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Abstract—The problem of data privacy preservation is of
central importance in ride-sharing applications, because in order
to efficiently match passengers with vehicles, these services rely
on exact location information. Yet, transportation and location
data can reveal personal habits, preferences and behaviors, and
users may prefer not to share their exact location. Masking
location data in order to avoid the identification of users in case
of data leakage, and/or misusage would help protect user privacy,
but could also lead to poorer system performance, in terms of
efficiency and quality of service as perceived by users.

In this paper, we compare classic data masking techniques,
namely obfuscation, k-anonymity, and l-diversity, applied to users’
location data, before sending it to a carpooling system. While the
first two techniques use randomly generated points to mask the
actual location, l-diversity uses actual points of interest, having
the additional benefit of ensuring that the disclosed location is
always an accessible and safe pickup or drop-off location. Given
that users in a real ride-sharing system could choose to protect
or not protect their location data when using the system, we also
evaluate the effect of privacy preservation penetration rate, by
varying the percentage of users choosing to have their location
data protected. The results show that l-diversity performance is
better than the others’ even when the privacy penetration rate
is high, suggesting that this technique has the potential to meet
both users’ and system’s needs, and thus being a better option
to provide privacy within carpooling systems.

I. INTRODUCTION

Ride-sharing systems hold promise for improving the effi-
ciency of transportation and reducing congestion and pollution
by decreasing vehicle miles traveled (VMT). In order to
accurately match drivers and riders on systems like Uber-
Pool, WazeCarpool, and Lyft Share, at least riders’ origin,
destination, and departure time must be communicated to the
application. Ride-sharing applications usually require and/or
collect data from users, and store private information, such
as where and when users are going, how frequently and so
on. Mobile apps collect data to improve the services offered,
for location-based marketing, information or alerts, by means
of mechanisms like geofencing and geo-targeting [1], [2]. In
some countries, such data must be collected and retained (in
some cases, for extended periods) and reported to governmen-
tal or other authorities (e.g., [3]). Sometimes, companies might
share general use statistics, or may send user-identifying data
to third parties [4], [5]. To help users in protecting their privacy
and avoid their potential identification, masking location data

is in order. However, the loss of information could decrease
data utility (a metric usually related to the performance based
on the effectiveness of the underlying data) and lead to poor
quality or low efficiency of the location-based system [6], also
because the resulting masked location could be not accessible
for passengers’ pickup or drop off. Furthermore, even if the
resulting location point is accessible or if it has been adjusted
to be accessible, curbside passenger pickups/drop offs (PUDO)
could still endanger or congest traffic. For this reason, besides
adopting two well established methodologies to mask location
data, namely obfuscation [7], [8] and k-anonymity [9], [10],
we also implement l-diversity [11], [12]. In fact, by using real
Points of Interest (POIs) close to the real location instead of
random “close” locations, l-diversity could also be seen as an
option to alleviate curbside congestion, and an alternative to
create dedicated urban PUDO zones [13], as it is happening
in cities like Boston, San Francisco, and Washington DC.

The evaluation framework we propose here allows to com-
pare the number of shared miles that would be achieved
by optimally matching trips in a carpooling system using
users’ exact location information with those achieved through
anonymized data, and to quantify the average increment of
users’ waiting and riding time. This way, we are able to
understand the effects of location data-masking on ride-sharing
applications both in terms of system efficiency (VMT) and
Quality of Service (QoS) (users’ riding time and waiting
time). To understand the impact of users opting in or out
from location privacy within the same system, we also test
the sensitivity of its performance to the percentage of riders
requesting location data privacy preservation. In this study,
we specifically analyzed the case of carpooling between home
and work, which is the largest contributor to traffic congestion
and air pollution, but also because these regular trips have the
potential to reveal users’ repetitive route patterns and their
recurrent time schedules.

This paper is organized as follows: in the next Section we
review the related literature; in Section III we present the
evaluation framework and the techniques we adopt; in Sec-
tion IV we report the performance evaluation of the considered
approaches; Section V concludes the paper.



II. RELATED WORK

How mobility companies use data collected from users is
becoming a compelling issue for citizens, authorities, and com-
panies themselves. As data masking allows to avoid the identi-
fication of users in case of data leakage and/or misusage, these
techniques are becoming the answer to the increased request
for privacy protection. The simplest way to mask a location
position is by obfuscating it [7], randomly selecting a point in
a circled area centered on it. Similarly, cloaking [14] replaces
the real position with the location of the center (or centroid) of
the census block to which it belongs. More efficient methods
to mask location data have been inherited from the database
realm and reformulated for location-based services, such as k-
anonymity [9], [10], and differential privacy [15]. L-diversity
has been firstly proposed in [16] as a more efficient technique
than k-anonymity to protect location data privacy against
data breaches. The advantage of this technique is that the
masked location is chosen from a pool of actual POI positions,
instead of randomly generated ones. In [12], l-diversity is
used to protect activity data databases, while [11] analyzes its
efficiency in protecting location data when published on social
networks. When combined with other techniques, l-diversity
could be used to preserve trajectory data privacy from semantic
attacks [17], [18].

As for understanding the different impacts location data
privacy could have on mobility sharing applications, in [19]
the authors evaluated computational performance and commu-
nication overhead for ride matching algorithms; [20] analyzed
the impact of location data privacy on cybersecurity within a
ride sharing system, in case of external attacks or malicious
drivers’ behaviors; in [21], an extensive evaluation of the
effects of location privacy control on the mobility sharing
system performance, shows a potential tradeoff between data
location privacy and the “price” users, society, and the system
would pay to achieve it.

Some ride-sharing systems have studied methodologies to
mask users’ physical coordinates before they are sent to the
mobility sharing application [22], [23], while others provide
options for users to meet at a pickup point instead of providing
their real address [24], [25]. Recent approaches take advantage
of dedicated urban areas created for managing mobility sharing
curbside congestion, called PUDO zones [13].

In this paper, we show how the use of POIs as pickup/drop
off points could jointly meet users’ needs for privacy protec-
tion, safety and acceptable levels of QoS, and those of an
efficient carpooling system.

III. MODEL AND ALGORITHMS

In this Section we describe the framework we designed to
evaluate privacy preserving techniques within location-based
carpooling applications, providing details on the process of
matching trips, masking the location data, and evaluating the
performance of the system in terms of efficiency and QoS.

A. Trip Matching

Our evaluation model requires trip matching algorithms
efficient enough to be run several times with different pa-
rameter settings for each chosen data-masking algorithm. For
this reason, to find matching opportunities given riders’ and
drivers’ needs, we use the Shareability Network (SN) model,
presented for the first time in [26] for taxi rides, and refined
in [27] for carpooling applications.

In a carpooling SN, each node represents a trip, and an
edge between two nodes represents the fact that the trips
associated to these nodes are shareable. The trips in the SN are
shareable if and only if they satisfy three spatial and temporal
“shareability conditions”, related to users’ physical location
and destination, and users’ departure time and potential flex-
ibility. The first condition states that the required detour time
for the driver to pick the passenger up and drop them off
does not exceed a given threshold value. The second condition
ensures that the starting time windows of the trips are properly
overlapped, so that the driver could pickup and then drop off
the passenger. While this condition establishes the temporal
compatibility of the trips, it is not enough to ensure that
carpooling actually reduces VMT. In fact, it is possible that
the driver performs a very long detour to pickup or drop
off the passenger, thus actually increasing VMT. The third
shareability condition ensures that the length of the shared trip
is no longer than the sum of the lengths of the individual trips,
so to avoid the above described possible negative side effects
of shared mobility (see [27] for details). Depending on the
metric used and the objective to achieve (reduce kilometers,
time, number of vehicles, etc.), a specific weight on each edge
of the SN could be set; in this study, focused on VMT, the
weight on each edge between two nodes has been set to be
equal to the amount of kilometers that could be saved if the
correspondent trips are selected for the matching. Once the
SN has been generated, we compute the optimal trip matching
over it to maximize the overall saved VMT, by applying the
well known Edmond’s maximum weight matching algorithm.

B. Location Privacy

To anonymize location data and preserve users’ privacy, we
first implemented two classic data masking techniques, namely
obfuscation [7], [8] and k-anonymity [9], [10]. The former
consists in replacing the location data point with a randomly
selected one within a given radius from the original one, while
the latter selects the masked location from a set of k positions,
k − 1 randomly generated within a given radius from the
original position, plus the real location. One drawback of these
techniques is that the masked location could be not accessible
for pickup/drop off, and even if we overcome this problem by
providing the closest accessible location, this could still result
to be a problematic pickups/drop-off point and could somehow
endanger and/or congest traffic.
L–diversity [11], [12] is another well known data masking

technique, pretty similar to k-anonymity, with the difference
that instead of a random “generic” location point selected to
replace the original one, a random POI location is selected.
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Fig. 1: Example of the optimal matching over the exact Shareability Network (SN) and of a good matching over the privacy-preserving SN: (a) Network of
feasible shareable trips based on exact locations. (b) Optimized set of matched trips based on exact locations (optimal trip matchings indicated by curved,
dashed lines). (c) The SN obtained by masking trip locations. In this case, trips T3 and T7 are determined to be not shareable (false negative) while T6 and
T7 are determined to be shareable (false positive), when compared to the exact network (as shown in (b)). (d) Trip matching over the privacy-preserving SN.
Good matches (bold, dashed lines) are trips selected for the matching over the privacy-preserving SN but not included in the one over the exact SN because
not optimal. By selecting the good matches T3-T6 and T7-T8, we only measure a lower efficiency in the privacy-preserving matching, since the good matches
would not optimize the system goal.

More specifically, a close POI is selected among l randomly
selected POIs, located within a given radius from the exact
location. This technique not only provides location anonymity,
but has the additional benefit, unlike other methodologies, of
ensuring that the disclosed location is always an accessible
and safe pickup or drop-off location.

C. Key Performance Indicators

To evaluate system efficiency and QoS, we need to know
how the system performs in terms of saved VMT, users’ riding
time, and users’ waiting time, both with and without applying
any masking technique to users’ location data. We compute the
optimal trip matching solution for the exact SN, derived from
the real location data, and, for each masking methodology, the
optimal trip matching solution for the privacy-preserving SN,
generated using the masked data. Our evaluation methodology
consists in comparing both the exact and privacy-preserving
SNs, and the corresponding optimal trip matchings, by identi-
fying specific Key Performance Indicators (KPI). In particular,
by comparing the two SNs we are able to identify those trips
incorrectly selected as shareable (false positive), and those

incorrectly labeled as not shareable (false negative) in the
privacy-preserving SN, due to the inexact location information.
By comparing the optimal matching over the exact SN and the
optimal matching over the privacy-preserving SN, we are able
to quantify how many true positive and false positive shareable
trips are actually selected when matching trips in the latter
(called Good Matches and Bad Matches, respectively), and
how the presence of good and bad matches could degrade
the performance in terms of VMT and users’ waiting and
riding time. In fact, by selecting good matches in the privacy-
preserving matching we could measure a lower efficiency with
respect to the optimal matching over the exact SN, since the
good matches would not optimize the system goal of reducing
total VMT, while by selecting bad matches in the privacy-
preserving matching, i.e. trips that are not shareable in the
exact SN but selected and matched in the privacy-preserving
SN because of the anonymized locations, could degrade both
system efficiency (VMT) and QoS (users’ waiting and riding
time). In Figures 1 and 2 we report an example of an exact and
a privacy-preserving SN and their corresponding optimal trip
matchings, in case only good matches are selected (Figure 1),



Fig. 2: Example of a “bad matching” (on the right) over the privacy-preserving
SN compared to the exact SN (on the left). The SN (straight lines) and
matching (dashed lines) for the exact data on the left, and for the privacy-
preserving data on the right. Some of the selected links for the matching in
the latter are false positive (light dotted lines), i.e. not present in the exact SN.
Bad matches (namely T2 − T3, T4 − T9, T6 − T7, and T8 − T10) are trips
that are not shareable in the exact SN but selected in the privacy-preserving
SN because of the anonymized locations, degrading system efficiency QoS in
the matching.

and in case both good and bad matches are selected (Figure 2).

IV. PERFORMANCE EVALUATION

A. Data

To evaluate efficiency and QoS, we needed a dataset con-
taining not only users’ location data and departure times, but
also their flexibility. To this end, we use the data collected
through the MobilitandoPisa survey issued in 2016 to people
living and/or working in Pisa, Italy, and its surroundings [28].
This survey data contains detailed information on origins and
destinations of daily car commuters and their departure and
arrival times from home to work and vice versa. It also has
the unique feature of containing a quantification of commuter’s
flexibility in departure and arrival time, allowing us to define a
departure time window for each trip, and evaluate the effects of
data privacy on users’ waiting time. We checked and cleaned
the survey entries to remove invalid or incomplete ones, ending
up with a total of 1966 trips.

B. Simulation settings

To build the SNs given trips’ origin and destination, both
with and without data-masking, we need to know trips’ travel
times; on this regard, we used OpenStreetMap [29] travel times
for free-flow traffic. A different SN is computed for each value
of detour time within the set [0, 1, ..., 15] minutes. As for the
masking techniques, after analyzing the data and discovering
that there are a limited number of POIs within short distance
of many trip locations, we chose a 500 meters radius for all
the techniques, and set l = 5 POIs for l-diversity and k = 5
for k-anonymity. As for the penetration rate, we varied the
percentage of users opting in for privacy preservation from
10% to 100%, in steps of 10%.

For each system configuration, namely by setting the data-
masking algorithm (when used) and the percentage of users
opting in, and the allowed detour time, we ran 10 instances
of the matching algorithm, and averaged the results.

C. Results

Without using any privacy preservation technique, the max-
imum kilometers saved with the trip matching over the exact
SN is 8,658 km with an allowed detour time of 5 minutes,
10,590 km with an allowed detour time of 10 minutes, and
11,135 km with an allowed detour time of 15 minutes. These
are the savings achievable by optimally matching the trips
over the exact SN, compared to having all the trips driven
separately, i.e. without trip matching, which accounts for a
total of 28,708 traveled km. In Figure 3 we report the average
saved distance achievable with the trip matching computed
over the privacy-preserving SN, expressed as a percentage of
the saved distance achievable with the optimal trip matching
over the exact SN, built on the real location data. Each
sub-figure reports the results for the three privacy-preserving
methodologies we have analyzed, while varying the percentage
of users opting in from 10% to 100%, allowing three different
values for the detour time: 5, 10 and 15 minutes. The experi-
mental results confirm the intuition that more privacy implies
lower efficiency. They clearly show that whenever users have
a low tolerance for detour time (see Figure 3 (a)), the overall
saved distance of the system is much lower compared to
that of the optimal matching computed on the real data,
and the efficiency degrades even more when more users
opt into privacy. In fact, due to privacy preservation, users’
locations have been anonymized, and it could happen that the
shareability condition designed to reduce total travel distance
is not actually optimized (in presence of good matches) and/or
satisfied (in presence of bad matches). Increasing the allowable
detour time up to 15 minutes (Figure 3 (c)) results in much less
sensitivity to people opting into privacy, and higher savings. In
comparing the efficiency degradation of the methodologies we
adopted, l-diversity performs slightly better than k-anonymity
and obfuscation, showing to have the best VMT savings, even
with 100% of users opting into privacy.

Table I reports the effects of privacy-preservation on k-
anonymity and l-diversity performance, with different allow-
able detour times. This table reports the overall percentage
of bad matches and the relative percentage of those violating
each particular constraint, namely exceeding: the allowable
detour time, the allowable waiting time, and the distance that
would be required for performing the matched trips as “solo”
trips. To show the efficiency degradation we report the number
of kilometers saved by matching the trips with no privacy
preservation and those saved by applying the specific location
privacy preservation technique, while to show QoS degradation
we report the average extra detour and waiting time. Obfusca-
tion results, being pretty similar to the k-anonimity ones, are
not reported here. The percentage of total bad matches is quite
high when the allowable detour time is low, with failure of the
detour time constraint contributing to the majority of the bad



10 20 30 40 50 60 70 80 90 100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

% of users opting in

av
g 

%
 o

f t
ot

al
 k

m
 sa

ve
d

total km saved

Obfuscation 500m K-Anonymity 500m, k=5 L-Diversity

(a) Detour time allowed 5’. Values are expressed
as a percentage relative to the maximum savings
of 8,658 km without privacy.
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(b) Detour time allowed 10’. Values are expressed
as a percentage of the maximum savings of 10,590
km without privacy.
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(c) Detour time allowed 15’. Values are expressed
as a percentage of the maximum savings of 11,135
km without privacy.

Fig. 3: Saved distance achievable with the trip matching computed over the privacy-preserving SN, expressed as a percentage of the saved distance of the
optimal matching over the exact SN. Here we report the saved distance varying the percentage of users opting-in, and different values of allowed detour
time of (a) 5, (b) 10, and (c) 15 minutes. For each detour time value, we report the amount of saved kilometers of the optimal matching over the exact SN
compared to having all the trips driven separately, which accounts for a total of 28,708 traveled km.

Methodology Metric Allowable Detour Time
5’ 10’ 15’

l-diversity

Bad Matches (%)
Total 26.1 7.8 4.6
Due to detour time constraint 92.3 55.7 27.4
Due to time windows constraint 3.5 10.4 18.2
Due to saved distance constraint 13.0 38.8 59.3
Saved kilometers (km)
With no privacy 8,658 10,590 11,135
With 100% privacy 5,396 9,374 10,345
Average extra time (minutes)
Detour time 2.3 2.7 2.4
Waiting time 1.0 1.0 1.0

k-anonymity

Bad Matches (%)
Total 28.4 9.2 6.7
Due to detour time constraint 89.9 42.2 15.8
Due to time windows constraint 4.1 11.3 16.2
Due to saved distance constraint 20.9 55.8 73.2
Saved kilometers (km)
With no privacy 8,658 10,590 11,135
With 100% privacy 4,762 9,108 10,133
Average extra time (minutes)
Detour time 2.5 3.0 4.4
Waiting time 1.0 1.2 1.1

TABLE I: L-diversity and k-anonymity: percentage of matched trips on the privacy-preserving SN violating at least one shareability constraint compared to the
matching on the exact SN. The results reported here are for 100% of users opting-in. Note that because multiple constraints may be violated simultaneously,
the sum of the three percentages (detour time, time windows, and saved distance) may exceed 100%.

matches. With low values of allowed detour time, the fraction
of bad matches is quite high primarily because matched trips
cannot comply with the acceptable detour time constraint. This
not only has an impact on saved VMT, but also on users’ travel
time (Detour time on Table I). In increasing the allowed detour,
l-diversity maintains the average extra detour time pretty stable
and a low waiting time.

Increasing the allowable detour time reduces the number of
badly matched trips while having a negligible impact on the
average extra detour time required to share these trips. Even if
the relative percentage of bad matches due to non-overlapping
time windows for the shared trips slightly increases, the
average extra waiting time is quite stable for all the techniques.

These results show that the majority of performance loss
comes at the expense of VMT and users’ travel time.

V. CONCLUSION

In ride-sharing applications, the problem of privacy preser-
vation is of central importance since to match drivers and
riders, at least their origin, destination, and departure time
must be communicated to the system. On the one hand,
anonymizing location data to avoid the identification of users
in case of data leakage, misuse and/or breaches increases
user privacy; on the other hand, the loss of accurate location
information could lead to poor quality or lower efficiency of



the mobility system, and raise safety issues as well if the
masked location is not (easily) accessible.

In this paper, we studied the impact of location masking
techniques on the ride sharing system performance by varying
the percentage of users opting in, and not only in terms
of efficiency (saved VMT), but also in terms of QoS, as
perceived by the user (riding and waiting time, accessible
PUDO locations). Our results clearly show that the higher is
the privacy protection penetration rate, i.e. more users opting
in for privacy preservation, the more the efficiency degrades,
with lower effects if users allow for higher detour times. On
the other hand, the more the user is willing to spend longer
time in the vehicle (longer allowable detour time), the less the
efficiency is compromised, and vice versa. This could be used
by the (private or public) stakeholder in the decision-making
process in order to effectively pursue the overall system goal.

Moreover, the results reported here show that l-diversity
performs better than the other methodologies, even when the
privacy penetration rate is high, with lower saved VMT losses
and users’ riding and waiting extra time. The results, combined
with the fact that l-diversity provides accessible and safe
PUDO locations by definition, suggest that this technique has
the potential to meet both users’ and system’s needs, being a
better option to provide privacy within carpooling systems.
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