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Abstract

The consumption of western diets, high in fats and sugars, is a crucial contrib-

utor to brain molecular alterations, cognitive dysfunction and neurodegenera-

tive diseases. Therefore, a mandatory challenge is the individuation of

strategies capable of preventing diet-induced impairment of brain physiology.

A promising strategy might consist in the administration of probiotics that are

known to influence brain function via the gut-brain axis. In this study, we

explored whether Limosilactobacillus reuteri DSM 17938 (L. reuteri)-based

approach can counteract diet-induced neuroinflammation, endoplasmic reticu-

lum stress (ERS), and autophagy in hippocampus, an area involved in learning

and memory, in rat fed a high fat and fructose diet. The western diet induced a

microbiota reshaping, but L. reuteri neither modulated this change, nor the

plasma levels of short-chain fatty acids. Interestingly, pro-inflammatory
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signaling pathway activation (increased NFkB phosphorylation, raised

amounts of toll-like receptor-4, tumor necrosis factor-alpha, interleukin-6,

GFAP, and Haptoglobin), as well as activation of ERS (increased PERK and

eif2α phosphorylation, higher C/EBP-homologous protein amounts) and

autophagy (increased beclin, P62-sequestosome-1, and LC3 II) was revealed in

hippocampus of western diet fed rats. All these hippocampal alterations were

prevented by L. reuteri administration, showing for the first time a neuropro-

tective role of this specific probiotic strain, mainly attributable to its ability to

regulate western diet-induced metabolic endotoxemia and systemic inflamma-

tion, as decreased levels of lipopolysaccharide, plasma cytokines, and adipo-

kines were also found. Therapeutic strategies based on the use of L. reuteri

DSM17938 could be beneficial in reversing metabolic syndrome-mediated

brain dysfunction and cognitive decline.
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1 | INTRODUCTION

The consumption of Western diets, high in fats and
sugars, particularly fructose, is a crucial contributor to
the alarming incidence of overweight/obesity and its
associated morbidities, such as type 2 diabetes mellitus,1,2

dyslipidemia,3 nonalcoholic fatty liver disease,4 and sys-
temic inflammation.5 This in turn can lead to the devel-
opment of neuroinflammation, a condition often
associated with depression, neurodegeneration and
impaired cognitive function. Indeed, the close link
between western diet-derived metabolic dysregulation
and neurodegeneration has strongly emerged in recent
years, and considerable evidence has shown that western
diet can impair cognition, learning and memory, both in
rodents6,7 and humans,8 laying the foundations for devel-
opment of Alzheimer's disease.9

We previously reported the increase of markers of
neuroinflammation in the brain of western diet-fed rats,
with the hippocampus, a brain region involved in the
control of learning and memory processes, being more
sensitive to the nutritional stress compared to the cor-
tex.10,11 In particular, the western diet regimen was
shown to reduce the levels of neuronal plasticity-related
proteins in the rat hippocampus.12 Diet-induced brain
alterations of this importance should promote the devel-
opment of novel strategies capable of limiting and/or pre-
venting diet-induced damage to brain physiology. In this
context, an additional player in the connection between
the diet and the development of neuroinflammation is
the gut microbiota. In fact, it is well known that the

western diet significantly alters the composition of the
microbiota in the gastrointestinal tract,13 and that the gut
microbiome can influence cognitive function via the gut-
brain axis.14 A strategy aimed at modulating the micro-
biota is based on the administration of probiotics, living
microorganisms that can keep a balanced and diverse
microbiota, bringing benefits to its composition and, in
general, to the host health.15 In this regard, we have
recently reported the beneficial impact of Limosilactoba-
cillus reuteri DSM 17938 (L. reuteri) in counteracting
western diet-induced metabolic derangement in gut and
liver.16,17 This probiotic has proven to be effective in pre-
serving the integrity of the intestinal barrier from western
diet-induced gut damage.16 Considering the role played
by the gut-brain axis, the aim of this study was to extend
our analysis to the hippocampus of western diet-fed rats,
with the aim to explore whether novel nourishing
approaches based on L. reuteri might be effective to coun-
teract diet-induced neuroinflammation, endoplasmic
reticulum (ER) stress, and autophagy, also providing
novel insights into the mechanism underlying its activity.

2 | EXPERIMENTAL PROCEDURES

2.1 | Materials

Bovine serum albumin (BSA) fraction V, nonfat milk,
salts and buffers were purchased from DelTech (Naples,
Italy). Fuji Super RX film, FujiFilm Man-X Developer,
and FujiFilm Man-X Fixer were from Laboratorio
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Elettronico Di Precisione (Naples, Italy). Water, metha-
nol and acetonitrile were of mass spectrometry-grade and
were obtained from Merck (Darmstadt, Germany). Along
with derivatizing agents 3-nitrophenyhydrazine (3-NPH),
N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide (EDC),
and quinic acid, all the analytical standards including
lithium acetoacetate, sodium β-hydroxybutyrate, and
internal standards 13C2-acetic acid, 13C3-propionic acid,
and 13C4-butyric acid were purchased from Sigma-Merck
(Darmstadt, Germany). Pyridine was obtained from
Fisher Scientific (Bremen, Germany).

2.2 | Cultivation of L. reuteri DSM 17938

L. reuteri DSM 17938 was kindly provided by BioGaia
(Noos S.r.l.; BioGaia AB, Stockholm, Sweden). It was cul-
tured in MRS Broth (OXOID Ltd., Basingstoke, Hamp-
shire, England) at 37�C, checked for purity and
maintained on MRS Agar (Oxoid). Free cells of the strain
were routinely cultured and counted on MRS Agar at
37�C for 48 h, under aerobic conditions.

2.3 | DNA extraction, high-throughput
sequencing, and bioinformatic analysis

Fresh fecal samples of 24 rats (8 for each of the three
groups) were collected after 8 weeks of treatment.
DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Germany)
was used to extract total DNA extraction according to the
manufacturer's instructions and quantified using
the NanoDrop spectrophotometer. Bacterial diversity was
determined by amplicon HTS of the V4-V3 region of the
16S rRNA gene (�460 bp). PCR and bioinformatic analy-
sis were carried out as previously reported.18–20

2.4 | Animals and treatments

All experimental procedures involving animals were
approved by the “Comitato Etico-Scientifico per la Speri-
mentazione Animale” of the University of Naples Feder-
ico II and were authorized by the Italian Health Ministry
(137/2022-PR). This work complies with the animal ethic
principles and regulations of the Italian Health Ministry.
The authors ensured that all the experimental steps were
taken to minimize the pain and suffering of the animals.

Male Wistar rats (Charles River, Calco, Lecco, Italy)
of 90 days were caged in a temperature-controlled room
(23 ± 1�C) with a 12 h light/dark cycle (06.30–18.30 h).
The rats were divided into three groups and treated for
8 weeks with a control diet (C group; N = 8), or with a

high fat—high fructose diet (HFF and HFFR groups;
N = 8 for each group). In addition, HFFR rats daily
received 0.5 ml of a 10% sucrose solution containing 108

CFU of L. reuteri, while C and HFF rats received the
same amount of sucrose solution without probiotics.
Sucrose solution with or without probiotics was pre-
sented by an operator every day at the same hour
through a needless syringe and voluntarily consumed by
rats. The composition of the two diets is shown in Sup-
plementary Table 1. At the end of the experimental
period, the rats were euthanized, and hippocampus was
harvested and dissected as previously described.11 Freshly
processed aliquots were immediately snap frozen in liq-
uid nitrogen and stored at �80�C for further analyses or
fixed for immunofluorescence. Blood samples were also
collected and plasma was isolated as previously
reported.12

2.5 | Preparation of hippocampus
protein extracts

Aliquots (35 mg) of frozen hippocampus were homoge-
nized in seven volumes of RIPA buffer (150 mM NaCl,
50 mM Tris–HCl pH 8.0, 0.5% sodium deoxycholate, 0.5%
NP-40, 0.1% SDS pH 8.0) containing 1% Protease Inhibi-
tor Cocktail and 1% Phosphatase Inhibitor Cocktail
(Euroclone, Milan, Italy). Homogenates were incubated
(30 min) at 4�C and then centrifuged (14,000 g, 45 min,
4�C). Protein concentration of supernatants was mea-
sured as previously reported.21

2.6 | Inflammatory parameters

Lipopolysaccharide (LPS) in plasma was measured using
a protocol based on a Limulus amoebocyte lysate (LAL)
extract (ThermoFisher Scientific, Rockford, IL, USA) in
accordance with the manufacturer's instructions. In brief,
the samples were incubated with the LAL reagent for
10 min at 37�C. Then, the chromogenic substrate solu-
tion was added for 6 min at 37�C. The reaction was
stopped with a stop solution and the absorbance readings
were taken on a plate reader at 405 nm.

Plasma concentrations of tumor necrosis factor-alpha
(TNF-α), interleukin-6 (IL-6) were assessed using a sand-
wich enzyme-linked immunosorbent assay (ELISA; R&D
Systems, Minneapolis, MN, USA), specific for rats, which
was in accordance with the kit instructions. Samples
were diluted 1:10 and data of TNF-α and IL-6 were
reported as ng per ml of plasma.

For quantification of TNF-α and IL-6 in hippocam-
pus, proteins were extracted from slices of tissue by
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homogenizing frozen tissues in lysis buffer (100 mM
Tris/HCl, pH 7.0, 1 M NaCl, 4 mM EDTA, 2% Triton
X-100, 0.1% sodium azide) containing 1% Protease Inhibi-
tor Cocktail and 1% Phosphatase Inhibitor Cocktail
(Euroclone, Milan, Italy). Homogenates were centrifuged
at 14000 g for 30 min at 4�C and soluble samples were
used for ELISA. Analysis was performed according to the
manufacturer instructions in samples diluted 1:20. Data
were reported as pg per mg of proteins.

Hippocampal haptoglobin (Hpt) was titrated by
ELISA, in samples diluted 1: 3500; 1:7000; 1:15,000 with
coating buffer (7 mM Na2CO3, 17 mM Na-HCO3,
1.5 mM NaN3, pH 9.6), and aliquots (50 μl) were then
incubated in the wells of a microtiter plate (Immuno
MaxiSorp; overnight, 4�C). Washing and blocking were
carried out as previously reported.12 Then, the wells
were incubated (1 h, 37�C) with 50 μl of rabbit anti-
haptoglobin (1:500 in 130 mM NaCl, 20 mM Tris–HCl,
0.05% Tween, pH 7.4, containing 0.25% BSA), followed by
60 μl of peroxidase-conjugated secondary antibody
(1:5000 dilution). Peroxidase-catalyzed color development
from o-phenylenediamine was measured at 492 nm.

Plasma levels of Hpt and lipocalin were assessed by
Western blotting, as described below. All the plasma sam-
ples were adjusted to protein concentration of 8 μg/μl
and 10 μl were used for electrophoresis on 12.5% poly-
acrylamide gels.12

2.7 | Western blotting

Denaturing and reducing electrophoresis of hippocampal
extracts22 or plasma proteins (30 μg or 80 μg respectively)
was carried out on 12.5% polyacrylamide gels to titrate
Hpt, lipocalin, apolipoprotein E (ApoE), microtubule-
associated protein light chain (LC3), P62-sequestosome-1
(p62), synaptophysin, synaptotagmin and IgG, or on 10%
counterparts to assay toll-like receptor-4 (TLR4), nuclear
factor kappa-light-chain-enhancer of activated B cells
(NFkB), beclin, glycogen synthase kinase 3 beta (GSK),
C/EBP-homologous protein (CHOP), protein kinase-like
ER kinase (PERK), eukaryotic initiation factor 2α
(eIF2α), postsynaptic density protein 95 (PSD-95), occlu-
din, and zonula occludens-1 (ZO-1). Proteins blotting
onto nitrocellulose membrane (GE Healthcare; Milan,
Italy), washing and blocking steps were carried out
according to previously published procedures.23,24 After
blocking, the membranes were incubated with primary
antibodies (overnight, at 4�C), washed and then treated
(1 h, at 37�C) with the appropriate peroxidase-conjugated
secondary antibodies. The specific dilution of each anti-
body is shown in Supplementary Table 2. As the amount
of phosphorylated proteins (NFkB, GSK, PERK, eIF2α)

was expressed as relative to the total NFkB, GSK, PERK,
eIF2α, after revelation of the immunocomplexes, the
membranes were submerged in stripping buffer (1% SDS,
25 mM glycine, pH 2; 30 min, 37�C),22 extensively
washed, and then incubated with the specific antibody
for the total form of the protein (Supplementary Table 2).
For loading control, after detection of each antigen, the
membranes were stripped and incubated (overnight, 4�C)
with mouse anti-β-actin IgG (1:1000 in 0.25% v/v nonfat
milk) followed by goat anti mouse-HRP IgG (1:30000 in
0.25% v/v nonfat milk; 1 h, 37�C). Plasma Hpt and lipoca-
lin were quantified by normalization to total protein con-
tent. In details, prior to immunodetection, membranes
were stained with 0.1% Ponceau S in 5% acetic acid to
determine sample loading in each lane (Supplementary
Figure 1). Densitometric analysis of Ponceau staining of
the membranes was then used as reference for calculat-
ing plasma protein abundance. Signal detection was car-
ried out using the Excellent Chemiluminescent Kit
Westar Antares (Cyanagen s.r.l., Bologna, Italy). Densito-
metric analysis of chemidoc or digital images of X-ray
films exposed to immunostained membranes was per-
formed with Un-Scan-It gel software (Silk Scientific,
UT, USA).

2.8 | Immunofluorescence analysis

Paraffin embedded sections of hippocampus from all the
groups were stained with the autophagy marker antibody
beclin (Beclin 1 [E-8]: sc-48341; Santa Cruz Biotechnol-
ogy), and slides were stained with DAPI (Sigma Aldrich,
Saint Louis, MO, USA; diluted 1:500 in PBS). For the
analysis, images were captured and visualized using Zeiss
Confocal Microscope LSM 700 at 63� magnification,
using a drop of immersion oil (Immersoil 518 F, Zeiss).

Three random field/section per rat were analyzed
using ImageJ (National Institutes of Health, Bethesda,
MD, USA).

2.9 | Quantification of short-chain
fatty acids

Short-chain fatty acids (SCFAs), acetate, propionate and
butyrate, in rat plasma samples, were quantified accord-
ing to a previous procedure,25 with minor modifications.
Briefly, 10 μl of plasma was spiked with 1 μl of SCFAs
carbon labeled internal standard mix including 13C2-ace-
tate, 13C3-propionate, and

13C4-butyrate (final concentra-
tion 0.1 mM). Plasma proteins were precipitated with the
addition of 60 μl of 75% v/v methanol, while derivatiza-
tion was accomplished through the mixing of
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suspensions with 60 μl of 200 mM 3-NPH and 10 μl of
EDC (120 mM in 6% pyridine). Upon incubation at room
temperature under gentle shaking in an orbital shaker
(45 min), derivatization reaction was stopped with the
addition of 10 μl of 200 mM quinic acid. Samples were
centrifuged at 15,000 rpm for 5 min, at 4�C, and superna-
tants diluted up to 1 ml with 10% v/v methanol. Samples
were centrifuged again at 15,000 rpm for 5 min, at 4�C,
and then analyzed without any further dilution by liquid
chromatography-high resolution mass spectrometry.
Quantitation of SCFA hydrazone derivatives was
achieved by a U-HPLC system (Ultimate 3000 RS,
Thermo Fisher Scientific) interfaced to a linear ion trap
hybrid Orbitrap high resolution mass spectrometer (LTQ
Orbitrap XL, Thermo Fisher Scientific). Mobile phases
consisted of water (solvent A) and acetonitrile (solvent
B), and the flow rate was 0.2 ml/min. Reversed phases
chromatographic separation was achieved through the
following gradient of solvent B (minutes/%B): (0/5),
(5/5), (12.3/35), (13.3/85), (14/99), (16/99) by mean of a
core–shell C18 column (Kinetex C18 PS, 100 � 2.1 mm,
2.6 μm; Phenomenex, Torrance, CA), thermostated at
40�C. Liquid chromatographic stream was interfaced to
an electrospray ion source working in negative ion mode,
scanning the ion in the m/z range 100–400; resolution
was set at 30,000 (FWHM at m/z 200), capillary tempera-
ture was 300�C, while sheath and auxiliary gases were set
at 25 and 15 arbitrary units, respectively. Analyte profile
data in full MS mode were collected using Xcalibur 2.1
(Thermo Fisher Scientific). Calibration curve was
obtained with the internal standard technique in the line-
arity range 0.001–1 mM. Analytical performances are
detailed in Supplementary Table 3.

2.10 | Statistical analysis

Data were expressed as mean values ± SEM. GraphPad
Prism 9.3.1 (GraphPad Software, San Diego, CA, USA)
was used to verify normal distribution of data and to
compare groups with one-way ANOVA followed by Bon-
ferroni post test. p < 0.05 was considered significant in
the reported analyses.

3 | RESULTS

3.1 | Hippocampal inflammation

Western diet consumption is characterized by the onset
of inflammation in critical brain areas such as hippocam-
pus, a key cerebral area for learning and memory. There-
fore, the potential impact of probiotic administration in

this district is of relevance. We therefore evaluated the
activation of pro-inflammatory signaling pathways by
measuring the degree of NFkB phosphorylation, the
amount of TLR4 and the levels of TNF-α, IL-6, and
GFAP, to verify whether L. reuteri-supplemented rats
could be protected from western diet-induced hippocam-
pal inflammation.

As shown in Figure 1, the western diet-induced
increase of both TLR4 amount and NFkB phosphoryla-
tion (used as a marker of the activation of NFkB) (HFF
vs. C) was prevented by probiotic administration in hip-
pocampus of HFFR rats (Figure 1A,B). In line with these
results, both TNF-α and IL-6 concentrations were higher
in hippocampus of HFF rats compared to controls, but
not in HFFR rats (Figure 1C,D). Further, the amounts of
GFAP, a marker of astrogliosis, and Hpt, an inflamma-
tory marker very sensitive to nutritional stress,12 were
higher in HFF rats respect to the control, and this rise
was prevented by L. reuteri treatment in HFFR group
(Figure 1E,F). Accordingly, the amount of ApoE, a pleio-
tropic protein that has been shown to reduce glial activa-
tion and brain inflammatory response in vitro and in
vivo,26,27 was found reduced in HFF rats, while the probi-
otic administration prevented this alteration in HFFR
rats (Figure 1G).

These results show that western diet-associated
activation of pro-inflammatory pathways can be fully pre-
vented by the concomitant administration of L. reuteri.

3.2 | Hippocampal ERS and autophagy

Inflammation, leading to the production of inflammatory
cytokines, could trigger ERS causing the accumulation of
misfolded and unfolded proteins.28,29 The strong inter-
play among metabolic dysfunction, inflammation and
ERS has been previously described.30 In particular, exces-
sive dietary fat or simple carbohydrate were reported to
contribute to ER stress in liver or pancreas.31 We there-
fore investigated whether WD-induced inflammation
triggers the activation of ERS in hippocampus and the
efficacy of L. reuteri in modulating this pathway. To this
aim, we assessed the level of ERS indicators, including
the degree of PERK and eIF2α phosphorylation, and the
amount of their downstream effector, the transcription
factor CHOP. Indeed, under condition of stress, the pro-
tein PERK undergoes dimerization and autophosphoryla-
tion; activated PERK phosphorylates the translation
initiation factor eIF2α, which, in turn, activates the tran-
scription of CHOP.29 The activation of PERK signaling
pathway, as evidenced by the increased p-PERK/PERK
and p-eIF2α/eIF2α ratios, and higher levels of CHOP was
induced in HFF rats, but this alteration was prevented by
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the concomitant administration of L. reuteri in HFFR rats
(Figure 2). These results revealed that western diet-
induced ERS in the hippocampus was counteracted by
probiotic administration.

Evidence has revealed ERS response as a potential
trigger for another major response pathway to cellular

stress, namely autophagy.32,33 As a matter of fact, the
transcription factor CHOP drives the expression of autop-
hagy proteins to initiate the formation of autophago-
somes.32 We therefore investigated whether diet-induced
ERS was also associated with activation of the autophagic
process in the rat hippocampus. To this aim, we assessed

FIGURE 1 Markers of neuroinflammation. Toll-like receptor 4 (TLR4) protein content (with representative blots, normalized to

controls) (A), phosphorylated NFkB/NFkB ratio (with representative blots, normalized to controls) (B), tumor necrosis factor alpha (TNF-α)
(C) and interleukin 6 (IL-6) (D) content, glial fibrillar acidic protein (GFAP) (with representative blots, normalized to controls) (C),

haptoglobin (Hpt) (F) and apolipoprotein E (ApoE) (with representative blots, normalized to controls) (G) protein content in hippocampus

from rats fed control diet (C), high fat fructose diet (HFF) and high fat fructose diet supplemented with Limosilactobacillus reuteri (HFFR).

Values are the means ± SEM of eight different rats. **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to C rats; #p < 0.05, ###p < 0.001,
####p < 0.0001 compared to HFF rats (one-way ANOVA followed by Bonferroni posttest).

6 MAZZOLI ET AL.
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the levels of beclin (Figure 3A,B; Supplementary
Figure 2), p62 (Figure 3C), and LC3-II (Figure 3D). As
shown in Figure 3A–D, a significant diet-related increase
of beclin, p62 and LC3-II was observed in the hippocam-
pus of HFF rats, and this increase was prevented by the
concomitant administration of L. reuteri in HFFR rats.
ERS is also highly intertwined with GSK pathway,34

whose activation was reported to be induced by ERS35

and is known to trigger autophagy.36 In line with these
observations, we detected a decreased inhibitory phos-
phorylation of GSK, that is greater activation, in western
diet-fed rats (Figure 3E), that was prevented by L. reuteri
treatment in HFFR rats.

These results indicated that the autophagic process
was activated in the hippocampus of western diet-fed
rats, and L. reuteri was effective in contrasting this
activation.

3.3 | Neuronal plasticity related proteins

As both neuroinflammation and ER stress are associated
with synaptic loss,37–39 we verified whether the protective
effect of L. reuteri was able to preserve hippocampal
expression of plasticity-related proteins. Indeed, we
observed that presynaptic and postsynaptic proteins,
namely synaptophysin and synaptotagmin I
(Figure 4A,B), and the postsynaptic protein PSD-95
(Figure 4C), respectively, with a key role in synaptic
plasticity,40 were reduced by the western diet (HFF) but
were preserved by L. reuteri administration (HFFR).

3.4 | Microbiota composition, SCFAs,
systemic inflammation and blood–brain
barrier

In order to investigate whether the hippocampal anti-
inflammatory action of L. reuteri could derive from
changes in gut microbiota, the specific composition of
gut bacteria species was assessed. Firmicutes, Bacteroi-
detes, and Verrucomicrobia were the most abundant spe-
cies in control rats (Figure 5A), in agreement with
previous studies.41 The western diet did not modify the
number of Firmicutes (Figure 5B) but induced a signifi-
cant decrease in the number of Bacteroidetes (Figure 5C),
with a consequent increase in the Firmicutes/Bacteroi-
detes ratio (F/B) (Figure 5D) in HFF rats, a known
marker of gut dysbiosis, associated with the development
of several pathologies.42 Of note, the probiotic adminis-
tration was not able to counteract the diet effect on the
gut microbiota composition. Indeed, the HFFR rats
showed a microbiota profile similar to that of HFF
rats (Figure 5A–D), thus ruling out the hypothesis that
the brain-protecting effect of L. reuteri could be mediated
by the reshaping of gut microbiota.

Different evidence reported the protective effect of
SCFAs on the brain, as provided by their direct action on
anti-inflammatory and anti-oxidative cellular pathways.43

The main SCFAs of gut bacterial origin, namely acetate,
propionate, and butyrate, were thus assessed in plasma
by a dedicated liquid chromatography-high resolution
mass spectrometry procedure to evaluate their possible
involvement in the protection of brain functions exerted

FIGURE 2 Markers of endoplasmic reticulum (ER) stress. Phosphorylated protein kinase RNA-like ER kinase (PERK)/PERK ratio

(with representative blots, normalized to controls) (A), phosphorylated eukaryotic initiation factor-2 (pEIF2)/EIF2 ratio (with representative

blots, normalized to controls) (B), C/EBP homologous protein (CHOP) content (with representative blots, normalized to controls) (C) in

hippocampus from rats fed control diet (C), high fat fructose diet (HFF) and high fat fructose diet supplemented with Limosilactobacillus

reuteri (HFFR). Values are the means ± SEM of eight different rats. **p < 0.01, ***p < 0.001 compared to C rats; #p < 0.05, ##p < 0.01

compared to HFF rats (one-way ANOVA followed by Bonferroni posttest). PERK and CHOP markers (panel B and C, respectively) were

from the same membrane, so the same actin is shown as loading control.
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by L. reuteri; no difference in plasma levels of acetate,
propionate and butyrate were found between the three
different groups (Figure 5E–G), emphasizing the absence
of a role of SCFAs in this phenomenon.

Probiotics are generally considered to exert an anti-
inflammatory activity, with an impact not only on the
gut but also on peripheral organs. In agreement,
L. reuteri proved to be effective in avoiding, in HFFR rats,
the western diet-induced metabolic endotoxemia and sys-
temic inflammation, characterized by increased plasma
levels of LPS, of pro-inflammatory cytokines TNF-α, IL-6
(Figure 6A–C), and of further inflammatory proteins Hpt
and lipocalin (Figure 6D,E), observed in the HFF
counterparts.

Western diet-induced systemic inflammation could
impact on hippocampal inflammation due to the alter-
ation of the blood–brain barrier (BBB). Indeed, high-fat
or cholesterol-enriched diets have been shown to disrupt
BBB.44,45 We therefore investigated brain concentration
of occludin and ZO-1, two tight junction proteins of the
BBB as well as the amount of cerebral IgG, whose leak-
age into the brain represents a marker of BBB permeabil-
ity alteration.46 No diet-induced alteration in BBB was
found, as the amounts of occludin, ZO-1, and IgG were
not significantly different between control and HFF rats
or HFFR rats (Figure 7A–C). These results proved that
the hippocampal inflammation observed in the HFF
group of rats was not related to alterations of BBB.

FIGURE 3 Markers of autophagy. Immunofluorescence representative images (A) with relative quantification (B) of beclin, p62 (C),

and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) (D) protein content (with representative blots, normalized to controls), and

phosphorylated glycogen synthase kinase (GSK)/GSK ratio (with representative blots, normalized to controls) (E), in hippocampus from rats

fed control diet (C), high fat fructose diet (HFF) and high fat fructose diet supplemented with Limosilactobacillus reuteri (HFFR). Values are

the means ± SEM of eight different rats. *p < 0.05, **p < 0.01, ****p < 0.0001 compared to C rats; #p < 0.05, ##p < 0.01, ####p < 0.0001

compared to HFF rats (one-way ANOVA followed by Bonferroni posttest).
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FIGURE 4 Synaptic proteins. Synaptophysin (A), synaptotagmin (B), and postsynaptic density protein 95 (PSD-95) (C) (with

representative blots, normalized to controls) in hippocampus from rats fed control diet (C), high fat fructose diet (HFF) and high fat fructose

diet supplemented with Limosilactobacillus reuteri (HFFR). Values are the means ± SEM of eight different rats. *p < 0.05, **p < 0.01,

***p < 0.001, compared to C rats; ##p < 0.01, ####p < 0.0001 compared to HFF rats (one-way ANOVA followed by Bonferroni posttest).

FIGURE 5 Gut microbiota and plasma short-chain fatty acids. Bar plots showing the fecal microbial composition at the phylum level

(A), Firmicutes and Bacteroidetes quantification (B,C), Firmicutes/Bacteroidetes ratio (D) plasma acetate (E), propionate (F), and butyrate

(G) in rats fed control diet (C), high fat fructose diet (HFF) and high fat fructose diet supplemented with Limosilactobacillus reuteri (HFFR).

Values are the means ± SEM of six different rats. *p < 0.05, **** p < 0.0001 compared to C rats (one-way ANOVA followed by Bonferroni

posttest).
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4 | DISCUSSION

Several studies indicate positive health benefits of Lacto-
bacillus supplementation on different organs,47 but little
research has focused on the potential activity of these
bacteria species in rescuing hippocampus alterations

induced by a nutritional insult such as a diet enriched in
fats and sugars.

We have recently reported the beneficial influence of
L. reuteri DSM 17938 on gut and liver impairment
induced by a western diet.16,17 In this study, we extended
our analysis to the hippocampus, elucidating the

FIGURE 6 Markers of plasma inflammation. Plasma levels of lipopolysaccharide (LPS) (A), tumor necrosis factor alpha (TNF-α) (B),
interleukin 6 (IL-6) (C), and haptoglobin (Hpt) (D) and lipocalin (E) (with representative blots, normalized to controls) protein content in

hippocampus from rats fed control diet (C), high fat fructose diet (HFF) and high fat fructose diet supplemented with Limosilactobacillus

reuteri (HFFR). Hpt and lipocalin abundance was normalized to total protein content, assessed by Ponceau S staining of the membrane prior

to immunodetection. Values are the means ± SEM of eight different rats. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to C

rats; #p < 0.05, ##p < 0.01, ###p < 0.001 compared to HFF rats (one-way ANOVA followed by Bonferroni posttest).

FIGURE 7 Markers of blood–brain barrier integrity. Occludin (A), ZO-1 (B), and immunoglobulin G (IgG) protein content (with

representative blots, normalized to controls) in hippocampus from rats fed control diet (C), high fat fructose diet (HFF) and high fat fructose

diet supplemented with Limosilactobacillus reuteri (HFFR). Values are the means ± SEM of eight different rats.
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beneficial impact of the probiotic L. reuteri on neuroin-
flammation and related pathways which is a common
stress target of a western diet regimen. In line with our
previous results,10,12 western dietary treatment induced
hippocampal inflammation, as assessed by the finding of
NFkB pathway activation, which is in turn responsible of
the increased levels of key inflammatory cytokines
namely TNF-α and IL-6, as well as of glial activation, evi-
denced by enhanced levels of GFAP. Our analysis was
also extended to protein players with key role not only in
modulation of inflammation but also in the regulation of
oxidative homeostasis48 or cholesterol metabolism,10

namely Hpt and ApoE, respectively. The probiotic
administration was able to prevent the rise of inflamma-
tory process, in agreement with a previous report show-
ing the efficacy of another lactobacillus against brain
inflammation induced by a western diet.49

Moreover, inflammation can also trigger ERS,28,29

which in turn activates downstream signaling pathways
leading to NFkB activation, with consequent amplifica-
tion of the inflammatory response.32 As a matter of fact,
we observed an increased degree of phosphorylation of
PERK, which is indicative of a condition of ERS31 in hip-
pocampus of HFF rats. Further, the activation of PERK
pathway was associated with higher phosphorylation of
its target protein elF2α, as well as by higher levels of the
transcription factor CHOP in HFF rats. Interestingly, we
also detected significantly higher levels of the autophagy-
related proteins beclin, p62 and LC3-II in HFF fed rats
respect to control animals. The activation of autophagy
response, which represents a major intracellular degrada-
tion system,32,33 is suggestive of a strong impairment of
ER homeostasis and function.32 In this frame, it is worth
mentioning that ERS and neuroinflammation influence
neuronal physiology, as they are associated with synaptic
loss, leading to altered neuronal plasticity and behav-
ior.38,39 Indeed, chronic PERK signaling is involved in
the repression of the expression of a synaptic proteins
cluster.38 Accordingly, we found decreased levels of
synaptophysin, synaptotagmin, and the postsynaptic pro-
tein PSD-95 in the hippocampus of HFF rats, confirming
that the western diet, through the neuroinflammatory
processes, compromises synaptic function and neural via-
bility. Although unbalanced diets and obesity were previ-
ously reported to be associated with ERS,50–52 to our
knowledge this is the first study showing the effects of a
western diet on the integrated activation of the major
response pathways related to stress in rat hippocampus
and, more importantly, the ability of L. reuteri DSM
17938 to avoid diet-induced inflammation as well as ERS
and autophagy.

The probiotic treatment in western diet fed animals
can impact health and wellbeing through different

routes. Considering the efficacy of L. reuteri in protecting
the hippocampus from the western diet-induced alter-
ations, several hypotheses can be formulated about its
mechanism of action in our experimental paradigm.
Given the potential effect of a probiotic administration
on gut microbiota composition and/or on metabolites of
bacterial origin such as SCFAs, our first speculation was
that L. reuteri could have modulated gut microbiota com-
position and/or production of SCFAs. From the analysis
of the microbiota, evidencing a condition of gut dysbiosis
induced by the western diet and not reverted by the pro-
biotic administration, we can discard the hypothesis that
enrichment in specific bacterial populations is involved
in the beneficial effect of L. reuteri. We then explored the
possibility that the L. reuteri administration was associ-
ated with changes of SCFAs level, but we did not detect
significant differences in serum levels of these com-
pounds in western diet-fed rats treated with L reuteri rats
compared to rats fed only the western diet. This is inter-
esting, because SCFAs, deriving from the fermentation of
indigestible fibers and represented mostly by butyrate,
propionate, and acetate,43 are known to have anti-
inflammatory properties43,53 and Lactobacillus is among
the microbiota species often related to increased levels of
SCFAs.53 These results let us to rule out that changes in
SCFAs levels are involved in the beneficial effect of
L. reuteri in our experimental model of diet-induced met-
abolic syndrome.

Although our results seem to be in contrast with a
large part of the scientific literature that mainly focuses
on the anti-inflammatory effects of probiotics in relation
to the induced change of SCFAs level, in the context of
the gut-brain axis, this study well agree with reports
evidencing that the probiotic efficacy and the underlying
mechanism can be highly dependent on experimental
diets used as well as the specific Lactobacillus strain.54

An alternative route of action arises from the fact that
the dysbiosis causes the development of endotoxemia,
due to an increase in intestinal barrier permeability
induced by the western diet that let the LPS produced by
Gram-negative bacteria to pass into the bloodstream, pro-
voking low grade chronic inflammation.55 This systemic
inflammation in turn can impact on brain, because the
increased concentration of molecular mediators of
inflammation (TNF-α or IL-6) in systemic blood drives
their increase also in the brain.56 Our data evidenced that
L. reuteri proved to be effective in preventing western
diet-induced metabolic endotoxemia, by decreasing the
level of LPS and systemic inflammation, as reduced levels
of cytokines and adipokines were observed, while we did
not find changes in the levels of occludin and ZO-1, as
well as in cerebral IgG, known markers of the integrity of
BBB, so allowing us to exclude that alteration of the BBB
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integrity is involved in the mechanism of action of
L. reuteri.

In the light of the above consideration, the scenario
that emerges from our data is that the lactobacillus strain
L. reuteri DSM 17938 may have its impact on hippocam-
pus regardless of its effect on the intestinal bacterial
populations or on the production of SCFAs. Indeed, the
results show that the beneficial impact on the brain may
directly depend on the probiotic-induced action on the
health of the intestinal barrier16 and reduced level of LPS
translocated into the blood. This in turn is reflected in
the reduced production of circulating inflammatory
mediators and their reduced passage in the
hippocampal area.

In conclusion, this study provides an overview of the
complex interplay between nutrition and the brain,
highlighting a different point of view about the impact
that diet and probiotics can exert on our health and well-
being, particularly in the context of diet-induced neuroin-
flammatory condition. Notably, we here show that
western diet-induced generation of systemic- and neu-
roinflammation, ER stress and autophagy, and synaptic
alterations in rat hippocampus, can be prevented by
L. reuteri administration, showing for the first time a

neuroprotective role of this specific probiotic strain
(Figure 8). On this basis, it can be envisioned that thera-
peutic strategies based on the use of L. reuteri DSM17938
might be beneficial in addressing and/or reversing meta-
bolic syndrome-mediated brain dysfunctions and cogni-
tive decline.
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