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Double excitations in molecules from ensemble density functionals: Theory and approximations
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Double excitations, which are dominated by a Slater determinant with both electrons in the highest occu-
pied molecular orbital promoted to the lowest unoccupied orbital(s), pose significant challenges for low-cost
electronic structure calculations based on density-functional theory (DFT). Here, we demonstrate that recent
advances in ensemble DFT [Gould et al., Phys. Rev. Lett. 125, 233001 (2020)], which extend concepts of ground-
state DFT to excited states via a rigorous physical framework based on the ensemble fluctuation-dissipation
theorem, can be used to shed light on the double-excitation problem. We find that the exchange physics of
double excitations is reproducible by standard DFT approximations using a linear combination formula, but
correlations are more complex. In passing, to analyze correlation, we extend the random-phase approximation
to ensembles. We then show, using selected test systems, that standard DFT approximations may be adapted to
tackle double excitations based on theoretically motivated simple formulas that employ ensemble extensions of
expressions that use the on-top pair density.
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I. INTRODUCTION

Within molecular orbital theory, a double excitation refers
to a many-electron state that is dominated by a doubly excited
Slater determinant [1]. This definition somewhat depends on
the single-particle basis being used as a reference, but it is
sufficiently evocative to point out that this type of excitation
entails a double challenge for present-day low-cost electronic
structure methodologies based on density-functional theory
(DFT).

DFT [2,3] is exact in principle but almost always approxi-
mated in practice using exchange-correlation energy models.
Still, sophisticated density-functional approximations (DFAs)
are sufficiently accurate to power many studies of ground
states due to an excellent quality to cost ratio [4,5]. The first
challenge for double excitations is that, unlike some triplets
which may be regarded as a naturally “constrained” ground
state [6], doubly excited target states must be lowest in energy
and orthogonal to both the actual ground state and any lower
excited singlet. This places them beyond the reach of ground-
state functional forms. DFT’s time-dependent counterpart [7]
(TDDFT) does provide a theoretically rigorous way to deal
with excitations. However, the second challenge for double
excitations is that their prediction using TDDFT requires a
highly nontrivial frequency dependence in the “kernel” DFA,
which is extremely difficult to obtain in practice [8–10]. In
contrast, ensemble DFT for excited states (EDFT) [11–13] has
shown promise in model double excitations [14–17] and as
a useful framework for wave-function-based methodologies
[18–21].
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In this paper, we employ recent theory advances con-
cerning the structure of exact ensemble functionals [22–26]
with the goal of building a high-quality general-purpose
ensemble DFA (EDFA) that can predict double-excitation en-
ergies. First, we show that exact ensemble exchange (“x”)
expressions acquire unexpected forms on double excitations.
Importantly, our analysis reveals that exchange can be tack-
led via straightforward reuse of standard DFAs. Second, we
extend the random-phase approximation (RPA) to ensembles
to scrutinize limitations of existing correlation (“c”) DFAs
and to provide a strategy to reuse them. Third, we put to-
gether all the gained insights to generate approximations for
the overall ensemble “Hxc” as a functional of the ensemble
particle density and, explicitly, of the corresponding ensemble
on-top pair-correlation function. Last, we demonstrate that
EDFAs based on these results are competitive against promi-
nent wave-function-based alternatives.

II. ENSEMBLE DENSITY-FUNCTIONAL THEORY

We begin by listing the singlet states |Sk〉 we are interested
in: a ground state |S0〉, a singly excited state |S1〉, and a
doubly excited state |S2〉 [27]. We mix these three states in
an ensemble,

�̂ =wS0 |S0〉〈S0| + wS1 |S1〉〈S1| + wS2 |S2〉〈S2|, (1)

whose average energy E[v] = min�̂ Tr[�̂(T̂ + Ŵ + v̂)] =
wS0 ES0 + wS1 ES1 + wS2 ES2 can be determined variationally
for any weights obeying wS0 � wS1 � wS2 � 0 [11]. Here,
T̂ is the kinetic-energy operator, Ŵ is the electron-electron-
interaction operator, and v̂ = ∫

v(r)n̂(r)dr is the external-
potential operator defined using the density operator n̂. Note
that Eq. (1) easily generalizes to ensembles mixing degenerate
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states, where an essential general condition is to work with
totally symmetric ensembles [28]. Note further that single-
and double-excitation energies of the system can be computed
by varying the weights, e.g., ES2 = ∂wS2

E .
We may equivalently write, analogous to conventional

DFT,

E[n] = Ts[n] + EHx[n] + Ec[n] +
∫

n(r)v(r)dr, (2)

where Ts, EHx, and Ec are the ensemble Kohn-Sham (KS)
kinetic-energy, Hartree-exchange (“Hx”), and correlation den-
sity functionals, respectively. Note the dependence of the
functional on the ensemble weights is implicit in the use of
the calligraphic letters. In the following we further shorten our
notation by dropping the obvious dependence on the ensemble
particle density n.

As usual, the KS potential is given by

vs(r) ≡ v(r) + δEHx

δn(r)
+ δEc

δn(r)
. (3)

Because we work with totally symmetric ensembles, vs

(Eq. (3) or generalizations [29]) has the same symmetry as the
external potential v. Thus, the corresponding single-particle
states are not only automatically orthogonal to each other but
also symmetry adapted [28].

Our goal in this work is to devise DFAs for EHx and Ec

that are accurate for double excitations. To this end, let us
first recall the ansatz-free definitions of these functionals [23]:
Ts = F0, EHx = limλ→0+ Fλ−Ts

λ
, and Ec = F1 − Ts − EHx

[24]. Here, we introduced the universal functional Fλ[n] =
min�̂w→n Tr[�̂w(T̂ + λŴ )], which adiabatically connects the
noninteracting (λ = 0, |Ss,k〉) and interacting (λ = 1, |Sk〉)
limits [30].

A major advantage of EDFT over DFT is that the ensem-
ble KS states are noninteracting configuration-state functions
(CSFs) rather than single Slater determinants [23], i.e., min-
imal linear combinations of Slater determinants which are
symmetry adapted with respect to both spin and spatial de-
grees of freedom [31]. Thus, interacting and KS states can be
labeled by the same quantum numbers. For our initial example
[see Eq. (1)] we obtain

�̂s =wS0 |Ss,0〉〈Ss,0| + wS1 |Ss,1〉〈Ss,1| + wS2 |Ss,2〉〈Ss,2|, (4)

with |Ss,0〉 := |[c2]h2〉 for the ground state; |Ss,1〉 :=
1√
2
(|[c2]h↑l↓〉 − |[c2]h↓l↑〉) for the state produced via a sin-

gle excitation, h → l , from the highest occupied molecular
orbital (HOMO) h to the lowest unoccupied molecular orbital
(LUMO) l; and |Ss,2〉 := |[c2]l2〉 as the double excitation on
h → l . Here, [c2] ≡ 12 · · · (h − 1)2.

We stress that spin-restricted orbitals, φi↑ = φi↓, are a di-
rect consequence of preserving symmetries within the EDFT
formalism [23,28]. They appear because Eq. (3) preserves
both spatial and spin symmetries even in states (e.g., doublets
or triplets) that are usually treated by unrestricted orbitals
(UKS). One may say that a restricted KS (RKS) formalism
is used throughout. But it is more appropriate to say that a
symmetry-adapted KS formalism is used throughout.

In fact, the symmetry adaptation is even more comprehen-
sive. Not only are the single-particle orbitals spin orbitals,

but the many-particle KS states |Ss,k〉 are proper (multide-
terminant) spin eigenstates (singlets, triplets, etc). Symmetry
adaptation is also useful to deal with the structure of the
multiplets related to the spatial degrees of freedom: we use
this feature later when we study Be and BH. Thus, the KS
states |Ss,k〉 have a transparent and direct spectroscopical
meaning with well-defined quantum numbers and appropri-
ate degeneracies. The employed symmetry-adapted formalism
outperformed both UKS DFT and TDDFT in predicting single
excitations [32]. In O2, for example, the error in predicted
triplet-singlet energy gaps using symmetry-adapted EDFT
was reduced by a quarter from a similar UKS-based difference
of self-consistent field (�SCF) calculation.

We then use Eq. (4) to obtain ensemble kinetic and Hartree-
exchange energies [23],

Ts = Tr[�̂sT̂ ] =
2∑

k=0

wSk 〈Ss,k|T̂ |Ss,k〉, (5)

EHx = Tr[�̂sŴ ] =
2∑

k=0

wSk 〈Ss,k|Ŵ |Ss,k〉, (6)

where both involve sums over the weighted contributions of
KS-CSFs. EHx is thereby free from spurious self- and ghost
interactions. But it represents a conjoint “Hx,” which makes
it difficult to reuse standard-exchange (“x”)-DFAs directly.
For example, the PBE0 hybrid functional approximation
[33] sets EPBE0

Hxc := EH + 0.25EHF
x + 0.75EPBE

x + EPBE
c =

EHx + 0.75(EPBE
x − EHF

x ) + EPBE
c using Hartree-Fock

(HF) exchange, with Perdew-Burke-Ernzerhof (PBE) [34]
exchange and correlation DFA.

Recently, a fluctuation-dissipation theorem (FDT) was ex-
tended and used to further resolve EHx := EFDT

H + EFDT
x into

“H” and “x” energy expressions that are compatible with
existing DFAs [25]. The same extension also offers insights
into correlations, discussed further below. The key arguments
of Ref. [25] may be summarized as follows: (i) DFAs work
because they capture universal and essential features of pair
correlations; (ii) one way to “ensemblize” these pair correla-
tions from first principles is via the density-density response
function χ of the ensemble; (iii) the KS response χs allows
us to define EFDT

x in a way which is formally consistent with
existing “x”-DFA. EFDT

H then includes all the remaining CSF
terms, while state-driven correlation [24] can be handled by
relating the KS to the interacting response function.

III. APPROXIMATIONS FOR EXCHANGE ENERGIES

Using the above principles, we obtain EFDT
H :=∑

kk′ min(wSk ,wSk′ )
∫

drdr′
2|r−r′|n

SkSk′
s (r)nSk′ Sk

s (r′), with nSkSk′
s :=

〈Ss,k|n̂|Ss,k′ 〉, for the “H” functional and

EFDT
x := − 1

2

∑
i j

fmax(i, j)(i j| ji) (7)

for “x,” where the expression given above is a conve-
nient corollary of a result from Ref. [25] that is derived
in Appendix A. Here, fi = ∑

k wSk θ
Sk
i are the average oc-

cupations of the orbital φi, with occupation θ
Sk
i ∈ {0, 1, 2}

in state Sk . This gives fc = 2 for all core (c < h) orbitals,
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fh = 2wS0 + wS1 for the HOMO, and fl = wS1 + 2wS2 for
the LUMO. (i j|kl ) := ∫

drdr′
|r−r′|φi(r)φ j (r′)φk (r)φl (r′) and real-

valued orbitals are used throughout this work.
Therefore, as a first step to work out a useful approximation

we may use the disjointed “x” to obtain

EPBE0
Hx := EHx + 0.75

(
EPBE

x − EFDT
x

)
. (8)

The details may, of course, be varied to cover other DFA,
including range-separated hybrids. The next crucial step is to
break EFDT

x := ∑
k wkEFDT

x,Sk
into individual state contributions

so that we can replace exact “x” expressions by existing “x”-
DFA expressions. For this important task, we follow Fromager
[26] to rigorously define

EFDT
x,Sk

:=∂EFDT
x

∂wSk

= −1

2

∑
i j

θ
Sk
max(i, j)(i j| ji), (9)

where we used fmax(i, j) = ∑
k wSk θ

Sk
max(i, j) in Eq. (7) to de-

rive the second expression. Note that applying the same
principle to Eqs. (5) and (6) yields Ts,Sk = 〈Ss,k|T̂ |Ss,k〉 =∑

i fi
∫

1
2 |∇φi|2dr and EHx,Sk = 〈Ss,k|Ŵ |Ss,k〉, as expected.

We expand on EHx,Sk below, near Eq. (12).
It follows from (9) that EFDT

x,S0
= −∑

i, j∈{c,h}(i j| ji) ≡ EHF
x,S0

adopts its conventional HF form for the ground state, by
construction [25]. Further algebraic manipulation of the above
equations (Appendix B) yields

EFDT
x,S1

=EHF
x,T0

, EFDT
x,S2

=2EHF
x,T0

− EHF
x,S0

�= EHF
x,S2

, (10)

where both are defined in terms of conventional HF “x”
energies for lowest-energy singlets, EHF

x,S0
, and triplets,

EHF
x,T0

= 〈[c2]h↑l↑|Ŵ |[c2]h↑l↑〉 = 〈[c2]h↓l↓|Ŵ |[c2]h↓l↓〉 =
− 1

2 [
∑

i, j∈{c,h,l}(i j| ji) + ∑
i, j∈{c}(i j| ji)]. Importantly, both

Ex,S0/T0 have existing DFA counterparts. Also note that
the corresponding “H” energies, EFDT

H,Sk
:= ∂wSk

EFDT
H =

∂wSk
[
∑

k wSk EHF
H,Sk

+ (wS1 + wS2 )EST], involve EHF
H,Sk

:=∫
drdr′
|r−r′|n

SkSk
s (r)nSkSk

s (r′) and EST := 2(hl|lh) (Appendix B).

Thus, EFDT
H,S1/S2

= EHF
H,S1/S2

+ EST contain the singlet-triplet
splitting terms EST that are absent in EFDT

x,S1/S2
but required by

EHx,Sk = 〈Ss,k|Ŵ |Ss,k〉 = EFDT
H,Sk

+ EFDT
x,Sk

.
Equation (10) states two key results of this work. The

first expression shows that single excitations have the same
exchange formula, regardless of spin character (S1 vs any
of T0); this result was previously used successfully [32], but
without derivation. The second expression is specific to this
work and highlights the importance of ansatz-free procedures.
Despite |S2〉 being a single Slater determinant, the FDT “x” of
the lowest double excitation is not the same as HF “x” energy.
Rather, it is equivalent to the ground-state HF “x” of two times
a triplet minus a singlet.

Finally, using Eq. (10) in Eq. (8) yields EDFA
Hx :=

EHx + ᾱ[(wS0 − wS2 )(EDFA
x,S0

− EHF
x,S0

) + (wS1 + 2wS2 )(EDFA
x,T0

−
EHF

x,T0
)] for the “Hx” part of general hybrids (Appendix B),

where ᾱ = 1 − α is the complement to the Fock exchange
fraction α. The above analysis means we can now reuse any
existing EDFA

x,S0/T0
in EDFA

Hx . Previous work on single excitations
successfully assumed [32] that EDFA

c,Sk
and EDFA

x,Sk
obey the same

combination laws. If we extend this to double excitations, we

TABLE I. (Pair) coefficients for “x” and “Hx” with different de-
generacies Dl of the LUMO. Here, fh = 2wS0 + wS1 , fl = wS1 +2wS2

Dl
are equal for all LUMO, and Flh = Fhl . Note, “arb.” (arbitrary) means
the result applies to any value of Dl .

State Dl Example fh fl F J
hh F J

hl F J
ll F K

hh F K
hl F K

ll

S0 arb. all molecules 2 0 4 0 0 −2 0 0
S1 arb. all molecules 1 1

Dl
1 fl fl −1 fl − fl

S2 1 CH2 0 2 0 0 4 0 0 −2
S2 2 BH 0 1 0 0 1

2 0 0 0

S2 3 Be 0 2
3 0 0 1

5 0 0 1
15

then obtain an “Hxc” functional,

EDFA
Hxc := EHx + (

wS0 − wS2

)[
ᾱ
(
EDFA

x,S0
− EHF

x,S0

) + EDFA
c,S0

]
+ (

wS1 + 2wS2 )
[
ᾱ
(
EDFA

x,T0
− EHF

x,T0

) + EDFA
c,T0

]
. (11)

We revisit the extension below.
The above results can also be generalized to systems with

Dl -fold-degenerate LUMOs, such as Be, using ensembles of
the form �̂ = wS0 |S0〉〈S0| + wS1 �̂S1 + wS2 �̂S2 , where �̂S1 and
�̂S2 are ensembles that average over an equal mixture of all
degenerate excited states, to yield densities and effective po-
tentials that preserve fundamental spatial symmetries [28]. In
general,

EHx,Sk := 1

2

∑
i j

[
F J,Sk

i j (i j|i j) + F K,Sk
i j (i j| ji)

]
, (12)

and EFDT
x,Sk

:= − 1
2

∑
i j f Sk

max(i, j)(i j| ji), where F J
i j = fi f j and

F K
i j = − 1

2 F J
i j except for pairs hh, hlq, lqh, lqlq′ involving the

HOMO h and/or one of the LUMOs lq. Values for F J/K,Sk and
f Sk are reported in Table I and derived in Appendix B.

Although Eq. (11) is only slightly more complex than its
ground-state equivalent, evaluating it self-consistently for real
molecular systems is much more difficult than the ground-
state problem for practical reasons outlined in Ref. [29] and
because of errors introduced by density-driven correlations
[24], which come from a failure to properly account for differ-
ences between KS and interacting excited-state densities. To
obtain the present results, we (i) set wS1 = 0 in all calculations
to restrict them to mixtures of only ground and doubly excited
states [35], (ii) optimize orbitals (mostly) via minimization
over unitary transformations [29], and (iii) use the extrapola-
tion procedure described in Ref. [32] to approximately remove
density-driven correlation errors [24]. Full details are given in
Appendix C.

Figure 1 shows errors, �EEDFA
S2

− �E ref
S2

, in the resulting
EDFA double-excitation energies, �ES2 := ES2 − ES0 , of Be
(where S2 is fivefold degenerate), CH2, BH (twofold degener-
ate), and nitroxyl (ONH). Reference data are from Ref. [1] (Be
and nitroxyl) and full-configuration-interaction (FCI) results
(CH2 and BH) computed for this work. Energies are evaluated
using Eq. (11) for PBE [34] (red, α = 0) and PBE0 [33]
(yellow, α = 0.25). Gaps using the range-separated hybrid
functional ωB97X [36] (teal) and hybrid functional Becke
three-parameter Lee-Yang-Parr (B3LYP; purple) [37] are of
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FIG. 1. Excitation energy gaps (in eV) for the double excitation
of Be, CH2, BH, and nitroxyl computed using FDT-derived PBE
energy expressions [using Eq. (11)] with (PBE, red; PBE0, yellow;
ωB97x, teal; and B3LYP, purple) and without (xPBEα , navy) cor-
relations included. The dotted line is the benchmark value, and the
shaded gray area indicates error bars for BH and CH2.

slightly worse quality. Further technical details are given in
Appendix C. Despite the rigorous theory behind the “Hx”
components in Eq. (11), the results are uninspiring. This
stands in contrast to the success of similar ensemblized DFA
in predicting triplet and single excitations [32].

To understand why energies are so poor we first per-
form “x”-only PBE0-like [labeled xPBE0α and defined via
Eq. (11) with Ec = 0, navy] calculations to investigate the
contribution of exchange to the error. Two points are no-
table: (i) “x”-only FDT results depend only weakly on α,
and the variation is larger with stronger correlations, which
suggests that exchange physics is treated correctly at the
density-functional level. (ii) Ensemble HF theory (xPBE1) is
rather accurate for Be, CH2, and BH, suggesting that cor-
relations cancel out in these systems, unlike in the DFA.
Nitroxyl has strongly correlated ground and excited states,
so both failures and a wider variation of xPBE are expected.
We therefore conclude that “x”-DFA (here, PBE) are reli-
able and that the error comes primarily from the correlation
functional.

IV. APPROXIMATIONS FOR CORRELATION ENERGIES

As a natural next step, we seek to replicate the success
of EFDT

x by using the FDT [38] to tackle Ec. Exact eval-
uation is impossible in general, so we instead invoke the
RPA [38–42] that has found widespread success in modeling
difficult ground states [40–42] and in providing constraints
for popular DFAs for correlation [43,44]. We ensemblize the
RPA by using the same KS ensemble density-density response

FIG. 2. RPA correlation-energy gap ERPA
c ( fl ) − ERPA

c (0) (eV)
versus fl for Be, BH, and CH2. Computed values are shown as dots,
while lines show extrapolated values using the same relationship as
exchange (dashed lines: brown, Be; maroon, BH; and olive, CH2)
and via a quadratic fit (solid lines).

function used to derive Eq. (7) [25],

χ̂s(iω) =
∑

i j

( fi − f j )(εi − ε j )

(εi − ε j )2 + ω2
ρ̂iρ̂ j, (13)

ERPA
c :=

∫ ∞

0

dω

2π
Tr[ln(1 − χ̂sŴ ) + χ̂sŴ ]. (14)

Equation (14) thereby inherits an explicit dependence on the
ensemble via the occupation factors { fi}. Here, εi is the KS
eigenvalue of orbital i; Tr and ln indicate operator trace and
logarithm, and Tr[ρ̂iŴ ρ̂ j] = (i j| ji). Using (13) in (14) yields
well-defined energies for 0 � fl = wS1 + 2wS2 � 1 and fh =
2 − fl = 2wS0 + wS1 (note that fl > 1 leads to negative values
in the logarithm). Details of RPA calculations are given in
Appendix D.

Note that the frequency dependence in Eq. (14) is aver-
aged within an integration, rather than appearing pointwise as
in the key linear-response TDDFT equations for excitations.
This fact, together with explicit inclusion of double-excitation
effects in the ensemble response function χ̂s, overcomes
memory-related issues [8] by letting us extend the RPA to
double excitations, as below.

Figure 2 shows the ensemble RPA correlation energies of
Be, BH, and CH2 (dots; we exclude nitroxyl because of its
strong correlations) as a function of fl � 1. However, we are
interested in the contribution to the double-excitation gap,
Ec,S2 − Ec,S0 ≈ ERPA

c ( fl = 2) − ERPA
c ( fl = 0), which requires

extending results to fl = 2, here done by fitting and extrap-
olating. A linear fit (shown in Fig. 2) between fl = 0 and
fl = 1 yields Ec,S2 = 2Ec,S1 − Ec,S0 , which we recognize as
the correlation-energy contribution from Eq. (11). However, it
also reveals substantial curvature in the computed (0 � fl �
1) values. We thus also show a quadratic fit, the simplest
model that can capture the curvature, to also extend results
to fl = 2. Self-interaction errors [45–47] in the open-shell
excitations mean RPA correlation gaps are not quantitative.
Nonetheless, we do expect RPA to offer useful qualitative
insights into the structure of Ec as weights are varied, e.g.,
as wS2 → 1 ( fl → 2).

The most important revelation of Fig. 2 is that the fl = 2
correlation energy from the (more accurate) quadratic extrap-
olation is significantly lower than the linear fit in all cases. We
therefore expect that at least some of the overestimation of
correlation energies comes from assuming [in Eq. (11)] that
an exact relationship [Eq. (10)] for exchange also applies to
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FIG. 3. PBE and PBE0 errors in double-excitation energies using Eq. (11) (red and yellow, respectively) and Eq. (17) (blue and orange).
EOM-CCSD (green) and EOM-CC3 (magenta) results are also included for reference. Numbers indicate “off-graph” values.

correlations, whereas the RPA reveals it does not. That is,

EDFA
c,S1

≈ EDFA
c,T0

, EDFA
c,S2

�≈ 2EDFA
c,T0

− EDFA
c,S0

, (15)

where ≈ indicates that any additional ensemble errors are
likely to be similar in magnitude to typical DFA errors,
whereas �≈ indicates that they are likely to be larger.

To improve approximations for correlation energies, we
exploit this insight from the RPA. To begin, let us con-
sider a formal device which was used by Becke, Savin, and
Stoll (BSS) [48] to generate a local-density approximation
(LDA) that could preserve the degeneracy of multiplets. They
replaced the spin polarization ζ = |n↑−n↓|

n in the regular spin-
dependent LDA by a function of the on-top (ot) pair density
ζ → ζ ot (more below) in an otherwise spinless (restricted)
theory. Specifically, they used the exact relationship ζ =
ζ ot :=

√
1 − 2PHx/n2 for a single Slater determinant, where

PHx is the KS on-top pair density. This result was elegantly
further justified in Ref. [49] as a consistent way to escape
the symmetry dilemma in spin-unrestricted DFT calculations.
Crucially, we show that ζ ot can also be exploited to mimic
the correction which is required to improve RPA-inspired
correlation energies for double excitations.

Next, let us tailor the BSS replacement for ensembles:
(i) use PFDT

Hx,S0
= n2

S0
+ PFDT

x,S0
in ground states to rewrite ζ ot =

[−2PFDT
x /n2 − 1]1/2 for general states, (ii) write Eq. (7)

as
∫

nFDT
2,x (r, r′) drdr′

2|r−r′| to obtain −PFDT
x (r) = −nFDT

2,x (r, r) =∑
i j fmax(i, j)ni(r)n j (r), where ni = |φi|2 is the density of or-

bital i, and (iii) obtain

ζ ot(r) =
[ ∑

i j (2 fmax(i, j) − fi f j )ni(r)n j (r)
] 1

2∑
i fini(r)

. (16)

By inspection, one sees that (16) reproduces the usual results
for nondegenerate ground states (ζ ot = 0), doublets (ζ ot

D0
=

nh
n ), and single excitations and triplets (ζ ot

S1
= ζ ot

T0
= nh+nl

n ).
Thus, Eq. (16) gives “out-of-the-box” DFA results for sin-
gular, doublet, and triplet ground states. Importantly, unlike
other formulas that are equivalent in ground states, fi � 2
ensures that Eq. (16) is always real and so does not require
further adjustment to accommodate negative values in the
square root, e.g., Eq. (11) of Ref. [50].

An additional complication arises in the case of a double
excitation between nondegenerate HOMOs and LUMOs. For
regions where the “core” orbital densities are small (nc<h �
nh, nl ) we obtain ζ ot

S2
≈ √

2nh/nl by using fh = 0 and fl = 2
for the double excitation. When nh(r) ≈ nl (r), this yields a

value of ζ ot ≈ √
2 > 1. A degenerate LUMO can also yield

ζ ot > 1 in single excitations. As a final step toward utilizing
Eq. (16) in approximations we therefore need a way to extend
existing DFA to ζ > 1. One formula that achieves this is

E (ζ̃ ot )
Hxc := EDFA

Hx +
2∑

k=0

wSk EDFA(ζ̃ ot )
c,Sk

, (17)

where EDFA(ζ̃ ot )
c,Sk

:= ∫
drnSkSk

s εDFA
c (nSkSk

s ,∇nSkSk
s , ζ̃ ot

Sk
) uses a

heuristic model ζ̃ ot := min(ζ ot, [ζ ot]−1) � 1 for the effective
polarization. Equation (17) is constructed to reproduce out-
of-the-box DFA energies for ground states (ζ ot = ζ̃ ot � 1).
Crucially, it also mimics the downward curvature of RPA
correlation energies for fl → 2 (ζ ot > 1, ζ̃ ot < 1) and thus en-
sures that correlation energies for double excitations become
more like ζ → 0.

Figure 3 compares results using Eq. (17) against results us-
ing Eq. (11). We see that the new formula, denoted DFA(ζ̃ ot ),
substantially improves on Eq. (11) in all cases. Except for Be,
Eq. (17) also outperforms both equation-of-motion (EOM)
coupled-cluster with single and double excitations (CCSD)
calculations [51] and CC3 [52]. Thus, the improved model of
correlations fixes the most egregious failures of ensemblized
DFT and produces reasonable results. Technical details are
given in Appendix E.

Before concluding, we briefly address the prototypical
“difficult case” of double excitations in dissociating H2

[8–10,53–55]. Specifically, we study the transition formed by
double promotion of the lowest σ orbital to the first unoccu-
pied σ orbital. These two orbitals are a gerade-ungerade pair:
φσg → 1√

2
[φ1s,L + φ1s,R] and φσu → 1√

2
[φ1s,L − φ1s,R], where

→ indicates the dissociation (large distance, D → ∞) limit
and φ1s,L and φ1s,R indicate 1s orbitals on the left and right
H atoms. Analytic expressions may be obtained for large D
and yield a double-excitation gap energy of 1

2 − 1/D Ha. The
dissociation (D → ∞) gap is thus 13.6 eV.

Figure 4 compares dissociation curves for σ states com-
puted using EDFT against exact FCI calculations. It reveals
that, like the H2 ground state [25] and despite strong corre-
lations, both PBE and PBE(ζ̃ ot ) reproduce the correct −1/D
asymptotic behavior, albeit with an underestimated limit. In-
clusion of FDT exchange in PBE0 worsens results by reducing
both the effective charge and the asymptotic gap. Ensemble
Hartree-Fock theory is even worse, predicting a zero gap for
D → ∞. Full details are given in Appendix F.
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FIG. 4. H2 σg → σu double-excitation gap using FCI (black), HF
(navy), PBE (red), PBE0 (yellow), PBE(ζ̃ ot ) (blue), and PBE0(ζ̃ ot )
(orange). Dots show the dissociation gap.

V. CONCLUSIONS

In conclusion, we presented a formal and practical ensem-
ble density-functional approach to double excitations. First,
we showed that a rigorous exact-exchange-energy expression
for double excitations is equivalent to that of two triplets
minus a singlet [Eq. (10)]; this counterintuitive result enables
practical reuse of standard exchange-only DFAs. In a sec-
ond, nontrivial step, we then showed that the corresponding
correlation requires additional sophistication. Guided by first
principles, we developed an ensemble extension of the RPA
expression, which inspired a practical approximation based on
the on-top pair density [Eq. (17)], thus overcoming a natural
yet inconsistent guess [Eq. (11)].

Results using the EDFAs developed here are already useful
for the difficult and varied double excitations studied. Fu-
ture work should improve our understanding of how on-top
pair densities affect correlations, so that we can devise even
better ways to ensemblize conventional DFAs and deal with
excited-state correlations. Tests should also be extended to
larger systems.

Our results do not apply directly to the solid state due
to complexities in their ensemble treatment. They also do
not apply directly to systems that are subject to an applied
magnetic field or spin-orbit interactions. But the combi-
nation formula follows directly from foundational theories
(variational principles [23,24,26], group properties [28], and
fluctuation-dissipation theorems [25]), which may be ex-
tended to a larger class of systems. A first step toward solving
these problems would be to derive the necessary analogs of
the Gross-Oliveira-Kohn theorems [11,12].
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APPENDIX A: DENSITY-DENSITY RESPONSE AND
EXCHANGE FORMULAS

Before beginning the technical analysis, let us revise some
of the key features of ensemble density-functional theory
(EDFT). As with regular Kohn-Sham (KS) density-functional
theory (DFT), EDFT uses the ensemble density as the fun-
damental variable. But again, as in regular DFT, the key
ensemble density functionals Ts[n] and EHx[n] are orbital
functionals that are implicit functionals of the density and

whose form depends explicitly on a set of orbitals {φi} and on
the states that are included in the ensemble. Ts[n] is minimized
for orbitals obeying the ensemble KS equations,{ − 1

2∇2 + vs[n](r)
}
φi(r) = εiφi(r), (A1)

which serve the same role as in conventional pure-state DFT
and which implicitly define the effective KS potential vs via
the minimization. Here and throughout, we shall assume the
orbitals are real and proscribed for mathematical convenience.

At this level, the key difference between EDFT and pure-
state DFT is that the KS states |�s,k〉 are not necessarily
single Slater determinants but can be configuration-state func-
tions (CSFs) formed on small sets of Slater determinants
that are degenerate on the KS Hamiltonian, Ĥλ=0 = T̂ +∫

n(r)v̂s(r)dr. Whether it is a single Slater determinant or
a CSF, each of these KS states has well-defined occupation
factors θ

�s,k

i , so that its density is n�s,k = 〈�s,k|n̂|�s,k〉 =∑
i θ

�s,k

i |φi|2. The ensemble density n = Tr[�̂sn̂], with �̂s =∑
k wk|�s,k〉〈�s,k|, is then

n(r) =
∑

k

wkn�s,k =
∑

k

wk

∑
i

θ
�s,k

i φ2
i :=

∑
i

fiφ
2
i , (A2)

where fi = ∑
k wkθ

�s,k

i is the average occupation factor of
orbital φi.

Therefore, the density of the system is determined uniquely
by vs and fi. The average occupation factors fi are de-
termined uniquely by the form of the ensemble. In the
nondegenerate case �̂s = wS0 |Ss,0〉〈Ss,0| + wS1 |Ss,1〉〈Ss,1| +
wS2 |Ss,2〉〈Ss,2|, considered in the main text, we have

fi<h =2, fh = 2wS0 + wS1 , fl = wS1 + 2wS2 , fi>l = 0,

(A3)

which we can find by recognizing the (i) all considered states
have doubly occupied “core” (i < h) orbitals, (ii) the ground
state |Ss,0〉 (with weight wS0 ) has two electrons in the highest
occupied molecular orbital (HOMO) h and none in the low-
est unoccupied molecular orbital (LUMO) l , (iii) the single
excitation |Ss,1〉 (wS1 ) has one HOMO and one LUMO, and
(iv) the double excitation |Ss,2〉 (wS2 ) has two LUMOs and
no HOMOs. Taking the weighted average gives Eq. (A3). We
shall now restrict ourselves to this type of ensemble or, where
appropriate, generalizations that are required by degeneracies.

The ensemble “Hx” energy is defined as

EHx =Tr[�̂sŴ ] =
∑

k

wSk 〈Ss,k|Ŵ |Ss,k〉, (A4)

which formally [23] determines the valid CSFs used in the
density but does not change the occupation factors fi. Next,
using the fluctuation-dissipation theorem extended to passive
states, we can split “Hx” into an “H” and an “x” [25]. “H” has
the compact form

EFDT
H =

∑
kk′

min
(
wSk ,wSk′

) ∫
drdr′

2|r − r′|
× 〈Ss,k|n̂(r)|Ss,k′ 〉〈Ss,k′ |n̂(r′)|Ss,k〉 (A5)

but may be more conveniently defined as the difference of
“Hx” and “x.” Therefore, here, we summarize and revisit the
expression for only the “x” functional.
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Equation (11) of Ref. [25] defines

EFDT
x := −

∫
drdr′

2|r − r′|
[∫

χs(r, r′; iω)
dω

π
+ n(r)δ(r − r′)

]
,

(A6)

so we see that the “x” functional depends on the ensemble
density-density response χs of a Kohn-Sham system with
density n(r) = ∑

i fi|φi(r)|2. The response may be written as

χs(r, r′; iω) :=2Re
∑

i

fiφ
∗
i (r)Gi(r, r′; iω)φi(r′) (A7)

in terms of the Green’s function,

Gi(r, r′) =
∑

j

φ j (r)φ∗
j (r′)

(εi − ε j ) + iω
, (A8)

obeying {− 1
2∇2 + vs(r) + ε − iω}Gi(r, r′; iω) = δ(r − r′).

We may, without loss of generality, assume real orbitals φi

to obtain

χs =
∑

i j

2 fiρi(r, r′)ρ j (r′, r)
(εi − ε j )

(εi − ε j )2 + ω2

=
∑

i j

( fi − f j )
(εi − ε j )

(εi − ε j )2 + ω2
ρi(r, r′)ρ j (r′, r), (A9)

which is equivalent to Eq. (7) of the main text; the second ex-
pression comes from writing 2

∑
i j Xi j = ∑

i j (Xi j + Xji ) and
using ρi(r, r′) := φi(r)φi(r′). We can use (A9) in (A6) to write

EFDT
x = −

∑
i j

∫ ∞

0−

( fi − f j )(εi − ε j )

(εi − ε j )2 + ω2

dω

2π
(i j| ji)

−
∫

n(r)δ(r − r′)
drdr′

2|r − r′| , (A10)

where (i j|kl ) := ∫
φi(r)φ j (r′)φk (r)φl (r′) drdr′

|r−r′| , as in the main
text.

Next, note that
∫ ∞

0−
dω
π

�
�2+ω2 = 1

2 sgn(�), where sgn(�) =
{−1,� < 0; 0,� = 0; 1,� > 0} is a sign function. Then,

EFDT
x := −

∑
i j

( fi − f j )
sgn(εi − ε j )

2

(i j| ji)

2

−
∑

i j

fi + f j

2

(i j| ji)

2
, (A11)

where we also used completeness of the orbitals to obtain
δ(r − r′) = ∑

j ρ j (r, r′), which we used to write 1
2 n(r)δ(r −

r′) = 1
2

∑
i j fiρi(r, r′)ρ j (r, r′) = 1

2

∑
i j f jρi(r, r′)ρ j (r, r′).

Last, we can assume a nondegenerate ordered system (εi >

ε j for i > j) to write sgn(εi − ε j ) = sgn(i − j). Then,

EFDT
x = − 1

2

∑
i j

[
fi − f j

2
sgn(i − j) + fi + f j

2

]
(i j| ji)

= − 1

2

∑
i j

fmax(i, j)(i j| ji). (A12)

We finally note that any equiensemble over degenerate states
also obeys Eq. (A12) because fi = f j when εi = ε j . Thus, the
above result also applies to equiensembles.

APPENDIX B: EXPRESSIONS FOR NONDEGENERATE
AND DEGENERATE DOUBLE EXCITATIONS

Before beginning, we note that all discussion in this Ap-
pendix assumes a fixed set of orbitals φi and a restricted
formalism φi↑ = φi↓. In this sense, the discussion considers
the nature of restricted orbital functionals, rather than den-
sity functionals. Some form of (approximate) self-consistency
cycles is required to determine the values of the orbitals, as
described in Appendix C 2.

All systems we consider here have a nondegenerate ground
state. Using

EFDT
x,Sk

:=∂EFDT
x

∂wSk

= −1

2

∑
i j

θ
Sk
max(i, j)(i j| ji), (B1)

which was introduced as Eq. (9) in the main text, yields

EFDT
x,S0

= −
∑

i, j∈{c,h}
(i j| ji) = EHF

x,S0
= 〈[c2]h2|Ŵ |[c2]h2〉 (B2)

[[c]2 ≡ 12 · · · (h − 1)2], which follows trivially from the fact
that θ

S0
max(i, j) = 2 = 1

2θ
S0
i θ

S0
j for all i and j being occupied and

is zero otherwise. We remind the reader that

EHF
x,� = − 1

4

∑
σ

∑
i j

θ�
iσ θ�

jσ (i j| ji), (B3)

where � indicates a Slater determinant and θ�
iσ ∈ {0, 1} in-

dicates the occupation factor of orbital i with spin σ in
Slater-determinant state |�〉. Using |�S0〉 = |[c2]h2〉, |�T0〉 =
|[c2]h↑l↑〉, and |�S2〉 = |[c]2l2〉 yields nonzero occupa-
tion factors: θ

S0
i↑ = θ

S0
i↓ = 1 ∀i � h, θ

T0
i↑ = 1 ∀i � l and θ

T0
i↓ =

1 ∀i < h, and θ
S2
i↑ = θ

S2
i↓ = 1 ∀i < h, i = l .

We next consider the “H” energy expression,

EFDT
H =

∑
kk′

min
(
wSk ,wSk′

)
EH

[
nSkSk′

s

]

=
∑
kk′

wSmax(k,k′ )
EH

[
nSkSk′

s

]

=
∑

k

wSk

{
EH

[
nSkSk

s

] + 2
∑
k′<k

EH
[
nSkSk′

s

]}
,

where (see main text and Ref. [25])

EH
[
nSkSk′

s

]
:=

∫
drdr

2|r − r′|nSkSk′
s (r)nSkSk′

s (r′), (B4)

nSkSk′
s :=〈Ss,k|n̂|Ss,k′ 〉, (B5)

and the latter expressions use the ensemble condition wSk �
wSk′ for k > k′. Then,

EFDT
H,Sk

=EFDT
H

∂wSk

= EHF
H,Sk

+ 2
∑
k′<k

EH
[
nSkSk′

s

]
, (B6)

where we introduced the shorthand

EHF
H,Sk

:= EH
[
nSkSk

s

] = 1

2

∑
i j

θ
Sk
i θ

Sk
j (i j|i j). (B7)

It follows trivially from S0 being the lowest-energy state that
EFDT

H,S0
= EHF

H,S0
.
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For completeness, we also note that

EHx,Sk = EHx

∂wSk

= ∂

∂wSk

∑
k

wSk 〈Ss,k|Ŵ |Ss,k′ 〉

=〈Ss,k|Ŵ |Ss,k′ 〉. (B8)

In the following we discuss the excited-state “x” energies for
nondegenerate and some degenerate excited states. We shall
also discuss “H” and “Hx” for the nondegenerate case.

1. Nondegenerate LUMO

Consider a nondegenerate single excitation, for which
θ

S1
i∈{c} = 2 and θ

S1
h = θ

S1
l = 1 (all unspecified occupation fac-

tors here and henceforth are zero). We then obtain θ
S1
max(i, j) = 2

if i, j ∈ {c} or θ
S1
max(i, j) = 1 for all other combinations of occu-

pied orbitals. By splitting the sum over core-core interactions
we obtain

EFDT
x,S1

= − 1

2

∑
i, j∈{c}

(i j| ji) − 1

2

∑
i, j∈{c,h,l}

(i j| ji) = EHF
x,T0

, (B9)

where the expression EHF
x,T0

= 〈[c2]h↑l↑|Ŵ |[c2]h↑l↑〉 =
〈[c2]h↓l↓|Ŵ |[c2]h↓l↓〉 is the same one that would be obtained
for a triplet with core orbitals c with ↓ spin and core, HOMO,
and LUMO with ↑ spin, i.e., θ

T0
i∈{c,h,l}↑ = 1 and θ

T0
i∈{c}↓ = 1.

The double excitation involves θc = 2, θh = 0, and θl = 2.
We may then write

EFDT
x,S2

= − 1

2

∑
i, j

θ
S2
max(i, j)(i j| ji)

= −
∑

i, j∈{c}
(i j| ji) − 2

∑
i∈{c}

(il|li) − [2(hl|lh) + (ll|ll )]

(B10)

using θ
S2
max(h,l ) = θ

S2
l = 2. It then follows that

2EHF
x,T0

− EHF
x,S0

= −
∑

i, j∈{c}
(i j| ji) −

∑
i, j∈{c,h,l}

(i j| ji)

+
∑

i, j∈{c,h}
(i j| ji)

= −
∑

i, j∈{c}
(i j| ji) − 2

∑
i∈{c}, j∈{h,l}

(i j| ji)

− [(hh|hh) + 2(hl|lh) + (ll|ll )]

+ 2
∑
i∈{c}

(ih|hi) + (hh|hh)

= −
∑

i, j∈{c}
(i j| ji) − 2

∑
i∈{c}

(il|li) − [2(hl|lh)

+ (ll|ll )] ≡ EFDT
x,S2

. (B11)

Note, however, that

EHF
x,S2

= −
∑

i j∈{c,l}
(i j| ji) = EFDT

x,S2
− 2(hl|lh) �= EFDT

x,S2
. (B12)

This is a surprising result since |Ss,2〉 is a single Slater determi-
nant and we might therefore expect it to have a Hartree-Fock
“x” energy, whereas we instead find EFDT

x,S2
�= EHF

x,S2
.

The above result for the double excitation also follows
directly from Eq. (2) of the main text without algebra. Show-
ing this involves first recognizing that fh = 2wS0 + wS1 and
fl = wS1 + 2wS2 in general and that exchange depends on
only occupation factors. We next recognize that the same fh

and fl are attained from ensembles with w = (wS0 ,wS1 ,wS2 )
and w′ = (wS0 − wS2 ,wS1 + 2wS2 , 0). Therefore, both must
yield the same exchange-energy expression, EFDT

x = (wS0 −
wS2 )EHF

x,S0
+ (wS1 + 2wS2 )EHF

x,T0
. Finally, taking the derivative

with respect to wS2 yields EFDT
x,S2

= 2EHF
x,T0

− EHF
x,S0

. We recall
that we are concerned with the form of orbital functionals
here and treat orbitals as fixed—self-consistency would lead
to different orbital inputs and different energies for different
choices of ensemble weights.

To evaluate “H,” we require nSkSk′
s for k′ < k for use in

Eq. (B6). They are

nS1S0
s =

√
2φhφl = nS2S1

s , nS2S0
s =0, (B13)

which we found by applying the Slater-Condon rules
to |Ss,0〉 = |[c2]h2〉, |Ss,1〉 = 1√

2
[|[c2]h↑l↓〉 − |[c2]h↓l↑〉] and

|Ss,2〉 = |[c2]l2〉. Therefore,

2EH
[
nS1S0

s

] =2EH
[
nS2S1

s

] = 2(hl|lh), (B14)

which we recognize as the singlet-triplet splitting energy,
EST := EHx,S1 − EHx,T0 = 2(hl|lh). It follows from Eq. (B6)
that

EFDT
H,S1

=EHF
H,S1

+ EST = EHF
H,T0

+ EST, (B15)

EFDT
H,S2

=EHF
H,S2

+ EST, (B16)

where we used EHF
H,S1

= EHF
H,T0

since both KS states have the
same density. Importantly, the FDT assigns EST to “H” rather
than “x” for both single and double excitations.

Let us now briefly address “Hx.” By definition, EHx,S1 =
〈Ss,1|Ŵ |Ss,1〉 = EHx,T0 + EST = EHF

H,T0
+ EHF

x,T0
+ EST. Since

|Ss,2〉 is already a single Slater determinant, we also
obtain EHx,S2 = 〈Ss,2|Ŵ |Ss,2〉 = EHF

H,S2
+ EHF

x,S2
. Scrutiny

of Eq. (B11) reveals that EFDT
x,S2

is the same as EHF
x,S2

,
except for the −2(hl|lh) = −EST term, and thus,
EHF

x,S2
= 2EHF

x,T0
− EHF

x,S0
+ EST. Therefore,

EHx,S1 =EHF
H,T0

+ EHF
x,T0

+ EST = [
EHF

H,T0
+ EST

] + EHF
x,T0

=EFDT
H,S1

+ EFDT
x,S1

, (B17)

EHx,S2 =EHF
H,S2

+ EHF
x,S2

= EHF
H,S2

+ [
2EHF

x,T0
− EHF

x,S0
+ EST

]
=[

EHF
H,S2

+ EST
] + [

2EHF
x,T0

− EHF
x,S0

]
=EFDT

H,S2
+ EFDT

x,S2
, (B18)

and we see that the sums are indeed correct.
Finally, we use the above results to write the “Hx” part of

a hybrid. First, we recognize that a general pure-state DFA
or hybrid DFA may be written as EDFA

Hx = EHx + ᾱ[EDFA
x −

EHF
x ], where ᾱ = 1 − α is the complement to the Fock mixing
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fraction α. We next assume that

EDFA
Hx = EHx + ᾱ

[
EDFA

x − EFDT
x

]
(B19)

is the appropriate “ensemblization.” With a KS ensemble,
�̂s = ∑2

k=0 wSk |Ss,k〉〈Ss,k|, we use the results derived in this
Appendix to obtain

EFDT
x =wS0 EFDT

x,S0
+ wS1 EFDT

x,S1
+ wS2 EFDT

x,S2

=wS0 EHF
x,S0

+ wS1 EHF
x,T0

+ wS2

[
2EHF

x,T0
− EHF

x,S0

]
=(

wS0 − wS2

)
EHF

x,S0
+ (

wS1 + 2wS2

)
EHF

x,T0
. (B20)

Since our goal is to reuse standard DFA wherever possible, we
next define

EDFA
x =(

wS0 − wS2

)
EDFA

x,S0
+ (

wS1 + 2wS2

)
EDFA

x,T0
(B21)

in the same way. Finally, we obtain

EDFA
Hx = EHx + ᾱ

[(
wS0 − wS2

)(
EDFA

x,S0
− EHF

x,S0

)
+ (

wS1 + 2wS2

)(
EDFA

x,T0
− EHF

x,T0

)]
, (B22)

which is the equation in the main text and is defined using
ensemble EHx and well-known quantities and their approx-
imations from pure-state DFT. We may also generalize to
range-separated hybrid DFAs (rsDFAs; e.g., ωB97X [36]) by
writing

E rsDFA
Hx := EHx + ᾱ

[
EDFA

x − EFDT
x

] + β
[
EDFA(ω)

x − EFDT(ω)
x

]
(B23)

= EHx + (
wS0 − wS2

)[
ᾱ
(
EDFA

x,S0
− EHF

x,S0

) + β
(
EDFA(ω)

x,S0

− EHF(ω)
x,S0

)] + (
wS1 + 2wS2

)[
ᾱ
(
EDFA

x,T0
− EHF

x,T0

)
+β

(
EDFA(ω)

x,T0
− EHF(ω)

x,T0

)]
, (B24)

where (ω) denotes a short-range interaction with parameter ω

and β is the weight on short-range interactions. Note that EFDT
H,Sk

are never required to determine EDFA
Hx , so we do not discuss

them in the following degenerate cases.

2. Two- and threefold-degenerate LUMOs

The above expressions are not appropriate for single or
double excitations into a degenerate LUMO. For this, we need
to consider all possible single or double excitations and then
average over the set. This yields the energy expressions

EHx,Sk :=1

2

∑
i j

[
F J,Sk

i j (i j|i j) + F K,Sk
i j (i j| ji)

]
, (B25)

EFDT
x,Sk

:= − 1

2

∑
i j

f Sk
max(i, j)(i j| ji), (B26)

where F J
i j = fi f j and F K

i j = − 1
2 F J

i j except for pairs
hh, hlq, lqh, lqlq′ involving the HOMO h and/or one of
the LUMOs lq. Values for F J/K,Sk

hl and f Sk
h/l are reported in

Table I for LUMOs with up to threefold-degenerate LUMOs,
i.e., for Dl � 3, where Dl is the LUMO degeneracy factor.

The first row of Table I may be obtained by recognizing
that the ground state is completely independent of the LUMO,
so its degeneracy can have no effect on the energy expressions.
Therefore, F J

hl = F K
hl = F J

ll = F K
ll = 0 is independent of Dl .

The second row is a little more difficult to obtain but can be
derived without resorting to equations by recognizing that (i)
each combination hlq has the same energy, (ii) each combina-
tion hlq is weighted by 1

Dl
, and (iii) all coefficients involving a

LUMO are therefore linear in fl = 1
Dl

. Since this result must
also hold for Dl = 1 and fl = 1, we get the listed coefficients.
The nondegenerate double excitation described in the third
row may be represented by a single Slater determinant with
θc = θl = 2 and θh = 0, so it takes its expected form. Next we
derive the final two rows for two- and threefold-degenerate
LUMOs.

A twofold-degenerate LUMO, induced by cylindri-
cal symmetry, can yield three singlet states: |Sl2,D〉 ∈
{|l1l2〉, |l1l1〉, |l2l2〉}, where the notation refers to which of the
two (l1 or l2) degenerate orbitals is occupied in the singlet
state. All states give the same kinetic energy, external energy,
and core-LUMO energy.

We may thus obtain the ensemble “Hx” energy [23] by
finding the lowest eigenvalues of

[W ]DD′ =〈Sl2,D|Ŵ |Sl2,D′ 〉. (B27)

Ignoring core contributions, which are the same in all cases,
yields

W =
⎛
⎝(l1l2|l1l2) + (l1l2|l2l1) 0 0

0 (l1l1|l1l1) (l1l2|l2l1)
0 (l1l2|l2l1) (l2l2|l2l2)

⎞
⎠

(B28)

after using the Slater-Condon rules. Then, we can use
(l1l1|l1l1) = (l2l2|l2l2) = (l1l2|l1l2) + 2(l1l2|l2l1) (from sym-
metry) to show that the lowest eigenvalue W1 = W2 =
(l1l2|l1l2) + (l1l2|l2l1) of W is twofold degenerate, while the
third is W3 = (l1l2|l1l2) + 3(l1l2|l2l1). In terms of CSFs, we
thus obtain twofold-degenerate double-excitation states:

|S2,1〉 = 1√
2

(|[c2]l↑
1 l↓

2 〉 − |[c2]l↓
1 l↑

2 〉), (B29)

|S2,2〉 = 1√
2

(|[c2]l↑
1 l↓

1 〉 − |[c2]l↓
2 l↑

2 〉). (B30)

Both l1 and l2 are equally occupied in these states, giving fl1 =
fl2 ≡ fl = 1.

The “Hx” energy is equal to the lowest eigenvalue, i.e.,

EHx,S2 =W1 = W2 = (l1l2|l1l2) + (l1l2|l2l1), (B31)

which is also equal to EHx,S2 = 1
2

∑
pq[F J

lplq
(pq|pq) +

F K
lplq

(pq|qp)]. However, because of the symmetry, neither

F J nor F K can depend on our choice of lp and lq. Thus, we
seek to find F J and F K in

EHx,S2 = (l1l2|l1l2) + (l1l2|l2l1)

= 1

2

∑
pq∈{1,2}

[F J (lplq|lplq) + F K (lplq|lqlp)]

= F J [(l1l1|l1l1) + (l1l2|l1l2)]

+ F K [(l1l1|l1l1) + (l1l2|l2l1)]

= F J [2(l1l2|l1l2) + 2(l1l2|l2l1)]
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FIG. 5. FCI energies (eV) for CH2 (left) and BH (right) shown as a function of the inverse cube of the size of the active space (values
are shown on the x ticks). Solid lines are a linear fit to the data, and dashed lines indicate the value extrapolated to the complete-basis-set
(NA → ∞) limit.

+ F K [(l1l2|l1l2) + 3(l1l2|l2l1)]

= (2F J + F K )(l1l2|l1l2) + (2F J + 3F K )(l1l2|l2l1),

(B32)

where we again used (l1l1|l1l1) = (l1l2|l1l2) + 2(l1l2|l2l1) and
invariance to permutations of l1 and l2. Solving for F J and F K

in 2F J + F K = 1 and 2F J + 3F K = 1 finally yields F J = 1
2

and F K = 0.
Similar reasoning applied to a threefold-degenerate LUMO

gives

|S2,1〉 = 1√
2

(|[c2]l↑
1 l↓

2 〉 − |[c2]l↓
1 l↑

2 〉), (B33)

|S2,2〉 = 1√
2

(|[c2]l↑
1 l↓

3 〉 − |[c2]l↓
1 l↑

3 〉), (B34)

|S2,3〉 = 1√
2

(|[c2]l↑
2 l↓

3 〉 − |[c2]l↓
2 l↑

3 〉), (B35)

and

|S2,4〉 = 1√
2

(|[c2]l↑
1 l↓

1 〉 − |[c2]l↓
2 l↑

2 〉), (B36)

|S2,5〉 = 1√
6

(2|[c2]l↑
3 l↓

3 〉 − |[c2]l↑
1 l↓

1 〉 − |[c2]l↓
2 l↑

2 〉) (B37)

for the fivefold-degenerate double excitation (equivalent to the
d orbitals), all with WK = (l1l2|l1l2) + (l1l2|l2l1). Taking an
average over these five states gives l1, l2, and l3 all equally
occupied (as also required by symmetry). Thus, fl1 = fl2 =
fl3 ≡ fl = 2

3 .
The “Hx” energy is again

EHx =W1···5 = (l1l2|l1l2) + (l1l2|l2l1). (B38)

Following the same steps as the twofold-degenerate case con-
sidered above yields

EHx,S2 =1

2

∑
pq∈{1,2,3}

[F J (lplq|lplq) + F K (lplq|lqlp)] = 1

2
F J [3(l1l1|l1l1) + 6(l1l2|l1l2)] + 1

2
F K [3(l1l1|l1l1) + 6(l1l2|l2l1)]

=F J [9(l1l2|l1l2) + 6(l1l2|l2l1)] + F K [3(l1l2|l1l2) + 12(l1l2|l2l1)]

=(9F J + 3F K )(l1l2|l1l2) + (6F J + 12F K )(l1l2|l2l1). (B39)

Finally, solving the simultaneous equations lets us obtain
F J = 1

5 and F K = 1
15 .

APPENDIX C: DETAILS OF EDFT CALCULATIONS AND
BENCHMARKS

1. Benchmarks for CH2 and BH

Highly accurate benchmark energies for Be and nitroxyl,
among other benchmarks, were recently reported in Ref. [1].
However, most of the systems studied in that work have
strongly correlated ground and/or excited states, which com-
plicates our present goal of deriving EDFA for doubly excited
states, not strongly correlated states.

We thus supplement Be and nitroxyl by benchmark ref-
erence values for BH and CH2, both of which are weakly
correlated. To obtain our benchmark values we carry out fully
variational full-configuration-interaction (FCI) calculations in
PSI4 [56,57] on the molecules using correlation-consistent

basis sets [58]. Final values are obtained using CC-PVTZ for
CH2 (note that CC-PVQZ gave consistently higher energies for
the incomplete active spaces considered here) and CC-PVQZ

for BH, with varying numbers Na of orbitals in the active
space—1s orbitals are always kept frozen to reduce costs. We
then extrapolate to the complete-active-space limit by fitting
ES2 − ES0 as a function of 1/N3

a for different values of Na.
Figure 5 shows gaps as a function of the inverse cube of the
active space size Na, which illustrates that this is a reasonable
fit. We thus obtain double-excitation gaps of 4.50 eV for CH2

and 5.70 eV for BH. We can also use the results to estimate
a reasonable error bar to be around ±0.15 eV, which is more
than sufficient for our purposes.

2. EDFT calculations

We begin this section by describing mathematically the
problem we solve and then move on to technical details. In
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TABLE II. Nitroxyl gaps predicted by a computationally feasible optimization (involving all orbitals within 10 eV of the HOMO) and
using SEGKS [32]. SEGKS provides consistently lower energies and is thus used in the main text.

DFA PBE PBE0 xPBE0.00 xPBE0.20 xPBE0.40 xPBE0.60 xPBE0.80 xPBE1.00

Optimization 5.21 5.15 4.99 4.93 5.00 5.07 5.21 5.40
SEGKS 4.98 4.95 4.74 4.72 4.77 4.85 4.92 5.01

our self-consistent EDFT calculations we evaluate

E = Ts +
∫

n(r)v(r)dr + EDFA
Hxc (C1)

using an ensemblized hybrid approximation (see the main text
for general details):

EDFA
Hxc :=EHx + (1 − 2w)

{
ᾱ
(
EDFA

x,S0
− EFDT

x,S0

) + EDFA
c,S0

}
+ 2w

{
ᾱ
(
EDFA

x,T0
− EFDT

x,T0

) + EDFA
c,T0

}
(C2)

for 0 � w � 1
2 , which is equivalent to setting wS0 = 1 − w,

wS1 = 0, and wS2 = w, where w is the fraction of double ex-
citation. It is important to note that this choice of weight prima
facie breaches the Gross-Oliveira-Kohn theorems [11,12],
which require decreasing weights for increasing excitation
levels. However, in the case of BH and Be it can be rigorously
justified because the ground, single excited, and double ex-
cited states all belong to different symmetry groups and are
thus subject to more general theorems [28]. This argument
does not apply to CH2 and nitroxyl. But in practice we observe
no apparent problems for self-consistency.

Setting wS1 = 0 has the practical benefit that the ensemble
is described only by a single weight w. More importantly, it
lets us overcome errors caused by the neglect of the density-
driven (DD) correlation energy [24] that accounts for the
difference between ensemble KS densities and the true den-
sities of the interacting systems. (Note the DD correlation
errors appear in both exact and approximate theories, which
makes them different from density-driven errors caused by
approximations to the effective KS potential.) These density
differences mean that the true (up to DFA errors) ensemble
energy at weight w is ESD,w + EDD,w

c , where ESD,w is given by
Eq. (C1) and where, by definition, EDD,w=0

c = EDD,w=1
c = 0

for both pure-state limits but is otherwise nonzero. Despite
DD correlations not contributing at w = 1 [59], a problem
arises because we cannot self-consistently evaluate (C1) for
w = 1 due to variational collapse to the ground state. A more
detailed practical description of the problem (and its solu-
tion, below) is described in the Supplementary Material of
Ref. [32].

Fortunately, the single-parameter model offers a simple
fix, via the procedure discussed in Ref. [32], to extrapolate
EDFT results from 0 � w � 1

2 (which may be solved self-
consistently) out to pure-state w = 1 (which cannot be solved
self-consistently). We are thereby able to obtain energies that
are approximately free from density-driven correlation errors.
Algorithmically, this involves (i) computing E (w) [Eq. (C1)]
for w ∈ {0, 1

8 , 1
4 , 3

8 , 1
2 }, (ii) fitting a quadratic Equad(w) to

E (w), and (iii) using the fit to evaluate

ES0 =Equad(w = 0). ES2 =Equad(w = 1). (C3)

The values of ES0 and ES2 so obtained may thus be used for our
predicted excitation energy: �ES2 = ES2 − ES0 = Equad(w =
1) − Equad(w = 0).

EDFT calculations are carried out using a customized
PYTHON3 code using routines from PSI4 [56,57] and employ-
ing an algorithmic approach similar to the code described
in Ref. [29] to give benchmark values. We carry out EDFT
calculations for Be using the DEF2-QZVPP [60] basis set, as
the 2p orbital benefits from the additional p bases. We use the
DEF2-TZVP [60] basis set for CH2, BH, and nitroxyl, whose
electrons are more tightly bound. All code is available on
request.

For Be, CH2, and BH, initial ground-state orbitals are it-
eratively reoptimized over unitary transformations until the
ensemble energy [Eq. (C1)] is minimized to within less than
0.01 eV. The code preserves symmetries by applying the same
unitary transformation to all degenerate states. It provides a
rigorous upper bound to the EDFT gap.

For nitroxyl, it becomes too costly to use this approach due
to the large number of orbitals required to provide a good up-
per bound. Thus, we instead employ the simplified ensemble
generalized Kohn-Sham (SEGKS) approach [29,32], which
gives lower energies than a full optimization involving all
orbitals within 10 eV of the HOMO and provides a better
upper bound to the gap (see Table II).

3. CCSD and CC3 calculations

Finally, we note that our CCSD and CC3 excitation ener-
gies are obtained using EOM-CCSD [51] and EOM-CC3 [52].
They use the same basis sets as the ensemble DFT calculations
and are computed using default routines in PSI4.

APPENDIX D: DETAILS OF RPA CALCULATIONS

In density functional theory, the interacting density-density
response function χλ with an interaction strength λ is related
to the noninteracting KS response function χs (at λ = 0) via
[25,38]

χλ(r, r′) =χs(r, r′) +
∫

dr2dr3χs(r, r2)

× [λW (r2, r3) + fxc,λ(r2, r3)]χλ(r3, r′), (D1)

or χ̂λ = χ̂s + χ̂s[λŴ + f̂xc,λ]χ̂λ in a convenient operator nota-
tion. The correlation energy of any quantum system may then
be evaluated from the response functions using the adiabatic
connection formula with the fluctuation-dissipation theorem
[25,38] (ACFD), giving

Ec = −
∫ 1

0
dλ

∫ ∞

0

dω

2π
Tr[(χ̂λ − χ̂s)Ŵ ]. (D2)
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The random-phase approximation (RPA) consists of set-
ting fxc,λ = 0 in (D1) so that χ̂RPA

λ = χ̂s + λχ̂sŴ χ̂RPA
λ . Then,

ERPA
c = ∫ ∞

0
dω
2π

Tr[ log10(1 − χ̂sŴ ) + χ̂sŴ ] follows by analyt-
ically integrating over λ in Eq. (D2). The RPA has been used
to successfully study chemical and solid-state interactions due
to its ability to seamlessly capture different bonding types
[39–42]. However, it does have limitations in describing sys-
tems with open-shell character [45–47] as the exclusion of fx

leads to spurious self-interaction errors.
One can readily adapt the RPA to ensembles by using the

response function [Eq. (A9)] from Appendix A in

ERPA
c :=

∫ ∞

0

dω

2π
Tr[ln(1 − χ̂sŴ ) + χ̂sŴ ], (D3)

which is the most direct translation of the RPA to ensem-
bles. We denote this the ensemble RPA correlation-energy
functional. A first step toward evaluating Eq. (D3) efficiently
involves rewriting Eq. (A9) as

χs(r, r′; iω) :=
∑

ia

Qia(iω)φi(r)φa(r)φi(r′)φa(r′), (D4)

where ia indicates all pairs obeying fi �= fa and εi �= εa, for
which Qia = ( fi− f j )(εi−ε j )

(εi−ε j )2+ω2 is nonzero. It is then straightforward
to show that

Tr[χ̂sŴ ] =
∫

dr1dr2

|r2 − r1|χs(r1, r2) =
∑

ia

Qia(ia|ia), (D5)

Tr[χ̂sŴ χ̂sŴ ] =
∫

dr1dr2dr3dr4

|r3 − r2||r1 − r4|χs(r1, r2)χs(r3, r4)

=
∑
ia, jb

Qia(ia| jb)Qjb( jb|ia), (D6)

Tr[(χ̂sŴ )3] =
∑

ia, jb,kc

Qia(ia| jb)Qjb( jb|kc)Qkc(kc|ia) (D7)

are equal to Tr[X], Tr[X2], and Tr[X3], respectively, for
[X(iω)]ia, jb = √

Qia(iω)Qjb(iω)(ia| jb). It is straightforward
to show, by induction, that the relationship continues for
higher powers.

It follows that ERPA
c = ∫

dω
2π

Tr{ln[1 − X(iω)] − X(iω)}.
Clenshaw-Curtis quadrature lets us obtain a set of abscissas
ωi and weights ξi to accurately approximate the frequency
integral

∫
f (iω)dω ≈ ∑

i ξi f (iωi ). We thus finally evaluate

ERPA
c =

∑
i

ξi

2π

{ ∑
k

{log10[1 − xk (iωi)] + xk (iωi )}
}

(D8)

using eigenvalues xk (iωi) of X(iωi ). The term in the large
curly brackets depends rather smoothly on ω. Equation (D8)
may therefore be evaluated using a modest number of abscis-
sas.

Two additional points need to be discussed. First, although
Qia is analytic, it does depend on orbitals φi and their en-
ergies εi, which should account for the ensemble nature of
the problem. For the orbitals, we use ensemble PBE results
extrapolated to the double-state w → 1 limit. However, the
ensemblized equations do not obey a unique orbital equation
[29]. Thus, for the energies, we use

εi ≈
∫

drφi(r)

[
− 1

2
∇2 + vext(r) + ṽPBE

Hxc (r)

]
φi(r), (D9)

where ṽPBE
Hxc is the PBE Hartree, exchange, and correla-

tion potential evaluated at the ground-state density. For the
illustrative purposes employed here this is a reasonable ap-
proximation.

Second, we need to evaluate (ia| jb) efficiently. For this,
we use an orthonormalized [

∫
drdr
|r−r′|Pμ(r)Pν (r) = δμν] density-

fitting basis [61] (DEF2-TZVP-RI for CH2, BH, and nitroxyl
and DEF2-QZVPP-RI for Be), Pμ(r), in which coefficients Cia,μ

in φi(r)φa(r) = ∑
μ Cia,μPμ(r) are evaluated once, to obtain

(ia| jb) = ∑
μ Cia,μCjb,μ in separable form. Thus, we may

trivially evaluate

Xiq, jb(iω) =√
Qia(iω)Qjb(iω)

∑
μ

Cia,μCjb,μ (D10)

for arbitrary ω, without storing (ia| jb). All code is available
on request.

APPENDIX E: DETAILS FOR CALCULATIONS
USING EQ. (17)

As discussed in the main text, Eq. (11) can be evaluated
using existing DFA implementations, and self-consistency can
be approximated using the methods described in Appendix C.
By contrast, calculations using Eq. (17) introduce two com-
plications. First, they require explicit implementation of the
DFA(ζ̃ ot) correlation-energy part of Eq. (17); the examples
and following discussion use PBE as the DFA. Second, they
cannot be evaluated self-consistently.

Addressing the first point requires modification of the
numerical integration scheme used to compute density func-
tionals. We therefore compute the density nr, on-top pair
distribution Px,r, and reduced gradient sr on a grid labeled by
r. We then use standard routines from PSI4 to compute

Ec =
∑

r

wrnrε
PBE
x

(
nr, sr, ζ̃

ot
r

)
, (E1)

ζ̃ ot
r = min

(√−2Px,r − n2
r

nr
,

nr√−2Px,r − n2
r

)
. (E2)

Abscissas r and weights wr are from the default quadrature
scheme in PSI4.

To address the second point, PBE/PBE0(ζ̃ ot) correla-
tion energies are obtained by first computing xPBE0/0.25

energies per Appendix C. Then, we compute correlation en-
ergies using (E2) evaluated using ensemble Hartree-Fock
orbitals and density with an equal mixture of ground and
double excitations. Applying similar assumptions to reg-
ular PBE correlation energies gives errors of <0.1 eV
compared to fully self-consistent calculations, which is
suitable for present purposes. All code is available on
request.

APPENDIX F: DOUBLE EXCITATIONS IN H2

We evaluate the PBE and PBE0 energies of the H2 di-
atom using the same self-consistent procedure (for PBE
and PBE0) as in the previous Appendixes, with DEF2-TZVP

as the basis set, using Eq. (C2). Calculations are car-
ried out for the singlet states involving only the first two
σ orbitals: φ0 = φσg → [φ1s,L + φ1s,R]/

√
2 and φ1 = φσu →
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[φ1s,L − φ1s,R]/
√

2, where L and R represent left and right
atoms and → indicates the dissociation limit. We evaluate
PBE(ζ̃ ot) and PBE0(ζ̃ ot) partially self-consistently by us-
ing self-consistent xPBE0.00/0.25 as a starting point and then
adding correlation energies computed using Eq. (11) of the
main text, evaluated with xPBE0.00 orbitals and densities.

The large D expansion of this excitation is interesting, as
the correct gap obeys 1

2 − 1
D Ha for D in atomic units. Ap-

proximations asymptote to �EDFA(D) → �E∞ + Z∞
D . Thus,

in any DFA there are two constants of interest: �E∞ (should
be 13.6 eV) and Z∞ (should be 1). Asymptotically, we find
that PBE gives �E∞ = 8.94 eV and Z∞ = 1, while we ob-
tain 9.48 eV and 1 for PBE(ζ̃ ot), meaning both have the
correct coefficient for the inverse D term but not the correct
asymptotic gap. PBE0 and PBE0(ζ̃ ot) yield �E∞ = 7.28 and
6.61 eV, respectively, both with an incorrect Z∞ = 3

4 . Ensem-
ble Hartree-Fock is by far the worst case, yielding �E∞ =
0 eV and Z∞ = 0. All code is available on request.

[1] P.-F. Loos, M. Boggio-Pasqua, A. Scemama, M. Caffarel, and
D. Jacquemin, Reference energies for double excitations, J.
Chem. Theory Comput. 15, 1939 (2019).

[2] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys.
Rev. 136, B864 (1964).

[3] W. Kohn and L. J. Sham, Self-consistent equations includ-
ing exchange and correlation effects, Phys. Rev. 140, A1133
(1965).

[4] S. Kümmel and L. Kronik, Orbital-dependent density function-
als: Theory and applications, Rev. Mod. Phys. 80, 3 (2008).

[5] R. O. Jones, Density functional theory: Its origins, rise to promi-
nence, and future, Rev. Mod. Phys. 87, 897 (2015).

[6] O. Gunnarsson and B. I. Lundqvist, Exchange and correlation
in atoms, molecules, and solids by the spin-density-functional
formalism, Phys. Rev. B 13, 4274 (1976).

[7] E. Runge and E. K. U. Gross, Density-Functional The-
ory for Time-Dependent Systems, Phys. Rev. Lett. 52, 997
(1984).

[8] N. T. Maitra, F. Zhang, R. J. Cave, and K. Burke, Double ex-
citations within time-dependent density functional theory linear
response, J. Chem. Phys. 120, 5932 (2004).

[9] P. Romaniello, D. Sangalli, J. A. Berger, F. Sottile, L. G.
Molinari, L. Reining, and G. Onida, Double excitations in finite
systems, J. Chem. Phys. 130, 044108 (2009).

[10] P. Elliott, S. Goldson, C. Canahui, and N. T. Maitra, Perspec-
tives on double-excitations in TDDFT, Chem. Phys. 391, 110
(2011).

[11] E. K. U. Gross, L. N. Oliveira, and W. Kohn, Rayleigh-Ritz vari-
ational principle for ensembles of fractionally occupied states,
Phys. Rev. A 37, 2805 (1988).

[12] E. K. U. Gross, L. N. Oliveira, and W. Kohn, Density-functional
theory for ensembles of fractionally occupied states. I. Basic
formalism, Phys. Rev. A 37, 2809 (1988).

[13] L. N. Oliveira, E. K. U. Gross, and W. Kohn, Density-functional
theory for ensembles of fractionally occupied states. II. Appli-
cation to the He atom, Phys. Rev. A 37, 2821 (1988).

[14] Z.-H. Yang, A. Pribram-Jones, K. Burke, and C. A. Ullrich, Di-
rect Extraction of Excitation Energies from Ensemble Density-
Functional Theory, Phys. Rev. Lett. 119, 033003 (2017).

[15] F. Sagredo and K. Burke, Accurate double excitations from
ensemble density functional calculations, J. Chem. Phys. 149,
134103 (2018).

[16] P.-F. Loos and E. Fromager, A weight-dependent local correla-
tion density-functional approximation for ensembles, J. Chem.
Phys. 152, 214101 (2020).

[17] C. Marut, B. Senjean, E. Fromager, and P.-F. Loos, Weight de-
pendence of local exchange-correlation functionals in ensemble

density-functional theory: Double excitations in two-electron
systems, Faraday Discuss. 224, 402 (2020).

[18] M. Filatov and S. Shaik, A spin-restricted ensemble-referenced
Kohn-Sham method and its application to diradicaloid situa-
tions, Chem. Phys. Lett. 304, 429 (1999).

[19] M. Filatov, M. Huix-Rotllant, and I. Burghardt, Ensemble
density functional theory method correctly describes bond dis-
sociation, excited state electron transfer, and double excitations,
J. Chem. Phys. 142, 184104 (2015).

[20] M. Filatov, Spin-restricted ensemble-referenced Kohn-Sham
method: Basic principles and application to strongly
correlated ground and excited states of molecules,
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 5, 146
(2015).

[21] M. Filatov, Ensemble DFT approach to excited states of
strongly correlated molecular systems, in Density-Functional
Methods for Excited States, edited by N. Ferré, M. Filatov, and
M. Huix-Rotllant (Springer, Cham, 2016), pp. 97–124.

[22] T. Gould and J. F. Dobson, The flexible nature of exchange,
correlation, and Hartree physics: Resolving “delocalization”
errors in a “correlation free” density functional, J. Chem. Phys.
138, 014103 (2013).

[23] T. Gould and S. Pittalis, Hartree and Exchange in Ensemble
Density Functional Theory: Avoiding the Nonuniqueness Dis-
aster, Phys. Rev. Lett. 119, 243001 (2017).

[24] T. Gould and S. Pittalis, Density-Driven Correlations in Many-
Electron Ensembles: Theory and Application for Excited States,
Phys. Rev. Lett. 123, 016401 (2019).

[25] T. Gould, G. Stefanucci, and S. Pittalis, Ensemble Density
Functional Theory: Insight from the Fluctuation-Dissipation
Theorem, Phys. Rev. Lett. 125, 233001 (2020).

[26] E. Fromager, Individual Correlations in Ensemble Density-
Functional Theory: State-Driven/Density-Driven Decomposi-
tions without Additional Kohn-Sham Systems, Phys. Rev. Lett.
124, 243001 (2020).

[27] We further assume that no other singly excited state has an
energy lower than that of |S2〉.

[28] T. Gould and S. Pittalis, Density-driven correlations in ensem-
ble density functional theory: Insights from simple excitations
in atoms, Aust. J. Chem. 73, 714 (2020).

[29] T. Gould and L. Kronik, Ensemble generalized Kohn-Sham
theory: The good, the bad, and the ugly, J. Chem. Phys. 154,
094125 (2021).

[30] Specifically, minimization is over ensembles �̂w with weights
w, yielding the target density Tr[�̂wn̂] = n.

[31] The fact that in EDFT KS states must be noninteracting CSFs
can be understood via group theory and derived procedurally

022803-13

https://doi.org/10.1021/acs.jctc.8b01205
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/RevModPhys.80.3
https://doi.org/10.1103/RevModPhys.87.897
https://doi.org/10.1103/PhysRevB.13.4274
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1063/1.1651060
https://doi.org/10.1063/1.3065669
https://doi.org/10.1016/j.chemphys.2011.03.020
https://doi.org/10.1103/PhysRevA.37.2805
https://doi.org/10.1103/PhysRevA.37.2809
https://doi.org/10.1103/PhysRevA.37.2821
https://doi.org/10.1103/PhysRevLett.119.033003
https://doi.org/10.1063/1.5043411
https://doi.org/10.1063/5.0007388
https://doi.org/10.1039/D0FD00059K
https://doi.org/10.1016/S0009-2614(99)00336-X
https://doi.org/10.1063/1.4919773
https://doi.org/10.1002/wcms.1209
https://doi.org/10.1063/1.4773284
https://doi.org/10.1103/PhysRevLett.119.243001
https://doi.org/10.1103/PhysRevLett.123.016401
https://doi.org/10.1103/PhysRevLett.125.233001
https://doi.org/10.1103/PhysRevLett.124.243001
https://doi.org/10.1071/CH19504
https://doi.org/10.1063/5.0040447


GOULD, KRONIK, AND PITTALIS PHYSICAL REVIEW A 104, 022803 (2021)

when evaluating EHx via (degenerate) perturbation theory; some
examples are provided in Appendix B.

[32] T. Gould, Approximately self-consistent ensemble density
functional theory: Toward inclusion of all correlations, J. Phys.
Chem. Lett. 11, 9907 (2020).

[33] C. Adamo and V. Barone, Toward reliable density functional
methods without adjustable parameters: The PBE0 model,
J. Chem. Phys. 110, 6158 (1999).

[34] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[35] Technically, this breaches ensemble theorems [11,12]. How-
ever, in BH and Be excluding the single excitation can be
rigorously justified on point-group-symmetry grounds [28]. In
CH2 and nitroxyl it is less rigorously justifiable yet causes no
apparent problems for self-consistency.

[36] J.-D. Chai and M. Head-Gordon, Systematic optimization of
long-range corrected hybrid density functionals, J. Chem. Phys.
128, 084106 (2008).

[37] A. D. Becke, A new mixing of Hartree-Fock and local density-
functional theories, J. Chem. Phys. 98, 1372 (1993).

[38] J. F. Dobson and T. Gould, Calculation of dispersion energies,
J. Phys.: Condens. Matter 24, 073201 (2012).

[39] X. Ren, P. Rinke, C. Joas, and M. Scheffler, Random-phase
approximation and its applications in computational chemistry
and materials science, J. Mater. Sci. 47, 7447 (2012).

[40] H. Eshuis, J. E. Bates, and F. Furche, Electron correlation meth-
ods based on the random phase approximation, Theor. Chem.
Acc. 131, 1 (2012).

[41] A. Hesselmann, Intermolecular interaction energies from Kohn-
Sham random phase approximation correlation methods, in
Non-covalent Interactions in Quantum Chemistry and Physics,
edited by A. O. de la Roza and G. A. DiLabio (Elsevier, 2017),
Chap. 3, pp. 65–136.

[42] G. P. Chen, V. K. Voora, M. M. Agee, S. G. Balasubramani, and
F. Furche, Random-phase approximation methods, Annu. Rev.
Phys. Chem. 68, 421 (2017).

[43] J. P. Perdew and Y. Wang, Accurate and simple analytic repre-
sentation of the electron-gas correlation energy, Phys. Rev. B
45, 13244 (1992).

[44] K. Burke, A. Cancio, T. Gould, and S. Pittalis, Locality of
correlation in density functional theory, J. Chem. Phys. 145,
054112 (2016).

[45] F. Furche, Molecular tests of the random phase approximation
to the exchange-correlation energy functional, Phys. Rev. B 64,
195120 (2001).

[46] P. Mori-Sánchez, A. J. Cohen, and W. Yang, Failure of the
random-phase-approximation correlation energy, Phys. Rev. A
85, 042507 (2012).

[47] T. Gould, A. Ruzsinszky, and J. P. Perdew, Simple self-
interaction correction to random-phase-approximation-like cor-
relation energies, Phys. Rev. A 100, 022515 (2019).

[48] A. Becke, A. Savin, and H. Stoll, Extension of the local-spin-
density exchange-correlation approximation to multiplet states,
Theor. Chim. Acta 91, 147 (1995).

[49] J. P. Perdew, A. Savin, and K. Burke, Escaping the symmetry
dilemma through a pair-density interpretation of spin-density
functional theory, Phys. Rev. A 51, 4531 (1995).

[50] G. L. Manni, R. K. Carlson, S. Luo, D. Ma, J. Olsen,
D. G. Truhlar, and L. Gagliardi, Multiconfiguration pair-
density functional theory, J. Chem. Theory Comput. 10, 3669
(2014).

[51] J. F. Stanton and R. J. Bartlett, The equation of motion
coupled-cluster method. A systematic biorthogonal approach
to molecular excitation energies, transition probabilities, and
excited state properties, J. Chem. Phys. 98, 7029 (1993).

[52] H. Koch, O. Christiansen, P. Jørgensen, A. M. S. de Merás,
and T. Helgaker, The CC3 model: An iterative coupled cluster
approach including connected triples, J. Chem. Phys. 106, 1808
(1997).

[53] G. M. J. Barca, A. T. B. Gilbert, and P. M. W. Gill, Hartree-Fock
description of excited states of H2, J. Chem. Phys. 141, 111104
(2014).

[54] M. Hellgren, F. Caruso, D. R. Rohr, X. Ren, A. Rubio, M.
Scheffler, and P. Rinke, Static correlation and electron local-
ization in molecular dimers from the self-consistent RPA and
GW approximation, Phys. Rev. B 91, 165110 (2015).

[55] N. Colonna, M. Hellgren, and S. de Gironcoli, Molecular bond-
ing with the RPAx: From weak dispersion forces to strong
correlation, Phys. Rev. B 93, 195108 (2016).

[56] R. M. Parrish et al., Psi4 1.1: An open-source electronic
structure program emphasizing automation, advanced libraries,
and interoperability, J. Chem. Theory Comput. 13, 3185
(2017).

[57] D. G. A. Smith et al., Psi4numpy: An interactive quantum
chemistry programming environment for reference implemen-
tations and rapid development, J. Chem. Theory Comput. 14,
3504 (2018).

[58] T. H. Dunning, Gaussian basis sets for use in correlated molecu-
lar calculations. I. The atoms boron through neon and hydrogen,
J. Chem. Phys. 90, 1007 (1989).

[59] The degenerate case is more complicated as w = 1 gives an
ensemble over degenerate excitations; for the purpose of treat-
ing density-driven correlations we treat degenerate ensembles
as though they are a single pure state.

[60] F. Weigend and R. Ahlrichs, Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for H to
Rn: Design and assessment of accuracy, Phys. Chem. Chem.
Phys. 7, 3297 (2005).

[61] A. Hellweg, C. Hättig, S. Höfener, and W. Klopper, Optimized
accurate auxiliary basis sets for RI-MP2 and RI-CC2 calcu-
lations for the atoms Rb to Rn, Theor. Chem. Acc. 117, 587
(2007).

022803-14

https://doi.org/10.1021/acs.jpclett.0c02894
https://doi.org/10.1063/1.478522
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.2834918
https://doi.org/10.1063/1.464304
https://doi.org/10.1088/0953-8984/24/7/073201
https://doi.org/10.1007/s10853-012-6570-4
https://doi.org/10.1007/s00214-011-1084-8
https://doi.org/10.1146/annurev-physchem-040215-112308
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1063/1.4959126
https://doi.org/10.1103/PhysRevB.64.195120
https://doi.org/10.1103/PhysRevA.85.042507
https://doi.org/10.1103/PhysRevA.100.022515
https://doi.org/10.1007/BF01114982
https://doi.org/10.1103/PhysRevA.51.4531
https://doi.org/10.1021/ct500483t
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.473322
https://doi.org/10.1063/1.4896182
https://doi.org/10.1103/PhysRevB.91.165110
https://doi.org/10.1103/PhysRevB.93.195108
https://doi.org/10.1021/acs.jctc.7b00174
https://doi.org/10.1021/acs.jctc.8b00286
https://doi.org/10.1063/1.456153
https://doi.org/10.1039/b508541a
https://doi.org/10.1007/s00214-007-0250-5

