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New insights and best practices 
for the successful use of Empirical 
Mode Decomposition, Iterative 
Filtering and derived algorithms
Angela Stallone1, Antonio Cicone2* & Massimo Materassi3

Algorithms based on Empirical Mode Decomposition (EMD) and Iterative Filtering (IF) are largely 
implemented for representing a signal as superposition of simpler well-behaved components called 
Intrinsic Mode Functions (IMFs). Although they are more suitable than traditional methods for 
the analysis of nonlinear and nonstationary signals, they could be easily misused if their known 
limitations, together with the assumptions they rely on, are not carefully considered. In this work, we 
examine the main pitfalls and provide caveats for the proper use of the EMD- and IF-based algorithms. 
Specifically, we address the problems related to boundary errors, to the presence of spikes or jumps 
in the signal and to the decomposition of highly-stochastic signals. The consequences of an improper 
usage of these techniques are discussed and clarified also by analysing real data and performing 
numerical simulations. Finally, we provide the reader with the best practices to maximize the quality 
and meaningfulness of the decomposition produced by these techniques. In particular, a technique 
for the extension of signal to reduce the boundary effects is proposed; a careful handling of spikes and 
jumps in the signal is suggested; the concept of multi-scale statistical analysis is presented to treat 
highly stochastic signals.

Nonstationary processes and signals generated by nonlinear dynamics are ubiquitous in real life. Their time-
frequency analysis and features extraction can help in solving open problems in many fields of research.

However, when dealing with nonlinear and nonstationary time series, neither the standard Fourier transform1 
nor the wavelet Transform represent the best approach. In fact, all of them produce linear decompositions, 
whereas real life data sets are in many cases generated by nonlinear phenomena. Furthermore, all the aforemen-
tioned methods have troubles providing an accurate time-frequency representation of the data2 due to the well 
known Heisenberg uncertainty principle3. For all these reasons, several methods have been proposed to increase 
the accuracy of the time-frequency representation produced by the previously mentioned methods, like the 
Short Time Fourier Transform (STFT)3, the Synchrosqueezed Wavelet Transform4,5 or the ConceFT method6.

Two decades ago a different kind of method called Empirical Mode Decomposition (EMD) was introduced 
by Huang and his collaborators in the seminal work published in 19987. This method is aimed at the decomposi-
tion of nonstationary and nonlinear signals in order to unravel their hidden quasi-periodicity and features. It 
is a local and adaptive data-driven method which makes it a much more suitable technique for nonlinear and 
nonstationary data analysis.

Furthermore, it has a divide et impera approach which allows to bypass the Heisenberg-Gabor uncertainty 
principle8. First, the signal is divided into several simple components via the so called sifting approach, which 
boils down to the calculation of the signal moving average via envelopes connecting its extrema. Then, each 
component is analysed separately in the time-frequency domain9.

While the EMD method proved to be extremely powerful in extracting simple components from a given 
signal, it is unstable to perturbations10 and susceptible to mode splitting and mode mixing11. These are the rea-
sons why the Ensemble Empirical Mode Decomposition (EEMD) method10 first, and then several alternative 

OPEN

1Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, 00143  Roma, Italy. 2Istituto di 
Astrofisica e Planetologia Spaziali dell’Istituto Nazionale di Astrofisica (IAPS-INAF), Via Fosso del Cavaliere 100, 
00133 Roma, Italy. 3Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Via Madonna 
del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy. *email: antonio.cicone@inaf.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-72193-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:15161  | https://doi.org/10.1038/s41598-020-72193-2

www.nature.com/scientificreports/

noise-assisted EMD-based methods (e.g. the complementary EEMD12, the complete EEMD13, the partly EEMD14, 
the noise assisted multivariate EMD (NA-MEMD)15, and fast multivariate EMD (FMEMD)16) have been 
proposed.

While these newly developed methods are based on EMD, they all address the so called mode mixing problem 
and guarantee the stability of the decomposition with respect to noise9. However, mode splitting is still an open 
problem for all these methods and, more importantly, their mathematical analysis is by no means complete9.

An alternative technique for signal decomposition, based on iterations like the EMD, is the so called Iterative 
Filtering (IF) method, proposed by Lin et al. in 200917. The IF algorithm structure is based on the EMD one, 
but it differs from it in the way it computes the signal moving average, which is derived as a point by point local 
weighted average. This is obtained convolving the signal with an a priori chosen “filter function”, which is simply 
any positive and compactly supported function whose area equals one. To guarantee a priori the convergence of 
this method it has been recently proved that it is sufficient to consider a filter function obtained as convolution 
of another filter function with itself18.

IF method allows to produce results similar to the EMD-based algorithms, but with the important advantage 
that it is possible to guarantee a priori its convergence and stability. This is due to the moving average computation 
based on convolution, which has opened the door to the mathematical analysis of IF and derived algorithms18–22. 
Furthermore, IF mathematical analysis has also led to its acceleration via Fast Fourier Transform (FFT) in what 
is called the Fast Iterative Filtering (FIF) method18,23.

We point out that IF and FIF methods do not suffer of mode mixing24, whereas mode splitting can be easily 
avoided by tuning the value of the stopping criterion parameter2.

The IF algorithm has been generalized to tackle highly nonstationary signals (leading to the Adaptive Local 
Iterative Filtering (ALIF)25,26), and, as for EMD, multidimensional signals27,28, and multivariate ones29.

Both the EMD- and IF-based algorithms yield a decomposition of any signal in simpler components, known 
as Intrinsic Mode Functions (IMFs) which fulfill two conditions: the envelopes connecting the minima and 
maxima of an IMF have a local average which equals zero; the IMF extrema number differs from the number of 
its zero crossing of at most one. Differently from the sine and cosine components of the Fourier transform, the 
IMFs are oscillatory modes whose amplitude and frequency can vary over time. Their instantaneous frequency 
estimation done, for instance, via Hilbert transform30, provides an accurate time-frequency representation of a 
nonstationary and nonlinear signal.

The versatility of these techniques has opened the door to their application in many applied fields. As a 
matter of fact, they are largely implemented in geophysical studies30–32, with applications in Seismology (data 
denoising and/or detrending33–35, pre-seismic signal analysis36–38, earthquake-induced co/post-seismic anomalies 
analysis39), Exploration Seismology (for improving signal-to-noise ratio in seismic data processing routines40,41 or 
for seismic interpretation42), Geomagnetism43–49, Engineering Seismology (mainly for analysing ground motion 
data50–54), climate, atmospheric and oceanographic sciences55–60. Their use is also common in Physics (for data 
analysis61–65, data denoising and/or detrending66–68, to assess causal relationships between two time series69, or 
to extract information on multiple time scales70); Medicine and Biology71–79; Engineering80–85; Economics and 
Finance86–88; Computer vision89–91.

Although the EMD- and IF-based techniques are more suitable than traditional methods for the analysis 
of non-linear and nonstationary data sets, they could easily be misused if their known limitations21,92, together 
with the assumptions they rely on, are not carefully considered. The endeavor of this study is to call attention 
to the main pitfalls encountered when implementing these techniques. Specifically, by examining a large num-
ber of studies pertaining to different fields, we have detected three critical factors that are often neglected or 
underestimated: boundary effects; presence of spikes/jumps in the original signal; signals generated by processes 
containing a high degree of stochasticity.

This paper is structured as follows: in “Problems with the boundaries” and “Spike pulses and jumps in the 
signal” we discuss the issues related to the boundary effects and to the presence of spikes/jumps, respectively. For 
each issue, we critically analyze a study that, in our opinion, represents a clear example of how either boundary 
conditions or spike/jumps should not be handled. In “Stochastic signals decomposition” we address the problem 
of the suitability of the EMD- and IF-based methods for the multiscale analysis of a stochastic signal.

In all the subsequent sections we present numerical examples, comparing the performance of the EMD, 
EEMD and IF algorithms. It is important to remind that, although in many instances the original EMD method 
produces results that are similar to those derived by its more evolved variants, we strongly discourage its 
usage. As we recalled previously, this method is particularly sensitive to noise and mode mixing. We suggest to 
implement either enhanced versions of the EMD technique10,12–16, or alternative methods such as the IF-based 
algorithms17,18,23,25,27,29.

Problems with the boundaries
Like any signal processing technique, boundary conditions must be carefully addressed when implementing 
EMD and IF algorithms and their variants. This is equivalent to make assumptions about right and left extension 
of the signal, i.e. to extrapolate the time series beyond its boundaries. If not properly handled, end effects could 
arise, which result in anomalously high amplitudes of the IMFs and artifact wave peaks towards the boundaries.

We remark that identifying these errors is not always straightforward. This is because the IMFs are produced 
by subsequent subtraction from the original signal. Therefore, their sum always equals the original signal.

This problem was already pointed out by Huang and collaborators in their seminal work on the EMD7, and 
many approaches have been published since then to address it. Huang himself proposed the characteristic wave 
method93 and the extremum continuation method94. Other authors proposed, among many ones, the slope 
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method95, the extremum image continuation method96, the artificial neural network method97, mirror extension 
coupled with support vector machine method98, and the extremum sequence extension99.

It is important to stress that is particularly difficult to estimate a priori the error contributions coming from 
the boundaries when implementing the EMD and derived methods, since a mathematical analysis of these 
techniques is still missing. To make things worst, there exist many alternative versions of these algorithms, each 
of which has its own peculiar way of handling boundaries. We mention here, for instance, the version by Yung-
Hung Wang and collaborators (Fast EMD/EEMD Code https​://in.ncu.edu.tw/~ncu34​951/FEEMD​.rar Research 
Center for Adaptive Data Analysis (RCADA), National Central University, Taiwan), the Patrick Flandrin and 
collaborators version (Matlab/C codes for EMD and EEMD http://perso​.ens-lyon.fr/patri​ck.fland​rin/emd.html 
Laboratoire de Physique, Ecole Normale Supérieure de Lyon, France), or the Mathworks Matlab official code 
(https​://it.mathw​orks.com/help/signa​l/ref/emd.html). So far, there is no consensus on which version should be 
adopted to properly handle boundaries.

Regarding the IF-based methods, conversely, it is possible to a priori estimate the errors introduced by a 
specific boundary extension and to evaluate how they affect each IMF, since a complete and deep mathematical 
analysis of IF-based methods has been recently presented18. In particular, it is now possible to choose an optimal 
extension based on the specific features of the signal under study when we deal with the IF-based decomposi-
tions, reducing de facto the end effect errors in the decomposition. This is what it has been been done in21 for 
the periodical, symmetric (reflective), and anti-symmetric (anti-reflective) boundary extensions.

For the EMD-based methods, since a mathematically rigorous analysis of these methods is still missing, it 
is not possible to prove any general optimality of a given extension technique with respect to the others. Only a 
case by case analysis can be conducted at this stage. However, we can use the results derived from the rigorous 
mathematical analysis on the optimal pre-extension of a given signal for the IF-based methods, to extend the 
same signal also for the EMD-based algorithms.

Nevertheless, after pre-extension, the newly obtained data set sext will be still finite. Therefore, some end effects 
may be present in the decomposition yet. One possibility is to force the extended signal to become periodical at 
the newly generated boundaries. In fact both IF and FIF are designed to decompose properly periodical signals 
without introducing any numerical error. Hence, we propose the following technique (Signal Extension Algorithm 
code available at www.cicon​e.com):

Signal extension algorithm

1.	 Subtract from the signal s its mean value m
2.	 Extend s −m outside the boundaries in the preferred or optimal way, producing an extended signal sext 

which is ν times longer than the original one
3.	 Multiply sext by a characteristic function χ which has value one in the interval corresponding to the original 

signal s and goes smoothly to zero as we approach the new boundaries of sext
4.	 Add back the mean value m of the original signal 

The produced signal snew is now periodical at the boundaries.
This approach allows to reduce the boundary errors in the IF-based algorithms, as known from the theory21, 

and in the EMD-based methods and shown by the following numerical simulations on synthetic and real life 
signals.

We point out that the proposed approach is similar in nature to a time-domain windowing technique. The 
main difference is that now we first pre-extend the signal and then apply a time-domain window. This window is 
constructed specifically to preserve unaltered the values at the center of the extended signal, which correspond to 
the original data. The proposed Signal Extension Algorithm allows to preserve and make use of all the informa-
tion contained in the original data set, meanwhile reducing boundary effects errors.

Regarding the signal extension, step 2 of the proposed extension algorithm, in a recent paper21, as we men-
tioned previously, three kinds of extensions have been studied and compared: periodical, symmetric (reflective), 
and anti-symmetric (anti-reflective). In particular, they show the dependence of the end effects on the phase of 
the signal at the boundary. The result can be summarized as follows. If the slope of the signal at the boundary is 
close to zero, it is better to extend in a symmetric way. Whereas, when the slope is maximal in absolute value, it 
is better to extend in an anti-symmetrical way.

However, there are infinitely many other possible ways of extending a signal outside its boundaries besides 
periodical, symmetric and anti-symmetric extensions. What is the actual best or optimal way to properly extend 
a signal for IF-based methods remains, to the best of our knowledge, an open question. In this work we con-
sider only these three kind of extensions and we choose for each example the optimal one among these three as 
suggested in21. The identification of the actual global optimal extension for each given signal for the IF-based 
methods and a detailed comparison with extension approaches proposed in the literature for the EMD-based 
techniques is out of the scope of this paper and we plan to tackle it in a future work.

Finally, regarding the choice of ν , the number of times that we replicate the signal, its choice is a compromise 
between the need to reduce the border effects, and that of limiting the total length of the signal, keeping the 
computing time reasonable. In21 it was shown that border effects decrease exponentially with the distance from 
the edges of the signal. From this observation it follows that it sufficient to extend the signal with a ν from 0.5 to 5 
of the original signal. The choice of the actual ν depends on the length of the original signal, the longer the signal 
the smaller we choose ν , and on how low are the frequency we want to preserve, the lower are the frequency of 
interest the longer we extend the signal.

snew = χ · sext +m

https://in.ncu.edu.tw/%7encu34951/FEEMD.rar
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
https://it.mathworks.com/help/signal/ref/emd.html
http://www.cicone.com
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Synthetic example.  We consider the signal plotted in the top row of Fig. 1 which is given by

We first run the EMD algorithm included in matlab distribution 2018a and later versions, and produce the 
decomposition shown in the left panel of Fig. 1. To better visualize the end effects, we plot the first 1000 points 
only. Similar behaviors are present on the left boundary.

Issues are clearly visible nearby the boundary and they become more severe as the IMF frequency decreases. 
In order to reduce these end effects, we pre-extend the original signal. We make it five times longer than the 
original one, following the procedure presented above, since in this case the original signal is short enough and 
the computational complexity does not increase significantly in this way. We point out that in this case, since the 
signal has zero slope both on the right and left boundary, we opt to extend it symmetrically.

We feed this pre-extended signal to the EMD method to produce the decomposition shown in the right panel 
of Fig. 1. The end effects are visibly reduced.

Similar results are obtained using EEMD or FIF on this signal. The interested reader can find more details in 
the online supplementary material100.

In Table 1, we report the total computational time for the two EMD decompositions and the 2-norm of the 
relative differences between the ground truth and each IMF as well as the trend. This 2-norm quantifies the misfit 
between the ground truth and the IMF components produced via EMD.

This synthetic example shows that end effects mainly consist of artifact wave peaks at the onset (or at the end) 
of the IMFs: the higher the IMF index (i.e. the lower its frequency), the longer the wavelength of the spurious 
signal. It follows that such artifact can be recognized as a fictitious wave “propagating” towards the middle of the 
IMF, as one considers higher IMFs indexes. Additionally, end effects may also result into IMFs amplitude being 
larger than the original signal or even, in some cases, in the appearance of new IMFs containing frequencies not 
at all present in the original signal.

Real life example.  There is a huge amount of papers published in a wide variety of fields of research in 
which EMD-like methods are used to decompose signals. In some instances, we have identified a clear role of 
end effects in the derived decomposition59,101–104.

In the following, we examine, as an example, the results presented by Sarlis et al.103 where the authors them-
selves notice that some end effects are showing up in the decomposition. In that work, the analysed signal is the 
magnitude time series of the global seismicity for events of magnitude M ≥ 5.0 .

(1)
s(t) = 2t + cos(10t2 + 100t)+ cos(60t)+ cos(40t)+ cos(t2 + 20t)+ cos(0.5t2 + 5t)+ 1 t ∈ [0, 2π]
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Figure 1.   Boundary problems Synthetic Example. EMD results are compared with the analytical solution 
(“ground truth”). Left: EMD decomposition of the original signal (we show the first 1000 points). There are clear 
errors induced by EMD nearby the boundary. Right: EMD decomposition after pre-extending symmetrically left 
and right and made periodical the original signal, as described in “Problems with the boundaries”.

Table 1.   2-norm of the relative differences between the ground truth and each IMF and the trend computed 
via EMD. Last row: total computational time.

2-norm rel. diff. Original signal Pre-extended signal

IMF1 0.3000 0.2725

IMF2 0.5107 0.4418

IMF3 0.5548 0.2634

IMF4 0.6569 0.0730

Trend 0.4007 0.0372

Computational time 0.0144 s 0.0247 s
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In the left panel of Fig. 2, adapted from Fig. 1 in the original article, we use red boxes to pinpoint potential 
boundary effects, i.e. artifact wave peaks and anomalous amplitudes. Specifically, from IMF seven on, we notice 
the appearance of oscillations nearby the boundaries that have amplitudes different from the rest of the IMF 
and, more importantly, from the original signal. As an example, both the twelfth and thirteenth IMFs have 
values clearly oscillating in the interval [−10, 10] , whereas the original signal has values varying in the interval 
[4.3, 9.08].

In order to reproduce their findings, we downloaded the catalog of global earthquakes ( M ≥ 5.0 ) from 
the Global Centroid Moment Tensor (CMT) Project (https​://www.globa​lcmt.org/)105,106, for the period January 
1, 1976–October 1, 2014. The global earthquake magnitude time series is shown in the top row of Fig. 2. We 
run the decomposition of this signal using both the EMD algorithm, included in matlab distribution 2018a 
and later versions, and the eemd algorithm (it can be downloaded from the official website of the Taiwanese 
Research Center for Adaptive Data Analysis https​://in.ncu.edu.tw/~ncu34​951/resea​rch1.htm and is contained 
in the repository https​://in.ncu.edu.tw/~ncu34​951/Matla​b_runco​de.zip) written by Zhaohua Wu in 200910. This 
time we opt to set the number of elements in the ensemble to be 100 to speed up the calculations. The standard 
deviation is set, as suggested by the authors of the technique10, to 0.2. The outcome of these decompositions are 
pretty similar. We report in the right panel of Fig. 2 the one obtained via EEMD. The interested reader can find 
the EMD and FIF decomposition in the online supplementary material100.

In this case, no pre-extension of the signal was performed here, because the signal is highly erratic, and hence 
pseudo-periodic, as far as the border effects are concerned.

It is evident from the right panel of Fig. 2 that this decomposition do not contain the end effects obtained by 
Sarlis et al. (left panel of Fig. 2). The possible explanation is that they used some implementation of the EMD 
method which handles the boundaries in a way that induces the observed oscillations.

We point out that the authors of the original work also provided in their supplementary material103 the decom-
position obtained using the EEMD code released by the Taiwanese Research Center for Adaptive Data Analysis. 
The decomposition they produced is compatible with the one shown in the right panel of Fig. 2.
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Figure 2.   Boundary problems Real Life Example. Left: Adapted from Sarlis et al. paper103. EMD decomposition 
of the magnitude time-series of GCMT collected from 1 January 1976 to 1 October 2014. The red boxes 
highlight artifact wave peaks at the boundaries of the IMFs, while the blue asterisks pinpoint anomalous 
IMFs amplitudes (larger than the original signal). Right: Decomposition of the GCMT magnitude time-series 
from January 1st 1976 to October 1st 2014 produced using the EEMD function released on March 04 2009 by 
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Spike pulses and jumps in the signal
If jumps or spikes are present in the time series, they can substantially affect the signal decomposition. As a 
matter of fact, when the EMD- and IF-based techniques are applied to a signal containing an impulsive change, 
their decompositions introduce oscillations at any frequency (ref. “Synthetic example” and “Real life example”). 
This is, mathematically speaking, expected and meaningful because any jump and spike can be represented 
locally as the summation of infinitely many frequencies. However, this way of representing a jump or spike is not 
necessarily meaningful from a physical point of view. Specifically, we warn that a physical interpretation of the 
derived decomposition could likely bring to conclusions apparently in contradiction with the causality principle.

Caveats regarding the causality principle in analysing IMFs.  A slippery problem is represented by 
the application of decomposition techniques, such as the EMD- and IF-based algorithms, to the identification 
of possible precursors of abrupt high-magnitude events like spikes and jumps. In many fields, as seismology, 
medical science, space weather or meteorology, guessing in advance when “catastrophic events” occur is very 
desirable. However, we warn the reader that using EMD- and IF-based decomposition techniques may be very 
misleading.

The key point is that every abrupt change in amplitude, that necessarily is concentrated around some instant 
t0 and takes place at small scales, can also be represented as the superposition of many components of different 
scales. In order to visualize this, just imagine to Fourier-decompose a peak as Dirac’s δ(t − t0) : a namely infinite 
assortment of frequencies will be necessary, hence involving also very large period components. The same thing 
happens for locally-characterized decompositions, like the ones produced using EMD- and IF-based methods, as 
shown in Fig. 3 of the following synthetic example: any peak around t0 of a given original signal x(t) , appearing 
as a narrow bump in the original time series, will “broaden” on larger and larger intervals around t0 when larger 
scale components are considered. In particular, if at some given “small” time scale ℓ the signal component xℓ(t) 
peaks within some interval (t0 − ǫ, t0 + η) , at some larger scale ℓ′ > ℓ the increment of the component xℓ′(t) 
will take place all along the interval 

(

t0 − ǫ′, t0 + η′
)

 , with ǫ′ ≥ ǫ and η′ ≥ η . All of this might induce the not-
enough-careful scientist to imagine that, observing the large scale component xℓ′(t) , a peaky behaviour can be 
already guessed to appear soon at time t0 − ǫ′ ≤ t0 − ǫ < t0 , namely anticipating what the original signal x(t) , 
peaking at time t0 , will behave like. This is clearly a mistake: it would be as understanding that the δ-like pulse 
force bouncing back a rubber ball from a wall is “sensed” at some distance from the solid wall by observing the 
time series of the force F(t) = Fδ(t − t0) exerted on the flying ball, being t0 the precise time at which the colli-
sion takes place. This is blatantly false, as the force cannot be sensed in any way before the collision takes place. 
One can argue that, still, the “signal” F(t) = Fδ(t − t0) is indeed composed by all the large scale IMF addenda 
“anticipating” the impact, which is indeed true. The logical way out of this conundrum is the following: the time 
series of the δ-like peak can be mathematically represented as the summation of components which apparently 
extend their influence further back in time as the scale size increases. However, from a physical stand point, this 
second interpretation makes no sense. A travelling ball cannot sense the presence of a wall in advance in any way. 
In particular, the large scale components produced in the mathematical decomposition of the force F(t) applied 
on the flying ball once it touches the wall, cannot be used as precursor of the collision.

The examples reported in the following “Synthetic example” and “Real life example” all clearly suffer from 
this problem. It is actually incorrect to use information from the large scale components to infer the occurrence 
time of the peak, before it has occurred. This is because those low frequency components, necessary from a 
mathematical stand point to re-produce the spike or jump a posteriori, do not have the same aspect if the original 
signal x(t ≪ t0) does not show any peak yet, as shown in Fig. 4.

This does not mean that multiscale decomposition of some time series x(t) , being it performed via EMD- or 
IF-like methods, or even the standard wavelet or Fourier transform, cannot be of use in investigating the physical 
properties of the process producing the time series. What multiscale decomposition and their study can be of 
use for is the detection of behaviour and statistics within the time interval sampled: so, as a time series represents 
what a probe encounters as the phenomenon evolves in a given time interval [ti , tf ] , multiscale statistics of the 
time series reveals what has taken place at the different scales in the whole [ti , tf ] : this may be of great use in 
understanding, e.g., whether, turbulence47–49,107, intermittency46 or critical behaviour108 have taken place in [ti , tf ] . 
We will come back on this topic in “Stochastic signals decomposition”.
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Figure 3.   Spikes and jumps synthetic example. EEMD and FIF decompositions depicted in the left and right 
panels, respectively. The red line in each panel represents the zero reference line. Total computational time: 
70.6450 s (EEMD), 0.1355 s (FIF).
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In the following we first show, by numerical simulation, how the presence of a spike may influence the decom-
position (“Synthetic example”). Then, we examine one of the literature studies to stress the caveats about spikes 
and jumps proper handling in the decomposition of a signal (“Real life example”).

Synthetic example.  We start showing, by means of a simple numerical simulation, how the presence of 
even a single spike may influence the signal decomposition. Specifically, we simulate a constant-amplitude signal 
with a impulsive spike, shown in the top row of Fig. 3, and then we decompose it by means of both the EEMD 
and the FIF techniques. For the EEMD method we set the standard deviation to 0.2 and the dimension of the 
ensemble to 800, to reduce as much as possible the noise-related IMFs. Results are shown in Fig. 3.

We point out that this example allows to understand also how a jump, or multiple ones, can influence the 
decomposition of a signal. In fact, if we imagine covering with our hand the second half of Fig. 3 left or right 
panels, what we see is the beginning of a jump and its corresponding decomposition. In fact a spike can be viewed 
as two consecutive jumps, one going up and the other going down. From this observation it follows that there is 
no need to present here a separate example to show the influence of a jump in the decomposition of a signal. At 
the same time, it is important to underline that the idea of interpreting a spike as two consecutive jumps is not 
a practical way of dealing with spikes contained in a data set. The actual handling of spikes and jumps present 
in a data set differs widely, in fact, as explained in the following section.

One of the most important lesson that we can learn from this example is that the information contained 
in a single spike diffuses quickly far away in time/space from the location of the spike when we decompose it. 
Furthermore, from Fig. 3 we observe that, if we consider the peak values in each IMF component, the errors 
are distributed practically uniformly over all frequencies. The lower is the frequency the more far away from 
the spike location we have an impact in the decomposition. Researchers could be tempted to assume that such 
impact regards only low frequency IMF components. But there is not a single frequency which is not impacted 
in the decomposition by the presence of even a single spike, and the more the spikes are, the worse the situation 
becomes. So, regardless the context in which the signal is generated, it is always strongly advisable to decompose 
both the signal as it is and the signal after an appropriate pre-processing in order to understand and estimate the 
impact of spikes and jumps in the decomposition.

Real life example.  We have found several studies published in the literature where signals containing spikes 
or jumps are not carefully handled38,109–112.

The proper identification of spikes position in signals has been already studied in the literature, for instance 
in113,114, and for the jumps the so called essentially non-oscillatory (ENO) technique was developed in com-
putational fluid dynamics to capture shock positions25,115, and it can be adopted in this context. If on the one 

Figure 4.   Spikes and jumps real life example. Adapted from Chen et al.110. Left: From top to bottom, the first 
six IMFs of the non-stacked data of the number of daily earthquakes from the Taiwanese catalog for events of 
magnitude ML ≥ 3.0 from 1978 to 2008. Center Left: The top row shows the temporal variations in theoretical 
Earth tides at the center of Taiwan with a period of 1462 days (red) and the stacked data of daily earthquake 
numbers (blue). The second to seventh row display the first six IMFs that were extracted from the stacked time 
series by Chen et al. In both panels, red boxes highlight the artifacts induced by a jump, in the original time 
series, which “propagates” through all the IMFs. Center Right and Right: Comparisons of the IMFs produced 
using EMD and FIF, respectively. The time signal in the first panel is zoomed in to highlight the jump. In red 
the decompositions obtained using the original stacked data set, and in black the ones obtained after splitting 
the time series into two disjoint subsets. In particular, we split it at the highest jump, in position 988. We use 
symmetric extension to produce all the results. Total computational time: 0.3479 s (EMD—splitted signal), 
0.0511 s (EMD—original data set), 0.3243 s (FIF—splitted signal), 0.0526 s (FIF—original data set).



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:15161  | https://doi.org/10.1038/s41598-020-72193-2

www.nature.com/scientificreports/

hand some approaches have been proposed on how to remove spikes, on the other hand the question of how to 
properly handle jumps have never been raised in the context of EMD- and IF-based methods decompositions, 
to the best of the authors knowledge.

For this reason, in the following, we focus on the jump handling. In particular we examine, as an example, one 
of the decompositions presented by Chen et al.110, where the authors analyse the number of daily earthquakes 
time series ( ML ≥ 3.0 ) occurred in Taiwan in the period 1978-2008, which present naturally jumps.

In Fig. 4 (left and center left panels, adapted from Fig. 3 in the original article) we use red boxes to pinpoint 
jump effects, i.e. artifact waves “propagating” throughout all the IMFs.

In the following, we consider the stacked data set analysed by the authors of the original work, which is 
shown in the top row of Fig. 4 center left panel. Here, the highest jumps correspond to the sequences of events 
triggered by the largest earthquakes.

We decompose this signal using both EMD (we used the EMD algorithm included in matlab distribution 
2018a and later versions) and FIF (available at www.cicon​e.com) in two ways: without any “pre-processing”, as in 
the original article110, and with a “pre-processing”, which consists in splitting the time series in “before” and “after” 
the jump, and symmetrically extending the two disjoint subsets. Regarding the jumps and spikes identification 
and their localization, as we mentioned previously, many works have been published in the literature where differ-
ent techniques have been proposed, e.g.113,114. Therefore in this work we assume that their localization is known.

The outcome of these decompositions are shown in Fig. 4, center right and right panels. Here we plot in red 
the decompositions produced using the original stack data set, and in black the decomposition after splitting 
and symmetrically extending the two disjoint subsets.

It is evident from these results that an improper handling of the jump can severely affect the returned decom-
position at time t < t0 . Specifically, the lower the IMF frequency, the further the jump has influence back in time.

Based on these evidences, we suggest to always compare the decomposition obtained before and after “pre-
processing” the signal. Regarding the pre-processing, if a jump is present we propose to split the signal in two 
subsets, before and after the jump. Whereas, if one or more spikes are present, they can be localized and removed 
following what has been already suggested in the literature, e.g.113,114.

We also observe that the presence of the main jumps and spikes in a signal can be detected looking at the 
IMF components of the original signal in time domain all together, ref. Figs. 3 and 4. However this approach is 
not enough robust to help in the identification of secondary spikes and jumps which can affect badly the signal 
decomposition and mask other nonstationarities. So it is always advisable to use an ad hoc method for the spikes 
and jumps identification and removal, and to compare the decomposition before and after pre-processing.

Stochastic signals decomposition
When dealing with real data, the first question we should ask ourselves is: can we apply these decomposition 
techniques to the signal under analysis?

The EMD- and IF-based methods proved to be well suited for the analysis of signals coming from diffusion 
processes like heat or wave equations and, more in general, systems whose behavior can be described by dif-
ferential equations with oscillatory solutions. Whereas, a stochastic signal is missing enough regularity to be 
described by a mathematical model based on ordinary or partial differential equations. It is therefore an open 
problem to assess whether the techniques, on which this paper is focused, can successfully reproduce the features 
of the signal at different scales. In fact, while it is always possible to decompose a signal by EMD- and IF-based 
methods, a physical interpretation of the derived IMFs and their features has to be done with care, even in the 
case of deterministic signals; the stochastic signal case may appear even more uncertain.

As a first observation, one should point out that stochastic signals can be analysed sensibly with two purposes: 
either, to separate from the signal a deterministic part of it, that could be used to model part of the phenomenon 
via non-stochastic tools (e.g., systems of differential equations); or to study statistical characteristics of the signal. 
The application we want to discuss here pertains to this latter purpose.

Here the EMD and FIF techniques are applied to a synthetic stochastic time series largely used to mimic 
turbulent signals, both in fluid and plasma dynamics, namely the p-model (see, for instance:116 and117). Even if 
EMD and FIF decomposition is generally used to recognize and reconstruct the mathematical form of different 
components of a time series, so to understand the different contributions to a given phenomenon, this is not 
the aim here. Indeed, the p-model is constructed by summing functions that do not meet the characteristics of 
the components that can be reconstructed via EMD or via FIF. Still, decomposing the p-model signal via such 
techniques, in order to study its statistical properties at diffrent scales, allows to provide meaningful insights in 
the data sets, as shown below.

The p-model is a simple branching model: still, it is extremely powerful in mimicking the irregular and 
intermittent distribution of energy in turbulent media (118,119).

The p-model construction starts from the distribution

i.e., a piecewise constant distribution that is equal to E in the interval I = [0, L] and zero outside. The θ s are 
Heavyside step functions. Then, the interval I is divided into two subintervals I11 =

[

0, L
2

]

 and I12 =
[

L
2
, L
]

 , 
and the quantity E, contained in the whole original interval, is distributed “randomly” in I11 and I12 , so that the 
overall amount remains the same. In order to do so, a parameter p ∈ [0, 1] is defined, and two weights w11 and 
w12 are chosen, whose value is randomly chosen between 2p and 2

(

1− p
)

 , so that (w11 + w12)
E
2
= E . In doing 

so we define the distribution

(2)
{

u0(x) = E[θ(L− x)− θ(−x)]
∫

u0(x)dx = E > 0

http://www.cicone.com
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The u1(x) distribution is zero outside I = [0, L] and it is considered “the first generation” of the p-model. The 
branching process u0  → u1 is repeated as u1  → u2 , by subdividing I11

def
=

[

0, L
2

]

 and I12
def
=

[

L
2
, L
]

 into two halves 
each, and repeating the random assignment of the weights 2p and 2

(

1− p
)

 to each half of I11 and of I12 . By 
recursively repeating the previous steps, at the n-th step the distribution un(x) is derived. This is constant on 
each of the 2n intervals In,i=1,2n , each of which has length ℓn = L

2n
 , and has the same integral as all the other ones: 

∫

un(x)dx = E, ∀n . For a thorough explanation of the branching process just sketched, with explicit calculation, 
the interested reader can refer to the paper by Materassi et al.120

The profiles un(x) produced at a suitably high value of n by the p-model were proved to be useful to mimic 
the distribution of kinetic energy in fluid turbulence118,119, or that of magnetic energy in MHD or ionospheric 
turbulence121–123. Moreover, the choice of the parameter p, with which we defined the weights w11 and w12 in (3), 
tunes the degree of intermittency of the final result un(x) , as it regulates how uneven the partition of the amount 
E is from the (n− 1)-th to the n-th generation: p = 1

2
 reproduces Kolmogorov’s non-intermittent K41 theory119, 

while p → 0 and p → 1 gives rise to more and more intermittent distributions, with a mirror symmetry between 
p ∈

[

0, 1
2

)

 and p ∈
[

1
2
, 1
]

 . Last, but not least, the p-model distribution shows a well known multi-fractal singu-
larity spectrum122,124,125. All those reasons render the p-model series a suitable test bed for multiscale analysis 
techniques, as EMD and IF, because the ground truth is an intermittent signal of perfectly known characteristics, 
and the extent to which those are retrieved by the various analysis tools clearly emerges.

In the following, we consider a signal p(x) obtained from the summation of n = 12 generations uk=0,...,12 , 
each representing a different realization of a p-model p(x) =

∑12
k=0 uk(x) . In doing so we produce a signal which 

contains several scales which are enough “orthogonal” (i.e. independent) to each other. The sum p(x) clearly 
contains information about each of the kth generations corresponding to n = 12 different p-models, from the 
0th to the 12th one, because it is formed by these addenda.

As a next step, we decompose this signal via the DWT, using both “Haar” and “Daubechies 4” (db4) bases, 
EMD and FIF algorithms. In this work we compare the performance of the EMD- and IF-based methods with 
that of the discrete wavelet, since wavelets are a very well established tools in the study of turbulent signals126. 
Moreover, regarding the choice of the wavelet bases, the “Haar” wavelets are particularly suited to treat stepwise-
function based signals, as the single components uk are; whereas the use of “Daubechies” decomposition is well 
established in fluctuation analysis127. We call {ψh} the set of functions along which the signal is decomposed, so 
that p(x) =

∑

h chψh(x) . In our analysis, the functions ψh are DWT generated levels, EMD or FIF IMF func-
tions. The hth-scale filtered component of the true signal p(x) is defined as ph(x)

def
= chψh(x) . We show these 

decompositions in Fig. 5. It is evident that none of the aforementioned techniques is able to extract components 
which resemble the corresponding ground truth uk generations, and on the other hand we already anticipated 
that retrieving those addenda is not the purpose of our analysis.

One may argue that, for real life data sets, probability distributions, such as the exponential one, represent 
the large-scale randomness which could arise from the superposition of nonrandom processes at smaller scales. 
While this could be correct in theory, the previous simulation shows that DWT, EMD- and IF-based algorithms 
might not help researchers in identifying the exact origin of a data set. These techniques will always produce a 
decomposition of the signal, no matter what the process behind it is.

Finally, we compare the ability of all these techniques in reconstructing multiscale statistical features of the 
given signal, compared to the ground truth ones. We study, in particular, the standard deviation σ

(

ph(x)
)

 , the 
skewness S

(

ph(x)
)

 and the excess of kurtosis K
(

ph(x)
)

 , as a function of the scale h. Moreover, we include the 
total energy pertaining to the h-th scale E

(

ph(x)
)

 , and the inner product between two nearby scales C
(

ph(x)
)

 , 
which we calculate as:

The derived multiscale statistics are presented in Fig. 6.
A stochastic multi-scale (multifractal) signal as the p-model, or any highly turbulent natural signal, can be 

conveniently characterized by the statistical properties it shows when it is zoomed in at different time or space 
scales. For instance, multi-scale analysis of the statistical properties of turbulent signals in geophysics and plasma 
science may unveil which dynamical processes are at work to produce what the instruments measure. The pur-
pose here is to show what happens when the “zoom-in” tool are EMD- and IF-based techniques, and the result is 
that the multi-scale statistical properties recognized are in agreement with what found via other more traditional 
(and literature-consolidated) techniques. From Fig. 6 we see that the behavior, scale by scale, of signal variance, 
skewness and kurtosis, and the scalar product between adjacent scales, is caught rather well when we filter the 
signal with EMD and FIF methods. In particular these techniques prove to help in reconstructing the trend of 
σ(ph) , S(ph) or K(ph) functions, which is the main objective in real life turbulence study.

We observe that the DWT has troubles regardless the basis we select in reproducing the exact multiscale sta-
tistical features values, but it provides the right trends. EMD and FIF decompositions, instead, prove to be more 
accurate in replicating the standard deviation and power of the different components. The skewness values, as 
expected, are close to zero. These methods, in fact, decompose signals into simple and pseudo-sinusoidal IMFs 
which are symmetric with respect to the horizontal axis. Furthermore, the inner products between subsequent 
IMFs tends to zero since the EMD and FIF methods produces components which tend to be almost orthogonal 

(3)







u1(x) =
E
2 [w11χ11(x)+ w12χ12(x)]

χ11(x) = θ
�

L
2
− x

�

− θ(−x)

χ12(x) = θ(L− x)− θ
�

L
2
− x

�

{

E
(

ph(x)
)

=
∫
∣

∣ph(x)
2(x)

∣

∣dx,
C

(

ph(x)
)

=
∫

ph(x)(x)ph−1(x)dx
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each other, as the ground truth levels which have been obtained by different p-models. Regarding the kurtosis, 
EMD and FIF, as well as DWT, are all able to properly reproduce its trend as a function of the scale. We therefore 
conclude that all the multiscale analysis tools compared in this example are able to detect the intermittency of 
the signal under analysis119.

Furthermore, the previous example shows that either DWT, or EMD or FIF techniques leave their char-
acteristic signatures in the multiscale analysis of a given signal. Like, for instance, in the case of the skewness 
values for the IMFs produced using EMD- and IF-based methods. We explain, in fact, that these techniques are 
designed to produce simple components which have symmetric envelopes with respect to the horizontal axis. 
Nevertheless, both EMD and FIF provide a meaningful insight in the multiscale statistical analysis and trends 
of the signal under study, even in presence of strong stochasticity.

Physical signals may not only be stochastic, but also result out of the superposition of a deterministic part with 
noise. In general, as far as “noise” is expected to be a high frequency component, EMD and FIF techniques should 
separate it from low frequency deterministic parts, and then treated as here described. The case of superposi-
tion of noise and high frequency deterministic parts should be treated in more specific ways, see for instance128.

This example should have clarified the limits as well as the potentialities of these techniques when analysing 
signals characterized by some degree of stochasticity. As already reported, in real-life applications particular 
care must be taken when interpreting IMFs in physical terms. Based on the results proposed in this section, we 
discourage to blindly decompose and analyse a signal when its degree of stochasticity is not well known.

Figure 5.   Stochastic signals—P-model Example. From Top left to Bottom right corner, Haar and db4 Wavelet, 
EMD and FIF decompositions, respectively. In solid red the corresponding ground truth uk generations. In each 
panel, the x-axis plots the sample points, and the y-axis the IMFs ordered from top to bottom.
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Conclusions
The EMD- and IF-based methods proved to be more suitable than traditional methods for the analysis of non-
linear and nonstationary signals. Their relevance is witnessed by the large number of studies employing them. 
However, like any other technique, these methods rely on assumptions and have limitations that, if neglected, 
can severely affect any interpretation based on the returned decomposition. In this work, we examine the main 
pitfalls and provide caveats for the proper use of the EMD- and IF-based algorithms. Specifically, we address the 
problems related to boundary errors, to spikes and jumps in the signal and to the analysis of highly-stochastic 
data sets.

•	 Boundary conditions may influence the decomposition of a signal to an extent that increases with the com-
ponent scale. If not properly handled, they could lead to an artefact-prone decomposition of the original 
signal. This problem has been studied rigorously in the literature21 for the IF-based methods, but not for 
the EMD-based algorithms. However, based on the results obtained so far for the IF-based methods, we 
can reduce the impact of the possible boundary errors for both IF- and EMD-based algorithms by properly 
pre-extending the signal under study. For this reason, here we propose a new approach for the pre-extension 
of a given signal. This method is based on the assumption that the optimal way to extend the signal at the 
boundaries is known. So far, the only extensions studied rigorously in the literature are the periodical, sym-
metrical and anti-symmetrical ones for the IF-based methods. How to optimally extend in general a signal 
outside its boundaries is still an open problem that we leave to a future research project.

•	 Spikes, including outliers and jumps, can have a big impact on the decomposition, as shown in the examples 
presented in this work. We show that they could lead, as for the boundary conditions, to an artefact-prone 
decomposition of the original signal. Moreover, we encourage researchers to be extremely careful when con-
ducting any precursory analysis based on signal decomposition techniques, such as EMD and IF methods. 
When dealing with a signal containing spikes, the optimal solution would be to study its decomposition 
before and after removing the spikes from the signal itself. Whereas, when a jump is present in the data set, 
a good practice would be to split it into before and after the jump, analyse the two portions separately, and 
compare the outcome of this decomposition with the one of the original signal.

•	 In this work, we raise the question of whether the EMD- and IF-based methods are suitable for the analysis 
of highly stochastic signals. Although the derived decomposition is always correct from a mathematical stand 
point, it may be the case that there is not a corresponding evident physical meaning of each IMF.

	   As a matter of fact, when the signal is originated by processes whose behavior can be described by differ-
ential equations with oscillatory solutions, EMD- and IF-based techniques produce a decomposition which is 
meaningful from both a mathematical and a physical standpoint. Whereas, when the process underlying the 
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Figure 6.   Stochastic signals—P-model Example. From Top to Bottom rows, multiscale statistical analysis of 
the Haar and Daubechies 4 Wavelet, EMD, and FIF decompositions, respectively. Different statistical quantities 
are plotted with respect to the IMF number, from left to right columns: standard deviation (sigma), skewness, 
kurtosis, power and inner product of two subsequent levels. In dashed red the ground truth values.
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signal that we want to analyse is characterized by a high degree of stochasticity, the ability of these techniques 
in separating properly the different scales becomes less clear. In this paper we consider, as an example, the 
multiscale statistical analysis of the decompositions produced by the DWT-, EMD- and IF-based methods 
of a stochastic signal obtained as solution of a p-model. This model has been proposed and used in the 
literature to generate signals which mimic the behavior of irregular and intermittent distribution of energy 
in turbulent media. The EMD- and IF-based methods proved to have good performance from a multiscale 
statistical analysis prospective. It remains, however, an open problem to understand up to which degree of 
stochasticity these techniques are able to reproduce with a good accuracy the single components contained 
in a given signal. We plan to study this matter in a forthcoming work.

From all these results it is evident that it can be risky to blindly run the decomposition of a nonstationary signals 
by means of the EMD- and IF-based techniques and using the results without carefully considering the afore-
mentioned limitations. However, the right handling of these techniques allows the users to fully exploit their 
potentialities in the analysis of nonstationary signals.
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