. It
is worth pointing out that the OLED performance observed with Pt3 as the emitter is much
better than that reported for a solution-processed OLED built with an NˆCˆN Pt complex
bearing a chloride ancillary ligand [24] and similar to that observed for an OLED based on
an NˆCˆN Pt complex having a 1-phenyl-1H-tetrazole-5-thiolate ancillary ligand [41].
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Figure 5. Electroluminescence spectra at 15 V of OLEDs based on Pt3. In the inset there is the photo

of the resulting yellow OLED.
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Figure 6. Luminance vs. applied voltage for the OLED device produced with 8% Pt3 in the

emissive layer.

3. Materials and Methods

All reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA)
and were used without further purification. The deuterated solvents for NMR measure-
ments were purchased from Eurisotop (Saint-Aubin, France).

Ligands L1–L4 (structure in Figure 7) were synthesized starting with 3,5-dibromotoluene
(in the case of L1) or 1,3,5-tribromobenzene (for L2–L4) and by employing Pd-catalyzed
Suzuki–Miyaura and/or Stille cross-coupling reactions to introduce the proper moieties on
the NˆCˆN ligand.
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Figure 7. General synthesis of complexes Pt1–Pt4, starting from ligands L1–L4.

In all cases, the known parent chlorido complexes PtCl1–PtCl4 [9,43] were obtained
by refluxing a mixture of the proper ligand (1 eq.) and K2PtCl4 (1.2 eq.) in glacial AcOH
for 24 h under Argon atmosphere. The obtained precipitate was filtered, washed with
H2O, MeOH and Et2O, and dried. Synthetic details and procedures are provided in the
Supplementary Information.

Electronic absorption spectra were recorded at room temperature in CH2Cl2 solution,
using a Shimadzu UV3600 spectrophotometer and quartz cuvettes with a 1 cm optical
path length. Absolute photoluminescence Quantum Yields (Φlum) were measured using
a C11347 Quantaurus Hamamatsu Photonics K.K spectrometer. Steady-state and time-
resolved fluorescence data were obtained using an FLS980 spectrofluorometer (Edinburg
Instruments Ltd., Livingston, UK). A detailed description of the measurement techniques
can be found in the Supplementary Information, together with the absorption and the
luminescence spectra.

The device was built by using both dry and wet processes (sublimation in high vacuum
and spin coating) in a pre-cleaned glass substrate made of indium tin oxide (ITO). Holes
were injected from the ITO anode and passed through a 40 nm thick transporting layer
made of PEDOT:PSS. Electrons were injected from an Al/LiF cathode and transported to
the emitting layer (EML) by means of a layer of 2,2′,2′ ′-(1,3,5-benzinetriyl)-tris (1-phenyl-
1H-benzimidazole) (TPBi, 30 nm thick). Charges recombined in the 40 nm thick EML
made of a 4,4′,4′ ′-tris (N-carbazolyl-triphenylamine (TCTA) matrix, hosting Pt3 (8% wt) as
the emitter.

General Synthesis of Complexes Pt1–Pt4

Compounds Pt1–Pt4 were obtained (57–90% yields, see Supplementary Information)
by stirring a mixture of the proper parent chloride complex (1 eq.) and of the sodium salt of
4-phenylthiazole-2-thiol (10 eq.) in acetone at room temperature in the dark under Argon
atmosphere. After 24 h, the solution was evaporated to dryness under reduced pressure
and dichloromethane was added to the solid residue in order to dissolve only the product.
The sodium salt was filtered and the evaporation of the dichloromethane resulted in the
desired product as an orange solid (Figure 2). All synthetic details and NMR spectra are
reported in the Supplementary Information.
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4. Conclusions

In conclusion, four novel cyclometalated Pt(II) complexes, bearing a variously substi-
tuted NˆCˆN 1,3-di(2-piridyl) benzene ligand and a 4-phenylthiazole-2-thiolate ancillary
ligand, were easily prepared and well characterized. Their emission color can be easily
tuned by the nature of the substituents on the terdentate ligand, as is the case for the parent
chlorido complexes. However, their luminescence Quantum Yield can be much higher.
Clearly, there is a need for the preparation and characterization of platinum(II) complexes
with other sulfur co-ligands in order to understand the relationship between their nature
and the emission properties of the compounds. In any case, the novel complexes with a 4-
phenylthiazole-2-thiolate ligand reported here represent the first members of an interesting
new class of soluble Pt(II) compounds which can be used as emitters for the fabrication of
solution-processable OLEDs.

Supplementary Materials: The following supporting information can be downloaded at: https://

www.mdpi.com/article/10.3390/molecules27165171/s1, Figures S1–S6: synthetic pathways; Figures

S7–S10: UV-Vis absorption spectra; Figures S11–S14: Emission and Excitation spectra; Figures S15–S18:

lifetime measurements; Figures S19–S39: NMR spectra; Table S1: absorption maxima and ε values [44].
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