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Abstract

This chapter aims to provide information on the progress of research into water
quality analyses, providing an overview of the state of the art, including novel research
achievements, in the detection of water contaminants. After a brief introduction to the
main sensing systems’ characteristics, the attention will be devoted to two different
classes of pollutants: organic and inorganic. Microbiological analyses concerning the
monitoring of bacterial load in water and chemical analyses with a special focus on
mercury, related to heavy metal pollution, and nitrogen compounds, i.e. nitrate ion
and ammonium ion, are discussed. Particular attention will be devoted to all sensing
systems that are in principle portable and able to make real-time measurements in situ.

Keywords: water quality, bacteria, heavy metals, nitrogen compounds, silicon
photomultiplier, biosensors, electrochemical sensors, conductive polymers, metallic
nanoparticles, catalysis

1. Introduction

Water is essential for life and its quality is crucial for human health and environ-
mental sustainability. Regular analysis of water is important to ensure its safety and
purity. Microbiological analysis is fundamental for detecting harmful bacteria such as,
for example, Escherichia coli, Legionella, and Salmonella, or dangerous chemical pres-
ence, i.e. heavy metals or hydrocarbons, which can cause serious waterborne diseases
if present in drinking water [1]. Chemical analysis, on the other hand, helps prevent
environmental problems, such as eutrophication due to excessive nitrogen com-
pounds, or human health problems that can arise from contamination by heavy metals
such as mercury. For these reasons, a careful analysis of water samples is crucial for
human health and environmental protection. The different contamination issues must
be investigated separately to determine the best detection strategies. This chapter
aims to describe the various sensory detection systems (design and manufacture) of
bacteria, mercury (as an example of heavy metal), and nitrogen compounds in water.
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Monitoring bacteria in water is essential to ensure public health and prevent
waterborne diseases such as cholera, typhoid fever, and other types of waterborne
diseases. Contaminated water can lead to serious epidemics, especially in communi-
ties with limited access to clean water. In many developing countries, water is still
known as “black” [2]. These countries are characterized by high population density
and should have good water quality for the population to survive. Bacterial indicators
may differ among countries, e.g. total coliforms, fecal coliforms, heterotrophic micro-
organisms, Clostridium perfringens, etc. [3]. This monitoring allows us to evaluate
the effectiveness of disinfection systems already in use within the Water Safety Plans
[4, 5] and to test and develop antibiofilm methods to further contribute to improv-
ing water quality [6, 7]. Regular monitoring helps to detect bacterial contamination
early, enabling timely intervention and treatment to prevent the spread of the disease.
Among traditional monitoring methods, such as bacterial culture and membrane
filtration, new techniques have been developed such as polymerase chain reaction
(PCR) and next-generation sequencing (NGS), advanced methods that sequence
DNA from water samples, providing comprehensive data on bacterial communities,
and in the case of NGS allowing the identification of known and unknown pathogens.

Innovative methods of bacterial monitoring have been developed using a Silicon
PhotoMultiplier (SiPM) [8]. This device is a highly sensitive pixelated photon detec-
tor, each pixel being a silicon photodiode operating in avalanche mode [9]. It hasa
high sensitivity to detect even individual photons, a wide dynamic range for varying
light intensities, and a rapid response to light signals [10]. It was also employed for
monitoring heavy metals, such as mercury by using engineered bacteria as a sens-
ing element emitting a light signal in its presence, which is then transduced into an
electrical signal.

Mercury is one of the most difficult heavy metals to detect and the most dangerous
element of the periodic table, excluding the radioactive ones. It exists in three forms
with different properties and toxicity: elemental or metallic mercury (Hg"), inorganic
mercury, and organic mercury compounds (Hg** and Hg", respectively). Each one
can be converted into other forms through oxidation, reduction, methylation, and
demethylation that occur due to the presence of chemical compounds or through the
metabolic process of fishes or plants [11].

Long exposure to mercury can cause neurological disturbances, memory prob-
lems, skin rash, and kidney abnormalities. In addition, when combined with other
chemical elements, such as sulfur or oxygen, it can lead to severe digestive system
corrosion, and when mercury is combined with carbon, especially in fresh and sea-
water, it accumulates in the food chain and, during pregnancy, it can pass through the
placenta, causing developmental abnormalities and cerebral palsy to infants [12, 13].

It is worth noting that Hg** can accumulate in biofilms in pipes of main water and
be converted into other toxic forms. Mercury toxicity depends on the form and its
water concentration is expected to be very low. The tolerance value is 1 pg/L for water
intended for human consumption and contact recreation and thus revealing water
contamination can result essential in avoiding risks to human health [14, 15].

Finally, other chemical species must be monitored to provide a meaningful water
analysis and we focused our attention on nitrogen compounds. Nitrogen plays a criti-
cal role in the structure and function of life-essential biomolecules, in the cycling of
elements in nature, and in the provision of nutrients to plants, significantly contrib-
uting to the development and maintenance of life on Earth. Plants absorb nitrogen
from the soil mainly in inorganic forms: nitrate and ammonium. Specifically, nitrate
ions are absorbed by plants through their roots primarily via an active process that
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requires energy as it involves specific cell membrane carriers. In contrast, ammonium
ions can be absorbed by plants either through an active process or passive diffusion
across cell membranes [16, 17]. Under excessive irrigation, plants are unable to absorb
all the nitrate and ammonium ions present in the soil, allowing them to percolate
through the soil and enter groundwater or surface water bodies. An excessive presence
of these nutrients in groundwater or water bodies can lead to eutrophication which
can damage aquatic ecosystems [18]. Furthermore, nitrogen can be produced as the
result of disinfection of water with chlorine dioxide or monochloramine. An excessive
presence of nitrogen compounds (the so-called disinfection by-products) in drinking
water is harmful to humans as nitrates convert to nitrites, which bind to hemoglobin,
making it incapable of transporting oxygen to tissues in the body.

Several chemical methodologies exist to monitor the concentration of nitrogen
compounds and mercury in water, such as flow injection analysis, spectrophotometry,
chemiluminescence, capillary electrophoresis, ion chromatography, FTIR spectroscopy,
colorimetric pH detection, ion-selective electrodes, and other optical methods [19-24].
Although these techniques are sensitive and specific, they require sophisticated, expen-
sive, time-consuming systems, and the necessity for sampling campaigns.

Despite the fact that the contaminants to be detected are very different (microor-
ganisms, mercury, and nitrogen compounds), a common demand can be inferred: the
need for portable systems to perform in-situ measurements that should be precise,
simple to be made, and the devices should provide a detection limit at least within the
World Health Organization defined limits [25].

The rest of this chapter reviews the three examples of contaminants and the most
investigated detection system to infer their concentration in water samples.

2. Microbiological analysis

The main methods for bacteria detection in water samples employ different
techniques, such as bacterial cultural growth, immunological, genetic, physical, and
chemical methods. Hereafter, all of them are briefly reviewed.

2.1 Cultural methods

One of the most used methods to detect microorganisms’ presence in water is the
Heterotrophic Plate Count (HCP). It allows for estimating the total aerobic heterotro-
phic bacteria charge (organisms taking energy from organic carbon) in each sample.
The water specimen is collected using a sterile container and spread over a solid
culture medium in Petri dishes to provide nutrients for bacterial growth (Figure1).
After dish incubation, the formed bacteria colonies are counted in terms of Colony-
Forming Units per milliliter of water (CFU/mL) [26]. However, this technique is
usually limited to bench-top equipment.

2.2 Enzyme/substrate methods

These methods are based on colorimetric or fluorometric assays concerning specific
enzymatic activities. During bacterial growth, the bacterial enzymatic activity allows
the fluorophore to be cleaved from the substrate, increasing the fluorescence signal. The
sensitivity is strictly related to the time of analysis. Immunological methods are based
on the interaction between a specific antibody (Ab) and a specific antigen (Ag). Ab is
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Figure 1.
Escherichia coli growth on agar medium.

mounted onto a support system, such as nylon supports, cantilevers, magnetic beads,
nanoparticles, graphene quantum dots, electrospun nanofibers, and polymers [27].
The most important immunological techniques are Enzyme-Linked Immunosorbent
Assay (ELISA) [28], lateral flow tests (immunochromatographic assays) [29], SPR
(Surface Plasmon Resonance) [30], and electrophoresis [31]. However, in most cases,
these methods suffer from poor specificity, sometimes returning false-positive results,
contributing to issues of low sensitivity [32, 33]. The sensitivities and the specificities
of immunological methods depend on the antibody, with a minimum limit of detection
(LoD) of 10° cells/mL employing ELISA [34]. Finally, the analysis can last from several
hours for ELISA to some minutes for lateral flow.

2.3 Genetic methods

Genetic methods are highly specific due to their affinity to specific nucleic acid
sequences. The polymerase chain reaction (PCR) [35] is the most used technique
employing appropriate short nucleic acid sequences (primers) for DNA sequence
amplification relative to bacterial strains. It is characterized by the execution of sev-
eral steps at different temperatures (see Figure 2). The fluorescence phenomenon can
be coupled with PCR to monitor bacterial DNA amplification in real time, to obtain
quantitative information about the initial amount of DNA contained in the sample
under analysis; this technique is known as “quantitative PCR” or “qPCR” [36, 37],
which is easy to automate and can be used when pathogens concentration is below the
LoD of other assays. Recently, researchers developed an “isothermal technique” to
obviate the shortcomings of PCR, which employs in the same way the nucleic acid-
based method for bacteria strain identification by amplifying nucleic acids at a fixed
temperature [38]. In particular, the loop-mediated isothermal amplification (LAMP)
technique has gained popularity due to its specificity, sensitivity, and stability [1, 39].
The disadvantages of these methods are the quality of the sample, which remarkably
impacts the sensitivity of the detection, and the presence of inhibitors which create
limitations in the analysis of samples. Immuno-PCR (IPCR) exceeds these limits since
it combines ELISA with qPCR. Such a combination allows the ELISA to enhance the
LoD about 100-1000 times using qPCR to amplify the system signal [40].
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Figure 2.
Scheme representing PCR cycle. Reprinted with permission from Rajapaksha et al. [35].

2.4 Mass spectroscopy methods

Mass spectroscopy techniques are indicated for their accuracy, selectivity, repro-
ducibility, and high Signal-to-Noise Ratios (SNR). Tandem Mass Spectrometry (MS/
MS) [41], nanoscale Liquid Chromatography coupled with MS/MS (nano LC-MS/
MS) [42], and Matrix-Assisted Laser Desorption-lonization Time Of Flight mass
spectrometry (MALDI-TOF) [43, 44] are the most used techniques for detection and
identification of bacterial proteins peptide sequences by comparing the obtained mass
spectra to associated databases. The limitation linked to these methods concerns the
similarities between organisms and the limited number of spectra in the databases,
which can lead to poor discrimination between species or misidentifications [44].
Furthermore, these techniques are not indicated for quantitative analysis.

2.5 Fourier transform infrared (FT-IR), raman spectroscopy, and laser-induced
breakdown spectroscopy (LIBS)

Fourier Transform Infrared (FT-IR) is a rapid tool indicated for the investigation
of the total composition of all components of the bacterial cells under analysis by
using infrared spectroscopy [45], although precise identification with this technique
remains to be developed. Raman spectroscopy is currently used for the classification
of complex biological samples, due to its fast and non-destructive methodology [46].
Finally, Laser-Induced Breakdown Spectroscopy (LIBS) is a rising spectroscopic
method based on atomic emission, in which elemental composition is determined by
placing samples in a laser plasma and observing the resulting spectra. For example,
LIBS is used to differentiate different types of bacteria and their metabolic state [47].
The main advantages of LIBS-based bacterial detection technology are the speed of
analysis (some minutes) and the ability to detect pathogens on all types of surfaces.
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However, all the described techniques require the presence of skilled human
operators for sample preparation, treatment, processing, and results interpretation.

2.6 Methods based on ATP-luciferin-driven chemiluminescent reaction

Currently, chemiluminescent reaction based on the interaction between adenosine
triphosphate (ATP) and luciferin is one of the most sensitive methods for bacterial
load detection [48]. It allows obtaining quantitative information about viable cell con-
centration in a sample [49-51] by employing the internal ATP after appropriate lysis
procedures. This reaction is catalyzed by the enzyme luciferase, to obtain luciferyl
adenylate that combines with oxygen to produce oxyluciferin and a photon at 560 nm.
The reaction is reported in the following [52]:

M 2+
luciferin+ ATP + 0O, sz%m oxyluciferin + AMP + CO, + pyrophosphate + hv (1)

Some commercial readers based on ATP-luciferin-driven reactions reach low limits
of detection, such as BioThema ATP Kit SL [53], Luminultra Quench-Gone Aqueous
(QGA) Test Kit [54], Hygiena handy type luminometer [55], with LoDs reaching
values down to 10 M, corresponding to about 5 x 10° cells/mL if a mean amount
of ATP equal to 1 fg for the single viable cell is considered (see Microbial Equivalent
definition [56]).

Hu et al. [57] developed a low-cost and portable device based on the ATP-
luciferin-driven chemiluminescence reaction taking place in test tubes for bacterial
charge detection, employing a SiPM as a detector. The system reaches a LoD for ATP
concentration of 3.6 x 10™"" M, corresponding to about 1.8 x 10* cells/mL.

The described devices also require skilled human operators and long sample treat-
ment times. To overcome such an issue, Santangelo et al. [8] designed and developed
a prototype of a low-cost, miniaturizable, real-time, and remote-sensing microfluidic
SiPM-based sensor for bacterial ATP detection, which does not require the presence
of human operators, allowing to reach a LoD for bacterial charge of about 4 x 10°
cells/mL (8 x 10~ M for ATP).

Recently, Capuano et al. [58] developed an optimized low-cost, miniaturizable,
real-time, and remote-sensing SiPM-based sensor based on static ATP-luciferin
chemiluminescent reaction measurements (Figure 3), allowing the detection of water
total bacteria concentration down to about 10° cells/mL (2 x 107° M for ATP).

It is worth noting that, although the described devices return detailed information
about the concentration of the total bacterial load, these systems are not selective,

Syringe Syringe

—

DARK DARK
CHAMBER CHAMBER

keithley 2636

» Current
SiPM signal

Figure 3.

Schematic layout of the ATP detection system developed by Capuano et al. [58] (veprinting permitted). The
chemiluminescent reaction takes place when the reactants contained in the standard reaction solution (SRS)
interact with ATP. The light emitted during the reaction is acquived through a SiPM, obtaining a curvent signal
proportional to ATP concentration.
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since ATP is contained in similar quantities in all viable cells, and discrimination
among different bacterial species is not achieved.

3. Heavy metals detection in water: mercury (Hg2+)

Many techniques have been developed for detecting mercury in water samples
providing high-performance quantification. The traditional analysis systems need
bulky and costly laboratory instruments, require specialized personnel, and are not
suitable for in-situ monitoring.

Chromatographic and spectrometric methods are the most used in mercury
analysis and these powerful techniques can be coupled with other monitoring sys-
tems. Sanchez-Rodas et al. [59] coupled chromatographic and non-chromatographic
separation with Atomic Fluorescence Spectrometry (AFS). The latter is a technique
based on the absorption of radiation of characteristic wavelengths by an atomic
vapor with subsequent detection of radiationally deactivated states via emission in
a direction orthogonal to the excitation source. This method is extremely sensitive
and selective in determining environmentally and biomedically important elements
such as mercury, arsenic, lead, and cadmium. The separation of the mercury spe-
cies can occur either by Gas Chromatography (GC) or High-Performance Liquid
Chromatography (HPLC). Cold Vapor (CV) is employed with liquid chromatography
to convert inorganic Hg to its elemental state. Using liquid chromatography combined
with AFS detection (HPLC-CV-AFS) leads to detection limits of 0.2 pg/L for methyl-
mercury (MeHg), 0.07 pg/L for Hg (II), 0.06 pg/L for phenylmercury (PhHg), and
0.12 pg/L for ethylmercury (EtHg) [59]. Gas chromatography has been more widely
used than liquid chromatography for Hg detection with AFS. In this case, pyrolysis
has been employed as an intermediate step for Hg species oxidation [60]. Detection
limits of GC-pyro-AFS have been improved over time reaching 0.13 ng/L for Hg (II)
and 0.01 ng/L for MeHg [59].

Other strategies have been developed without chromatographic separation using
AFS as a detection process. These include various types of CV-AFS using different
chemicals for Hg revealing. In particular, a hydrostatically modified electro-osmotic
flow and a newly developed interface have been used for AFS exploitation, detecting
Hg(I), MeHg, EtHg, and PhHg in the range of (6.8-16.5 pg/L) [61], while conjunction
of flow injection with AFS using a modified flow-through chamber as the interface
was employed for fast separation of Hg(II) and MeHg with detection limits of 0.1 and
0.2 pg/mL when applied to water samples [62].

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is an analytical
technique with LoD lower than ng/L and great linearity in revealing elements. The
requirement of elemental forms leads to coupling versatile separation techniques like
HPLC, GC, and Capillary Electrophoresis (CE) with a highly sensitive detector, such
as ICP-MS, for ultra-trace elemental speciation analysis [63]. Employing the HPLC-
ICP-MS method LoD of 0.07 ng/L for inorganic mercury and 0.02 ng/L for MeHg"
was reported in investigating mercury in seawater samples [64]. Analytical features,
such as low detection limits and wide linear calibration ranges, make AFS and ICP-MS
great atomic detectors in the speciation and detection process. Compared to ICP
techniques, AFS provides additional advantages: low acquisition and running costs,
robustness, and ease of operation [59].

In the last decades, many efforts have been made to develop alternative miniatur-
izable systems to achieve inorganic mercury analysis in water samples. Lots of sensors
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based on electrochemical techniques and optical methods employing colorimetry,
fluorimetry, and Surface-Enhanced Raman Scattering (SERS) have been designed
revealing extremely promising thanks to their high sensitivity and selectivity, fast
results, and cost-effectiveness [65, 66].

Electrodes modified with biochemical or chemical compounds raised great atten-
tion. The advantages of using them are the large surface area, high electrical conduc-
tivity, biocompatibility, heterogeneous electron transfer, and mechanical strength.
Many types of electrodes revealing mercury have been designed. Among them, it is
worth mentioning the following: polymer-based electrodes which use conductive
polymers that contain functional groups binding toward mercury; Ion-Imprinted
Polymers (IIP) modified electrodes that have high binding capacity, selectivity, and
stability [67]; electrodes based on complexing agents forming complexes with mer-
cury ions [68]; DNA-modified electrodes in which oligonucleotides that contain T-T
mismatches can selectively bind mercury with a LoD lower than 0.5 pg/L [69]; finally,
nanoelectrodes that show high surface area with higher working electrode surface,
adsorption capacity, and catalyzing electron transfer.

Nanomaterials have been widely used in biosensing and various strategies have
been developed for mercury detection. Carbon nanomaterials have higher sensitivity,
and, among them, carbon nanotubes have raised attention. Specifically, Single-Walled
Carbon Nanotubes (SWCNTs) and Multi-Walled Carbon Nanotubes (MWCNTSs) have
more advantages. Metal nanoparticles show higher response in the field of electro-
analysis compared to unmodified electrodes and in some cases, increase the transfer
of electrons between electroactive substances and electrodes [70]. Lastly, there isa
growing interest in hybrid nanomaterials formed by metallic and carbon structures,
such as gold nanoparticles coupled with Carbon Nanotubes (AuNPs/CNTs) [71, 72].

Biosensors have received widespread attention for their relatively low cost, minia-
turization, and easy-to-use characteristics. A biosensor is made of two main parts: a
biorecognition element that specifically binds to the analyte to be detected. It can be
anucleic acid, antibody, a whole-cell, aptamers, enzymes, or biomimetic receptors; a
transducing element that transduces biological response in an electrochemical, opti-
cal, magnetic, or acoustic signal [73].

Some drawbacks can occur when using biorecognition elements such as enzymes,
biomimetic receptors, or antibodies. Enzymatic-based biosensors are not specific in
binding mercury leading to poor selectivity because various heavy metals may cause
cross reactivity. In addition, antibody-based biosensors also show some limitations
due to reaction conditions, like temperature, pH, and ionic strength affecting anti-
body activity [74].

Whole cell-based biosensors are based on cells, in most cases microorganisms
which can be natural or recombinant [75], that act like biorecognition elements.
There are many advantages to using whole-cell biosensors. Firstly, cells can be easily
cultivated compared to enzymes making whole cell-based biosensors cheaper than
enzyme-based ones. Moreover, microbial sensors are more selective than enzyme
ones, thanks to pathways used in microorganisms [76]. Lastly, whole cell-based
biosensors usually do not require sample preparation or preconcentration [77] and,
compared to antibody-based biosensors, present higher resistance to environmental
conditions (e.g. changes in pH, temperature, etc.) [78].

Sciuto et al. [12] developed a miniaturized optical system for inorganic mercury
(Hg*") detection in water, combining engineered E. coli, capable of emitting light in
the presence of mercury, with a Silicon PhotoMultiplier (SiPM) used as a detector
(Figure 4). The sensing element used for revealing Hg** was a strain of E. coli modified
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Figure 4.

Design of detecting system. The upper part stands for cuvette with a water sample containing mercury and
bacteria emitting light detected by the SiPM (lower part of the figure). Reprinted with permission from Sciuto
et al. [12].

with the recombinant plasmid containing a fusion between the gene merR, coding

for transcription repressor of mercury resistance operon, and genes luxCDABE, that

encode for bacterial luciferase and its substrate, all regulated by the PmerT promoter.

Expression of lux genes is induced when Hg*enters bacteria cells from the water

sample and binds to MerR protein, causing the release of its repression on the promoter.

This triggers the expression of luciferase and its substrate whose interaction causes

490 nm blue-green light emission that can be detected by SiPM (Figure 5).
Bioluminescence intensity was related to a mercury concentration in water

samples ranging from 0.25 to 200 pg/L, with a LoD of 0.15 pg/L and providing results

in only 20 minutes.

Figures.

The mechanism for Lux genes transcription. Mercury binds to protein MerR that provides the de-repression
of promoter regulating transcription of luciferase and its substrate. Reprinted with permission from Sciuto
etal. [12].
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4. Nitrogen compounds detection in water: nitrate and ammonia ions
4.1 Electrochemical sensors

Electrochemical sensors are composed of three electrodes: the working electrode
(WE), the reference electrode (RE), and the counter electrode (CE). They can be
manufactured using screen-printing technology, by printing the electrodes on a low-
cost solid substrate with reproducible chemical performance (Figure 6).

The inks used for printing electrodes determine the properties of the electrochemical
cell. The appropriate functionalization of the WE surface plays a key role in the develop-
ment of sensitive and selective chemical sensors and biosensors. This involves modifying
the electrode surface with specific chemical molecules, metal nanoparticles, or biological
molecules that have a high affinity for the target analyte. For example, enzymes can be
bonded to the electrode to selectively interact with certain chemicals; gold nanoparticles
can be used to improve electrical conductivity and sensitivity. The functionalization
process increases the specificity and efficiency of the sensor, enabling accurate and
reliable detection of various substances in a sample. The miniaturized design allows
these electrochemical cells to be portable and suitable for real-time analysis and on-site
measurements due to their linear output, low power demand, rapid response, high
sensitivity, and capacity to operate at room temperature [79, 80].

The electrochemical sensors undergo an electrochemical reaction on the WE,
resulting in changes in current, potential, charge, conductivity, or impedance, that
can be measured using different electrochemical techniques. The most used electro-
chemical techniques are voltammetry, amperometry, potentiometry, and impedance
spectroscopy.

In voltammetry, the current as a function of applied potential is measured. By
varying the potential at the working electrode, information on redox reactions, kinet-
ics, and thermodynamics of species in solution can be obtained. The most common
types of voltammetry include Cyclic Voltammetry (CV), Linear Sweep Voltammetry
(LSV), Differential Pulse Voltammetry (DPV), and Square-Wave Voltammetry
(SWV).

Amperometry measures current at a constant applied potential. It is often used
for the detection and quantification of analytes in solution. The current is directly
proportional to the concentration of the electroactive species, allowing for sensitive
detection limits. In contrast, chronoamperometry measures current as a function of
time at a fixed applied potential. It is often used to study reaction kinetics, electrode
processes, and diffusion-controlled processes.
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Figure 6.
Scheme of screen-printed electrodes (SPEs).
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Potentiometry measures the potential of an electrochemical cell without cur-
rent flow. It is commonly used in pH and ion-selective electrode measurements.
Potentiometric sensors can be selective for specific ions using ion-selective
membranes.

Impedance spectroscopy is a technique that measures the electrical impedance of
an electrochemical system as a function of frequency. It can provide information on
the kinetics of electrode processes, charge transfer resistance, bilayer capacitance,
and diffusion processes.

These electrochemical techniques offer valuable insights into the behavior of
chemical species at electrode interfaces and are widely used in environmental analysis
and biochemistry [81, 82].

4.2 Nitrogen compounds detection in water

To date, various types of electrochemical sensors have been developed to detect
NO;™ [64-66]. Generally, nitrate ion electrochemical sensors are developed using
specific nitrate ionophore molecules deposited on the working electrodes, or by
exploiting the reduction reaction of nitrate using metal particles. Copper (Cu) is one
of the most effective metals to catalyze the electroreduction of NO;™ due to its high
conductivity (5.8 x 10’ S/m), which improves charge transfer [83-85], compared to
platinum (Pt), silver (Ag), and gold (Au). Researchers showed that Cu deposition,
increasing the electroactive surface area of the working electrode, lowers the LoD
of electrochemical NO;™ sensors. For instance, Inam et al. [86] developed a flexible
screen-printed amperometric NO;™ sensor, functionalized with copper nanoclusters
deposited via cyclic voltammetry on silver WE. The obtained copper nanocluster
morphology and size were uniform all over the Ag surface (Figure 6a). The device
showed a high capability to detect NO;™ in water in a dynamic concentration range
from 50 to 5000 pM (Figure 7b) with a LoD of 0.207 nM using LSV.

Farina et al. [87, 88] developed an electrochemical amperometric NO;™ sensor,
functionalized with Cu micro-flowers electrodeposited via CV on Carbon WE
(Figure 8a). The flower-like structure of the crystals favors a greater catalytic effect
for nitrate reduction since increases the mass transport and the electron transfer
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Figure7.
(a) SEM micrograph of Cu/Ag surface characterized by a uniform deposition of Cu nanoclusters; (b) Calibration
curve of the Cu/Ag sensor for NO;™ detection in water. Reprinted with permission from Inam et al. [86].
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Figure 8.
(a) SEM micrograph of Cu/C surface chavacterized by a Cu micro-flowers deposition; (b) Calibration curve of
the Cu/C sensor for NO;~ detection in water. Reprinted with permission from Farina et al. [87].

process. The obtained sensor showed a LoD of 0.87 pM for NO;™ in water and a wide
dynamic concentration range from 0.05 to 3.00 mM using LSV (Figure 8b).

Nitrate detection was investigated by Hyusein et al. [89] using commercial carbon
nanofibers (CNF) and single-walled carbon nanotube (SWCNT) electrodes modi-
fied with Cu and Pd-Cu in sulfuric acid solution via LSV. The data (Figure 9b and d)
show a higher sensitivity of the reductive currents for the Pd-Cu modified CNF and
SWCNT electrodes than for the Cu modified ones. In particular, the electroanalytical
response of the Pd-Cu modified SWCNT electrode shows an extended concentration
range of non-linear electroanalytical response. Instead, Pd-Cu modified CNF elec-
trode remains linear but in a restricted concentration range. Therefore, the SWCNT
modified with Cu and bi-metallic Pd-Cu particles showed a high sensitivity in a larger
concentration range of 0.1 to 7.8 mM with a LoD of 52 pM.

This behavior can be traced back to the morphological composition of the
electrodes. Specifically, the Pd-Cu modified CNF electrode shows individual
well-separated Pd particles where the deposition of Cu resulted in nucleation
and growth of well-separated Cu particles with larger sizes (Figure 9a). Instead,
Pd-Cu modified SWCNT electrode shows a dense population of overlapping Pd
particles that decreased the C surface available for the nucleation and growth of
Cu. Therefore, the Cu deposition formed micrometric crystals in the defects of
the C structure (Figure 9b). Probably, the contact between Cu and Pd in areas
populated by Pd NPs led to a sensitive and stable electroanalytical signal for nitrate
reduction.

Conducting polymers are suitable for the detection of ammonium ions in water
due to their electrical conductivity, ion exchange capacity, high sensitivity, and
selectivity toward specific ions such as ammonia (NH,"). They can be easily func-
tionalized or modified to increase their affinity toward target ions, improving sensor
performance in terms of detection limits and response time. When NH," reaches a
conductive polymer-based sensor, it can undergo ion exchange reactions with the
polymer, resulting in changes in the electrical conductivity of the material that can
be correlated with the analyte concentration. Their compatibility with microfabrica-
tion techniques also allows the development of miniaturized sensors for real-time
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Figure 9.

(a) SEM micrograph of Pd-Cu/CNF surface; (b) Calibration curve of Pd-Cu/CNF sensor for NO; detection
in water; (¢) SEM micrograph surface of Pd-Cu/SWCNT; (d) Calibration curve of Pd-Cu/SWCNT sensor for
NO;" detection in water. Reprinted with permission from Hyusein et al. [89].

monitoring applications. A key aspect of the conductive polymers’ behavior is
doping, which involves the introduction of dopant molecules or ions into the polymer
matrix to increase its electrical conductivity. Dopants for conducting or semiconduct-
ing polymers include inorganic and organic acids. Doping can significantly alter the
electronic structure of the polymer, leading to an increase in the concentration and
mobility of charge carriers [90].

Furthermore, the conductive properties of polymers can be improved by metal
nanoparticles. When conducting polymers interact with metallic nanoparticles,
such as gold or silver nanoparticles, their conductivity can be further enhanced
due to the synergistic effects between the two materials. The presence of metal
nanoparticles provides additional pathways for charge transport, which can
lead to a significant increase in conductivity compared to pristine conducting
polymers.

Farina et al. [90] developed two detection electrodes for NH,* detection. The
first uses PANI electro-polymerized (PANIep) via CV on commercial screen-printed
carbon electrodes and the second uses commercial PANI screen-printed carbon
electrodes, both modified with electrodeposited Au NPs. Functionalizing the PANI
with Au NPs enhanced the conductivity and performance of the system. The sensing
mechanism of the devices is based on the deprotonation reaction of PANI, the oxida-
tion of NH,", and the subsequent reduction and oxidation of PANI. The results show
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Figure 10.

(a) SEM micrograph of Au/PANIep/C surface; (b) SEM micrograph surface of Au/PANI/C; (c) Calibration
curve of Au/PANIep/C (green triangles) and Au/PANI/C (blue squares) sensor for NH," detection in water.
Reprinted with permission from Farina et al. [90].

that the Au/PANI/C electrode performs better for high NH,* concentrations (0.34 pM
LoD) and worse for low NH," concentrations (0.01 uM LoD) than the Au/PANIep/C
WE, which shows an opposite trend (0.03 pM LoD for low NH," concentration and
0.07 pM LoD for high NH,* concentration) (Figure 10c). This phenomenon can be
explained by considering the distribution of polyaniline on the carbon electrode,
which can significantly influence the sensitivity and dynamic range of sensors for
amperometric detection of ammonium ions in water (Figure 10a and b).

Wang et al. [91] developed an electrochemical biosensor for monitoring ammo-
niacal nitrogen in aquaculture water. A SPEC/AuNPs/PMB modified electrode
was prepared by electrodeposition and electro-polymerization using Au NPs and
methylene blue. The electrochemical behavior of reduced nicotinamide adenine
dinucleotide (NADH) on the surface of the modified electrode was studied by CV. An
a-Ketoglutarate substrate and glutamate dehydrogenase were coated on the modified
electrode to form a functional enzyme membrane (Figure 11a). The ammonia nitro-
gen in the water sample could be calculated indirectly by measuring the consumption
of NADH in the reaction (Figure 11b). The biosensor exhibited a linear range from
0.65 to 300 uM with a detection limit of 0.65 pM NH,".
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Figure 11.
(a) SEM micrograph of modified electrode surface; (b) Schematic illustration of NH," detection. Reprinted with
permission from Wang et al. [91].

5. Conclusions

In conclusion, ensuring the quality of water through regular microbiological and
chemical analyses is essential for safeguarding human health and promoting environ-
mental sustainability. Detecting harmful bacteria like, for example, E. coli, Legionella,
and Salmonella prevents serious waterborne diseases while monitoring nitrogen com-
pounds and heavy metals, such as mercury, helps prevent environmental degradation
and health issues. The development of advanced techniques, including electrochemi-
cal sensors, and optical methodologies using SiPM, enhances our ability to detect and
respond to contaminants promptly and accurately. By integrating these innovative
methods into Water Safety Plans, we can achieve more effective monitoring, ensuring
safe and clean water for all uses and protecting public health and ecosystems.
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