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Abstract

In this paper we derive by an entropy minimization technique a local Quantum Drift-

Diffusion (QDD) model that allows to describe with accuracy the transport of electrons

in confined nanostructures. The starting point is an effective mass model, obtained by

considering the crystal lattice as periodic only in the one dimensional longitudinal direc-

tion and keeping an atomistic description of the entire two dimensional cross-section. It

consists of a sequence of one dimensional device dependent Schrödinger equations, one

for each energy band, in which quantities retaining the effects of the confinement and

of the transversal crystal structure are inserted. These quantities are incorporated into

the definition of the entropy and consequently the QDD model that we obtain has a pe-

culiar quantum correction that includes the contributions of the different energy bands.

Next, in order to simulate the electron transport in a gate-all-around Carbon Nanotube

Field Effect Transistor, we propose a spatial hybrid strategy coupling the QDD model in

the Source/Drain regions and the Schrödinger equations in the channel. Self-consistent

computations are performed coupling the hybrid transport equations with the resolution

of a Poisson equation in the whole three dimensional domain.

Keywords: Quantum Drift-Diffusion model, entropy minimization, hybrid coupling, Schrö-

dinger equation, confined nanostructures, carbon nanotube FETs.
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1 Introduction

The extreme miniaturization reached in nanoelectronics brings the necessity of developing

new models to describe the electron transport. Indeed, to a reduced channel length it cor-

responds also a strong reduced lateral dimension. When the cross-section diameter is below
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3 nm, the strong confinement affects the energy band structure and bulk material quantities

cannot be used in the simulations (see [15] e.g., and references therein). In particular, the

potential generated by the crystal structure can be considered periodic only in the longitu-

dinal direction and the assumption of infinite periodic structure, which allows to derive the

commonly used effective mass approximation, is not valid anymore. Atomistic ab-initio com-

putations give an accurate description of the electron transport but they are computationally

too demanding and are not feasible in a device design framework. A challenge is to develop

computationally efficient models that describe with accuracy the most relevant features of

such confined devices.

This issue has been the subject of recent works. In [9], a quantum model has been pro-

posed to describe the ballistic transport of electrons in ultra-scaled confined nanostructures.

More precisely, an envelope function decomposition has been used to derive from a three

dimensional (3D) Schrödinger equation a one dimensional (1D) longitudinal effective mass

model, where device dependent effective quantities retain the effects of the confinement and

of the transversal crystal structure. In the non degenerate case, adiabatic decoupling occurs

and the model consists of a sequence of 1D effective Schrödinger equations, one for each band.

Interactions of charged particles with phonons have also been considered to describe these

confined nanostructures. A drift-diffusion (DD) model has been derived and analyzed in [20].

It consists of a single macroscopic equation in which atomistic quantities, similarly to [9], are

integrated. However, in promising miniaturized nanoelectronic components, the transport

model must describe collisions as well as quantum effects. Since including collision terms in

a quantum model is a quite complicate matter, a reasonable possibility consists in using a

quantum macroscopic model.

In this work, we propose a formal derivation of a Quantum Drift-Diffusion (QDD) model in

this context of strongly confined nanostructures. For that, we follow the theory developed in

[13, 12], based on an entropy minimization technique. It relies on an extension of Levermore’s

moment approach [25] to quantum systems. Notice also that, in the context of semiconductor

modeling, the principles of extended thermodynamics were first used to derived macroscopic

models of hydrodynamic nature (see [2] e.g.).

More precisely, we first identify a ballistic transport model. Starting from the Schrödinger

system proposed in [9], we associate to each wave function a “density-matrix” function and

we obtain a sequence of Wigner equations. We emphasize that, similarly to [9, 20], it is a one

dimensional model with device dependent effective quantities that retain the effects of the

2D transversal structure. Then, we heuristically include a description of collisions, adding a

simple collisional term of Bhatnagar-Gross-Krook (BGK) type. The local equilibrium to which

the system is relaxing is chosen, following the ideas of [13, 12], as the extremum of an entropy

functional subject to the constraint that the zeroth moment is prescribed. Next, we apply

the Chapman-Enskog method and we obtain a non local QDD model. Finally, a semiclassical

expansion of the quantum Maxwellian up to second order leads to a local QDD model. Along
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this paper, the term QDD is generally used to name the local model. Compared to the DD

model derived in [20], the QDD model obtained in this paper contains a nonlinear term with

a quantum correction to the potential that can be interpreted as a quantum potential similar

to the so-called Bohm potential well known in quantum mechanics.

Generalized variants of QDD models have recently been proposed. For instance, the

diffusive limit of a two band k.p model has been investigated in [4]. A multiband model

with an arbitrary number of bands has been considered in [30] to describe the quantum

transport in a strong force regime. In [5], a model has also been derived to describe a

spin-polarized bidimensional electron gas. Two species of particles (labeled spin-up and spin-

down) are taken into account and a vectorial model is obtained. Our paper gets into this

rich multiband framework. The novelty is the way to integrate into the QDD type model

the atomistic information of the strongly confined transversal section. As consequences, the

quantum correction that we obtain includes the contributions of the different energy bands

and contains additional terms compared to the usual Bohm potential. Along this paper, we

make the restrictive assumption that adiabatic decoupling occurs. In [9], a system of coupled

Schrödinger equations is obtained in the degenerate case with a coupling between the energy

bands through the potential. The derivation of a diffusive model in the degenerate case is far

from the scope of this paper and is not discussed here.

In order to assess the capability of this QDD model to describe the transport of electrons

in confined nanostructures, numerical experiments are performed for a zig-zag single-walled

Carbon Nanotube Field-Effect Transistor (CNTFET) with a gate-all-around. The peculiar

electronic properties of CNT, that strongly depend on the geometry of the tube, make them

promising components in future FETs (see [29, 16, 26] e.g.). Self-consistent computations are

performed coupling the one dimensional quantum transport model with the resolution of a

Poisson equation in the whole three dimensional domain. Numerically, we observe that the

quantum correction improves significatively the results compared to those obtained with the

DD model derived in [20].

In order to complete the picture of possible models for CNTFET’s, we also investigate in

a second part the use of this QDD model in a hybrid strategy, spatially coupling it with the

effective mass Schrödinger model proposed in [8]. More precisely, the macroscopic collisional

QDD model is used in the Source/Drain regions and the Schrödinger equations are used

in the active region. We emphasize that the computational cost of a hybrid strategy is

generally cheaper than the one of a full Schrödinger model. In the literature, in devices where

different effects are predominant in different part of the domain, spatial hybrid strategies

have been designed, prescribing appropriate transmission conditions at interfaces. A hybrid

kinetic-quantum model was first considered by N. Ben Abdallah in [7] where a Boltzmann

equation is used to define the density in the classical zones instead a Schrödinger equation is

chosen to describe the density in the quantum domain. At interfaces, reflection-transmission

coefficients are defined to give the boundary conditions of the Boltzmann equation. Inversely,
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the distribution function is used as a statistical function to construct the quantum density.

In [7], the author proves that the reflection-transmission conditions preserve the current.

Next, the diffusive limit has been considered in [11] where the Boltzmann equation and

the reflection-transmission conditions have been replaced by a DD equation and appropriate

interface conditions derived using a boundary layer analysis. In [6], the strategy to couple the

drift-diffusion Schrödinger system is quite different since the coupling is direct and authors

get an analytic expression of the connection conditions by writing the exact continuity of the

current at interfaces. In [14], a QDD equation is coupled with a Schrödinger model. Due

to the fourth order term appearing in the QDD equation, additional conditions are needed

and the coupling is realized by assuming the continuity of both the electron density and the

current at interfaces. In [11, 6, 14], numerical results are performed for a one-dimensional

resonant tunneling diode.

Here, our hybrid strategy follows the one of [14]: we impose the continuity of the electron

density and the current at interfaces. Again numerical results are performed for a CNTFET.

We compare, analyzing the different current-voltage characteristics, this hybrid approach with

the two non hybrid models (effective mass QDD or Schrödinger used in the entire domain)

and also with the hybrid DD-Schrödinger strategy described in [19].

The paper is organized as follows. In Section 2, we present the effective mass Schrödinger

model proposed in [9] to describe the electron transport in strongly confined nanostructures.

We assume that adiabatic decoupling occurs and, associating to each wave function a “density-

matrix” function, we obtain a sequence of Wigner equations. This model is the starting point

for the formal derivation of the macroscopic QDD model presented in Section 3. After a

description of the obtained QDD model (Proposition 3.2), we detail the three main steps of

the derivation: the entropy minimization (Section 3.1), the diffusive limit using a Chapman-

Enskog method (Section 3.2) and the semiclassical expansion up to the second order (Section

3.3). Section 4 is dedicated to the description of the hybrid strategy. In particular, we

explicit the interface conditions and present the equation discretizations. Finally, in Section 5,

numerical simulations are performed for a gate-all-around CNTFET. We describe the physical

device and compare the numerical results obtained with the different models.

2 Presentation of the multiband Wigner-BGK model

In [9], a novel quantum effective mass model has been derived by performing an asymptotic

process which consists in using an envelope function decomposition to obtain a new effective

mass approximation (see also [3] for a similar approach for 3D periodic crystals). We recall it

briefly here. Let us consider an infinite wire defined in a physical domain R×ωε, where ε is the

typical spacing between lattice sites. As starting point, the transport is described by a scaled

Schrödinger equation in R×ωε containing a potential W generated by the crystal lattice, fast

oscillating in the scale defined by the crystal spacing, and a slowly varying external potential
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V : 
i~∂tψε = − ~2

2me
∆ψε + 1

ε2
W
(
x
ε
, z
ε

)
ψε + V

(
x, z

ε

)
ψε, (x, z) ∈ R× ωε,

ψε = 0 for z ∈ ∂ωε,
ψε(t = 0) = ψin,ε,

(1)

where ψin,ε is a given initial value. Here, ~ is the reduced Planck constant and me is the

electron mass. Since the 2D cross-section ωε comprises few ions, W is considered periodic

only in the longitudinal x-direction (transport direction) and the variable z of the transverse

section can be considered as fast variable, rescaled as z′ = z
ε
. Denoting by ω the scaled

cross–section, we consider the following Bloch-type problem (with a quasi momentum equal

to 0) in the 3D cell U = (−1/2, 1/2)× ω
− ~2

2me
∆χn +Wχn = Enχn,

χn(y, z′) = 0 on ∂ω, χn 1-periodic in y,∫
U |χn|

2dydz′ = 1.

(2)

Here y denotes the transport variable in the cell. The peculiarity of the strongly confined

structure is reflected in the choice of the unit cell problem of Bloch type (2). We point out that

this unit cell U comprises the entire cross–section of the nanostructure. Thus, the eigenvectors

depend on the device under consideration, for instance on the device geometry, on the number

of atoms, on the chirality, and so on. Moreover, the homogeneous Dirichlet condition imposes

confinement in the transverse directions, while periodicity is considered only in the transport

direction. Consequently, the eigenvectors are 3D quantities but the Brillouin zone and the

associated energy bands are one dimensional.

The physically relevant potentials are nonnegative potentials given in L∞(U). Conse-

quently, the eigenfunctions χn, solutions of (2), form an orthonormal basis of L2(U), with real

eigenvalues which satisfy

E1 ≤ E2 ≤ ..., lim
n→+∞

En = +∞. (3)

Moreover, from the min-max principle, it is clear that we have En ≥ Λn for all n ∈ N, where

Λn are the eigenvalues of the Laplacian problem in the unit cell U with Dirichlet boundary

conditions imposed on ∂ω and periodic conditions in the longitudinal direction. It is well-

known that for all λ > 0,
∑

n∈N e
−λΛn < +∞ (eigenvalue properties for a Laplacian-Dirichlet

problem [18]). Thus, we deduce that

∀λ > 0,
∑
n∈N

e−λEn < +∞. (4)

The asymptotic process developed in [9], by using the functions defined in (2) as basis

for the envelope function decomposition, allows to average out not only the lattice potential,

but also the lateral dimension. The limit problem consists of an infinite set of Schrödinger

equations, whose structure depends on the multiplicity of the eigenvalues (3).
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Assumption 2.1. Along this paper, we assume that the eigenvalues En are all simple.

Then, in the limit system adiabatic decoupling occurs and, for each energy band, the

Schrödinger equation, which incorporates the relevant averaged quantities, based on the Bloch

functions, has the form

ı~∂tψn(t, x) = − ~2

2m∗n
∂xxψn(t, x) + Vn(x)ψn(t, x), x ∈ R. (5)

The n-th band effective mass m∗n is defined by

me

m∗n
= 1− 2~2

me

∑
n′ 6=n

Pnn′Pn′n
En − En′

, where Pnn′ =

∫
U
∂yχn′(y, z

′)χn(y, z′) dydz′. (6)

Also, the effective potential can be computed and it is given by

Vn(x) =

∫
ω

V (x, z′)gn(z′) dz′, with gn(z′) =

∫ 1/2

−1/2

|χn(y, z′)|2 dy. (7)

Remark 2.2. In the degenerate case, to each multiple eigenvalue corresponds, instead of

equation (5), a system of coupled Schrödinger equations with dimension equal to the multi-

plicity of the eigenvalue. The kinetic part of the effective mass Hamiltonian is diagonal and

the coupling occurs through the potential.

The first step towards the definition of a macroscopic quantum model is the construction

from (5) of the corresponding Wigner equation. For each band n, let us introduce the “density-

matrix” (function) ρn associated to the wave function ψn solution of (5). It is defined by

ρn(t, r, s) = ψn(t, r)ψn(t, s) (8)

and it is solution of

i~∂tρn = − ~2

2m∗n

(
∂rr − ∂ss

)
ρn +

(
Vn(r)− Vn(s)

)
ρn. (9)

We also need the so-called Wigner transform of an operator ρ acting on functions of L2(R).

It is a function in the phase space (x, p) ∈ R2 first used by Wigner in 1932 [31] and defined

by

W (ρ)(x, p) =

∫
R
ρ
(
x− ξ

2
, x+

ξ

2

)
eiξp/~dξ, (10)

where ρ(r, s) is the integral kernel of the operator ρ : ρϕ(r) =
∫
R ρ(r, s)ϕ(s)ds, for any

function ϕ ∈ L2(R). Inversely, the inverse Wigner Transform, also called Weyl quantization,

transforms a function w(x, p) into an operator ρ acting on functions of L2(R) in the following

way

W−1(w)ϕ(r) =
1

2π~

∫
R2

w
(r + s

2
, p
)
ϕ(s)eip(r−s)/~dpds. (11)
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In our case, the Wigner function wn = W (ρn) constructed from the density matrix (8) is

formally a solution of the following Wigner equation

∂twn(t, x, p) + vn∂xwn(t, x, p)−Θ~[Vn]wn(t, x, p) = 0, (x, p) ∈ R2, (12)

where vn is a velocity defined by vn = p
m∗n

and Θ~[Vn] is the operator given by

Θ~[Vn]wn(t, x, p) =
i

2πm∗n

∫
R2

Vn(x+ ~
2m∗n

η)− Vn(x− ~
2m∗n

η)

~
wn(t, x, q)e

i
(p−q)η
m∗n dqdη. (13)

We also recall that 1
2π~

∫
Rwn(t, x, p)dp represents the electron density in the n-th band.

We now need to include a collision mechanism into the ballistic model just described. Since

the main information about the microscopic collision mechanism entering the macroscopic

model that we will derive is the form of the local equilibrium, we will use along this paper a

simple collision operator Q0 in the BGK form. It writes

Q0(wn) =
f(wn)− wn

τn
(14)

where τn is a relaxation time related to the n-th band and f(wn) is a function representing

an equilibrium state that will be specified in the next section.

Assumption 2.3. We assume that the ratio τn
m∗n

is identical for each energy band n.

Remark 2.4. The constant ratio τn
m∗n

can be seen as a diffusive constant D. It will naturally

appear in the derivation of the macroscopic model in the next section. As we will see, the

obtained macroscopic model consists of a single equation and not of a sequence of equations,

one for each band. Consequently, it is also interesting to rewrite this diffusive constant D as

D =
τn
m∗n

=
τ

m∗G
(15)

where τ is the relaxation time of the device and m∗G a global effective mass given by

m∗G =

∑
nm

∗
ne
−En∑

n e
−En

. (16)

Finally, we write the Wigner equation (12) in the diffusive scaled form, introducing a small

parameter α proportional to the mean free path. Consequently, we formally obtain, for each

energy band, the following Wigner-BGK scaled equation

α2∂tw
α
n(t, x, p) + α

(
vn∂xw

α
n(t, x, p)−Θ~[Vn]wαn(t, x, p)

)
= Q0

(
wαn(t, x, p)

)
, (x, p) ∈ R2. (17)

In the sequel, we will use this set of decoupled Wigner-BGK equation as starting point to

derive a quantum macroscopic model in a multiband setting.
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3 Derivation of the Quantum Drift-Diffusion model

In this section, we perform the formal derivation of a Quantum Drift-Diffusion type model,

following an approach proposed by Degond et al. [13, 12]. It is based on entropy minimiza-

tion techniques and a definition of the so-called “quantum logarithm” LOG and “quantum

exponential” EXP . They are phase space functions defined, using definitions (10) and (11),

as

LOG(f) = W
(

log(W−1(f)
)

and EXP (f) = W
(
exp(W−1(f)

)
. (18)

We underline that the quantum logarithm and the quantum exponential involve heavily non-

local operations. It is essential to recover the nonlocality of quantum mechanics.

This approach, that is detailed afterwards in Sections 3.1 and 3.2, allows us to obtain the

following result:

Proposition 3.1. Let V be a given potential and wα = (wαn)n∈N be a sequence of Wigner

functions wαn solutions of (17) with initial data w0 = (wn,0)n∈N. Then, as α goes to 0, wαn
formally converges to

wn = EXP
(
A− En − Vn −

p2

2m∗n

)
(19)

with A (appearing through (N, J)) solution of the non local conservation equation

∂tN(t, x)− ∂xJ(t, x) = 0, x ∈ R, t > 0, (20)

N(0, x) = N0(x), x ∈ R, (21)

where the electron density N , the current J and the initial density N0 are respectively defined

by

N(t, x) =
1

2π~
∑
n∈N

∫
R
wndp, (22)

J(t, x) =
1

2π~
∑
n∈N

τn

∫
R

(
v2
n∂xwn +

1

m∗n
∂xVnwn

)
dp, (23)

and

N0(x) =
1

2π~
∑
n∈N

∫
R
wn,0dp. (24)

We emphasize that this macroscopic model is not made of a sequence of equations, one

for each energy band. On the contrary, it consists in a single conservation equation similarly

to the Drift-Diffusion model analyzed in [20]. As we will see in Subsection 3.1, the single

macroscopic equation is the result of the use of an entropy in which, thanks to the adiabatic

decoupling assumption, the contributions of each band are summed up.

The extremal solution of the entropy minimization problem will be given by the quantum

exponential EXP
(
A − En − Vn − p2

2m∗n

)
that appears in (19). In the sequel, this extremal
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solution will be called quantum Maxwellian and denoted Mn(wn). In other words, Proposition

3.1 tells that wαn converges to the quantum Maxwellian as α goes to 0.

The model described in Proposition 3.1 is nonlocal due to the fact that the quantum

exponential involves non-local operators. However, a local model can be obtained thanks

to a O(~4) expansion of the quantum Maxwellian. Following the computations that will be

detailed in Section 3.3, we obtain the so-called Quantum Drift-Diffusion (QDD) model:

Proposition 3.2. Let A be the solution of the non local equation (20) with J and N defined

by (22) and (23), respectively. Then, we formally have

N = Nq +O(~4) and J = Jq +O(~4)

where Nq satisfies the following conservation equation up to order ~2

∂tNq(t, x)− ∂xJq(t, x) = 0, x ∈ R, t > 0, (25)

Nq(0, x) = N0(x), x ∈ R, (26)

with

Jq = D
(
∂xNq +Nq∂xVG −

~2

12m∗G
Nq∂xQ[Nq]

)
. (27)

VG is a global effective potential defined by

VG = − log
(∑
n∈N

Zn
)

with Zn =

√
m∗ne

−En−Vn∑
l

√
m∗l e

−El
(28)

and Q[Nq] is a quantum correction expressed as

Q[Nq] =
∑
n∈N

m∗GZn
m∗n
∑

lZl

(
2
∂xx
√
Nq√

Nq

+ U(VG − Vn) + 2
∂x
√
Nq√
Nq

∂x(VG − Vn)
)
, (29)

where the notation U denotes the operator

U(X) = ∂xxX +
1

2
|∂xX|2. (30)

We remind that D is the diffusive constant defined in (15), m∗G the global effective mass

(16) and ni the intrinsic carrier concentration that is expressed (see [1] e.g.) as

ni =
1

2π~
∑
n∈N

e−En
∫
R
e
− p2

2m∗n dp =

∑
n

√
m∗ne

−En
√

2π~
(31)

All these physical quantities are device dependent since they depend on the effective masses

m∗n and the energy bands En. So, this novel QDD model is peculiar to the device under

consideration.

We also emphasize that the term −~2
6

∑
n

Zn
m∗n

∑
l Zl

∂xx
√
Nq√

Nq
appearing in (27) (through (29))

is similar to the so-called Bohm potential. Here, the quantum correction includes a sum over
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n to take into account the contributions of the different bands. Also, a notable difference

is that Q[Nq] contains additional terms depending on VG − Vn. They retain the difference

between an effective potential Vn (7) defined for each band and the global effective potential

VG (28).

Remark 3.3. The current Jq (27) can be rewritten in terms of a quantum quasi-Fermi energy

Aq:

Jq = DNq∂xAq with Aq = log
(Nq

ni

)
+ VG −

~2

12m∗G
Q[Nq]. (32)

It is this form that will be used in the numerical part.

Remark 3.4. We can consider without restrictions that V is a nonnegative potential. Using

(4), we can immediately say that
∑

n∈N e
−En−Vn < +∞. So, all the quantities such as (28)

are well defined.

Let us now detail in the following subsections the formal derivation that allows us to

establish Propositions 3.1 and 3.2.

3.1 Entropy minimization technique

The starting point of the approach consists in defining an equilibrium state as the minimizer

of a suitable quantum entropy functional under the constraint on the zero order moment.

Since the moments are naturally defined in terms of Wigner functions, we have chosen here to

express the entropy in the Wigner formalism (by invoking the Wigner and the inverse Wigner

transforms) even if it is more natural to define it in terms of the density operator. So, the

entropy is expressed as

S(w) =
1

2π~
∑
n∈N

∫
R2

W
(
s(W−1(wn))

)
dxdp, (33)

where s is the convex function defined by s(f) = f(log(f)− 1). Following [13] (Lemma 3.3)

and using the definition of the quantum logarithm LOG (18), it can be proved that, for all

functions g,
∂S(w)

∂wn
(g) =

∫
R2

gLOG(wn)dxdp. (34)

Since we are interested in this paper in the derivation of an isothermal model, we have to

take into account the total particle energy minimizing the relative entropy

G(w) = S(w) + E(w) with E(w) =
1

2π~
∑
n∈N

∫
R2

( p2

2m∗n
+ Vn + En

)
wndxdp. (35)

For any w = (wn)n∈N in E = {w ∈ l1(L1(R2)) s.t. E(w) < +∞}, we associate a den-

sity N [w](x) = 1
2π~
∑

n∈N
∫
Rwndp. Then, the minimization problem that we consider is the

following: for a given electron density N > 0, we look for

min
w∈E

(
G(w)/N [w] = N

)
. (36)

10



A rigorous proof of existence and uniqueness of a similar constrained minimization problem

has been obtained by Méhats and Pinaud [28, 27].

Introducing a Lagrange multiplier A that is independent of the energy bands, we consider

the functional

F (w,A) = G(w)−
∫
R
A
(
N [w]−N

)
dx,

in which the constraint is weakly imposed. It can formally be proved that for each n, the

extremal condition for w? = (w?n)n∈N

0 =
∂F (w?, A)

∂wn
(g) =

∫
R2

g
(
LOG(w?n) +

p2

2m∗n
+ Vn + En − A

)
dxdp,

imposed for all functions g implies that

w?n = EXP
(
A− En − Vn −

p2

2m∗n

)
. (37)

The extremal solution w?n is called the quantum Maxwellian and will be denoted Mn(wn) in

the sequel. Moreover, A can be interpreted as a quantum quasi-Fermi energy.

3.2 Formal diffusive limit

Now, we can perform the diffusive limit when α goes to 0. The starting point is the Wigner-

BGK equation (17) that, to simplify the notations, can be written

α2∂tw
α
n + αΓwαn = Q0(wαn), (38)

introducing the operator Γ = vn∂x − Θ~[Vn]. In order to specify the equilibrium state of the

BGK collision operator defined in (14), we use the quantum Maxwellian defined in (37):

Q0(wαn) =
Mn(wαn)− wαn

τn
. (39)

The collision operator has the following properties (see [21] e.g.):∫
R
Q0(wn)dp = 0 and Q0(wn) = 0⇔ wn = Mn(wn). (40)

We also remind (see e.g. Lemma 12.9 in [21]) that the operator Θ~[Vn] defined in (13) is such

that ∫
R

Θ~[Vn]wαndp = 0 (41)

and ∫
R
pΘ~[Vn]wαndp = −∂xVn

∫
R
wαndp. (42)

11



Passing to the limit α→ 0 in (38), we obtain that Q0(wn) = 0, where wn = limα→0w
α
n . It

means that wn = Mn(wn). Secondly, we insert a Chapman-Enskog expansion wαn = Mα
n (wαn)+

αgαn in (38). It gives

α∂tw
α
n + Γ

(
Mα

n (wαn) + αgαn
)

= Q0(gαn) =
Mα

n (gαn)− gαn
τn

.

Passing to the limit α → 0, we obtain τnΓMn(wn) = Mn(gn) − gn, where gn = limα→0 g
α
n .

Thirdly, we take (38) and we integrate it over p. Using (41), we obtain

α∂t

∫
R
wαndp+ ∂x

∫
R
vnw

α
ndp = 0.

We insert the Chapman-Enskog expansion in this expression and we use the fact that
∫
pMα

n dp =

0 since it is an odd function. It gives

∂t

∫
R

(
Mα

n (wαn) + αgαn

)
dp+ ∂x

∫
R
vng

α
ndp = 0.

Passing to the limit α→ 0 and summing on each band n, we obtain after calculations, thanks

to the property (42), the non local conservation equation (20) with (22)-(23).

3.3 Expansion in power of ~2

Furthermore, in order to obtain formally the local model stated in Proposition 3.2, we expand

Mn(wn) in terms of ~2. Up to order O(~4), the following expansion (see Proposition 5.3 in

[12]) holds for the quantum Maxwellian (for all x ∈ R and p ∈ R):

Mn(wn) = EXP
(
A− En − Vn −

p2

2m∗n

)
= e

A−En−Vn− p2

2m∗n (43)(
1 +

~2

8m∗n

(
∂xx(A− Vn) +

1

3
|∂x(A− Vn)|2 − 1

3

p2

m∗n
∂xx(A− Vn)

))
+O(~4).

Notice that the zeroth order term corresponds to the classical Maxwellian. Integrating over

p, it leads to

1

2π~

∫
R
Mn(wn)dp =

1

2π~
eA−En−Vn

(
1 +

~2

12m∗n
U(A− Vn)

)∫
R
e
−p2
2m∗n dp+O(~4),

where U has been defined in (30). Using the expression of the intrinsic carrier concentration

(31), we obtain, for the density N defined in (22), the following expansion

N = nie
A
∑
n∈N

Zn
(

1 +
~2

12m∗n
U(A− Vn)

)
+O(~4), (44)

where Zn has been defined in (28).

12



Now, we would like to express A in terms of N . Using the global potential VG defined in

(28), we can write

N = nie
A−VG +O(~2). (45)

Moreover, we have

U(A− Vn) = U(A− VG + VG − Vn) = U(A− VG) + U(VG − Vn) + ∂x(A− VG)∂x(VG − Vn).

Differentiating (45) with respect to x, we find ∂x(A− VG) = ∂xN
N

+O(~2) and consequently

U(A− Vn) = 2
∂xx
√
N√

N
+U(VG− Vn) + 2

∂x
√
N√
N

∂x(VG− Vn) +O(~2) =: Sn(N) +O(~2). (46)

Therefore, we have

A = log
(N
ni

)
− log

(∑
n∈N

Zn
(

1 +
~2

12m∗n
Sn(N)

))
+O(~4).

Putting
∑

lZl in factor in the second logarithm, we finally obtain

A = log
(N
ni

)
+ VG −

~2

12m∗G
Q[N ] +O(~4) (47)

where Q[N ] is the quantum correction defined as in (29).

The last step consists in expanding the current defined in (23). Since

1

2π~

∫
R
v2
n∂xMn(wn)dp =

1

2π~m∗n
∂x(A− Vn)

∫
R
Mn(wn)dp+O(~4),

we immediately have

J =
1

2π~
∂xA

∑
n∈N

τn
m∗n

∫
R
Mn(wn)dp+O(~4).

Under Assumption 2.3 and using the definition of the diffusive constant (15), we obtain thanks

to (47):

J = D
(
∂xN +N∂xVG −

~2

12m∗G
N∂xQ[N ]

)
+O(~4) (48)

Introducing the expansions obtained above into the conservation equation (20), the result

formulated in Proposition 3.2 follows.

3.4 Self-consistent computations

Finally, in preparation for self-consistent computations, given Nq solution of (25), we need to

define a charge density Nn
q for each band. We do so, recalling that

N =
1

2π~
∑
n∈N

∫
R
Mn(wn)dp.

13



Consequently, we define

Nn =
1

2π~

∫
R
Mn(wn)dp.

From (44), we can write

Nn = nie
AZn

(
1 +

~2

12m∗n
U(A− Vn)

)
+O(~4).

Thus, a reasonable choice for Nn
q is to omit the remainder of order O(~4). Rewriting the

dominant term in terms of Nq, it gives

Nn
q = Nq

√
m∗ne

−En−Vn
(
1 + ~2

12m∗n
Sn(Nq)

)∑
l

√
m∗l e

−El−Vl
(
1 + ~2

12m∗l
Sl(Nq)

) , (49)

where Sn has been defined in (46). We obviously notice that the sum over all the bands gives

the density Nq.

Next, as in [9] and [19], the transformation from the one dimensional transport direction to

the entire nanostructure is done by means of the quantities gn’s (7). It leads to the definition

of a three dimensional density

N3D(x, z) =
∑
n∈N

Nn
q (x)gn(z). (50)

Consequently, the 1D transport model presented in Proposition 3.2 can be self-consistently

coupled with the following 3D Poisson equation for the electrostatic potential VP

−∇
(
εr(z)∇VP (x, z)

)
=

q

ε0

(
Ndop(x, z)−N3D(x, z)

)
. (51)

q is the elementary charge, ε0 the permittivity in vacuum, εr the relative permittivity and

Ndop the prescribed doping density. Then, V in (7) is given by V = −qVP .

4 Description of the hybrid strategy

In the following, we use the (stationary) QDD model derived in the previous section into a

hybrid approach. Indeed, we propose to couple it, spatially in the transport direction, with

the Schrödinger model derived in [9].

So, we consider a bounded domain Ω = (xL, xR) × ω, where (xL, xR) is the transport

domain and ω is the two dimensional strongly confined cross–section. We assume that the

device domain in the transport direction x is partitioned into a Schrödinger zone S = (xI1 , xI2),

with xL < xI1 < xI2 < xR (where the Schrödinger system is used) and a quantum macroscopic

zone Q = (xL, xR)\S (where the transport is described by the QDD model). For a Field-

Effect Transistor (FET), which is the kind of device that we will consider in Section 5,

the Schrödinger zone S corresponds to an active zone where quantum ballistic effects are

14



predominant whereas the quantum macroscopic zone Q is made of two electron reservoirs

called Source and Drain in which the transport is considered highly collisional.

First, we recall the Schrödinger model used in the bounded domain S. Afterwards, we

describe the interface conditions which preserve the continuity of the total current and the

electron density. We present the algorithm used to couple the two models and the discretiza-

tion of equations for a given potential. Finally, we consider self-consistent computations and

we detail the coupling between the transport equations and the Poisson equation.

4.1 Description of the Schrödinger system

The quantum transport in S is given by the sequence of Schrödinger equations (5) in the

stationary framework. The system is considered as an open system in (xI1 , xI2), with Trans-

parent Boundary Conditions (TBCs) supplementing the equations (see [8, 24] e.g.). To fix

ideas, we detail the case Vn(xI1) ≥ Vn(xI2). For each band and for each wave vector k, we

consider the following stationary Schrödinger equation

− ~2

2m∗n
∂xxψ

k
n(x) + Vn(x)ψkn(x) = En,kψkn(x), in S, (52)

where

En,k =

E
+
n,k = ~2k2

2m∗n
+ Vn(xI1) if k > 0,

E−n,k = ~2k2
2m∗n

+ Vn(xI2) if k < 0.

Defining the coefficients

p±n (k) =
√

~2k2 ∓ 2m∗n(Vn(xI2)− Vn(xI1)), (53)

the TBCs are written for k > 0 as

∂xψ
k
n(xI1) + ikψkn(xI1) = 2ik and ~∂xψkn(xI2) = ip+

n (k)ψkn(xI2), (54)

and for k < 0, we have

∂xψ
k
n(xI2) + ikψkn(xI2) = 2ik and ~∂xψkn(xI1) = −ip−n (k)ψkn(xI1). (55)

The reflection and transmission amplitudes rn(k) and tn(k) of the wave functions are deter-

mined by

rn(k) =
1

2
ψkn(xI1) +

i

2k
∂xψ

k
n(xI1) and tn(k) = ψkn(xI2) for k > 0,

rn(k) =
1

2
ψkn(xI2) +

i

2k
∂xψ

k
n(xI2) and tn(k) = ψkn(xI1) for k < 0.
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Finally, we define the reflection coefficients as Rn(k) = |rn(k)|2 and the transmission coef-

ficients Tn(k), corresponding to the proportion of incident electrons which are transmitted,

as

Tn(k) =


p+n (k)
~k |tn(k)|2 if k > 0,

−Re
(
p−n (k)

)
~k |tn(k)|2 if k < 0.

(56)

Electrons are considered in mixed states and the one dimensional electron density in the

S region is defined by

Ns(x) =
∑
n∈N

Nn
s (x), (57)

where the density carried by the n-th band is given by superimposing the densities of states

injected from the reservoirs, that is

Nn
s (x) =

∫
R
φn(k)|ψkn(x)|2dk, x ∈ S. (58)

φn(k) is a given statistical function which characterizes the electron injection from reservoirs.

Finally, the current is defined by

Js(x) =
∑
n∈N

Jns (x), (59)

where the n-th band current is given by

Jns (x) =
q~
m∗n

∫
R
φn(k)I

(
ψkn(x)∂xψ

k
n(x)

)
dk, x ∈ S. (60)

It can be easily seen that the current does not depend on x. Furthermore, using the TBCs

of the Schrödinger equation (54) and (55), as well as the properties of the transmission

coefficients (56), Jns can be expressed in the following form

Jns =
q~
m∗n

∫ +∞

0

kTn(k)
(
φn(k)− φn(−p

+
n (k)

~
)
)
dk. (61)

The choice of the function φn is important in order to perform the coupling with the

QDD model. Our choice is to use the classical Maxwellian expressed in terms of the quantum

quasi-Fermi energy variable Aq (32) (computed with the QDD equation) at the interfaces

φn(k) =


f
(
En + ELn,k − Aq(xI1)

)
if k > 0,

f
(
En + ERn,k − Aq(xI2)

)
if k < 0,

(62)

where f is the Boltzmann statistics defined by

f(s) =
1

2π
e−s. (63)

We emphasize that this function is the zeroth order term of the quantum Maxwellian (19).
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4.2 Implementation of the hybrid model

We assume at this point that the electrostatic potential V is given (and consequently also

the effective potentials Vn (7) and VG (28) are given). The spatial coupling between the

Schrödinger system and the QDD model is realized through interface conditions. Since the

QDD equation contains fourth-order derivatives, two conditions are required at each interface.

Following [14], we assume that, at the interface points xI1 and xI2 , the electron density and

the current are continuous. It gives the following conditions

Jq(xI1) = Js(xI1), Jq(xI2) = Js(xI2), (64)

Nq(xI1) = Ns(xI1), Nq(xI2) = Ns(xI2). (65)

For the transport direction x, we introduce a uniform mesh with Ñ points (that includes

the interface points xI1 and xI2). It is defined by the abscissa xl = xL+ l∆x with ∆x = xR−xL
Ñ−1

for l = 0, ..., Ñ−1. We also denote ÑQ the number of mesh points for each macroscopic region

[xL, xI1 ] and [xI2 , xR] and ÑS = Ñ − 2ÑQ + 2 the number of mesh points for the Schrödinger

zone [xI1 , xI2 ]. Thus, the quantum macroscopic region Q is described by the points ξl defined

by ξl = xL + l∆x for l = 0, ..., ÑQ − 1 and ξl = xI2 + (l − ÑQ)∆x for l = ÑQ, ..., 2ÑQ − 1.

We detail here the different steps of the hybrid coupling:

• First, we solve on S the Schrödinger equations (52) with TBCs (54)-(55) for each wave

vector k and each band n. Each equation is transformed to an initial value problem and

discretized with a Crank-Nicolson scheme (see [9] for details).

• We compute the transmission coefficients Tn (56) as well as the following quantities

ΛL,R
1,2 =

∑
n∈N

∫ +∞

0

f
(
En + EL,Rn,k

)
|ψkn(xI1,2)|2dk (66)

and

Θ−1 =
∑
n∈N

q~
m∗n

∫ +∞

0

f
(
En + ELn,k

)
kTn(k)dk. (67)

The integrals are computed with a trapezoidal quadrature rule, using a constant momentum

step ∆k enough refined to take into account the contribution to each significant energy.

• Next, the stationary QDD model (see Proposition 3.2 and Remark 3.3) is approximated by

a central finite differences as in [14]. This scheme has been proved to be positivity preserving

(see [22] for details). For that, we introduce the functions % =
√
Nq and Ṽn = VG − Vn.

We also denote by Al, %l and Ṽn,l the quantities Aq(ξl), %(ξl) and Ṽn(ξl). In order to make

easier the implementation of the interface conditions, we keep two unknowns: the square
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root of the electron density % and the quantum quasi-Fermi energy Aq. So, for all l ∈
{1, ..., ÑQ − 2} ∪ {ÑQ + 1, ..., 2ÑQ − 2}, we obtain the discretized equations

%2
l−1/2Al−1 −

(
%2
l−1/2 + %2

l+1/2

)
Al + %2

l+1/2Al+1 = 0 (68)

and

Al = log
(%2

l

ni

)
+ VG(ξl) (69)

− ~2

12m∗G

∑
n∈N

m∗GZn
m∗n
∑

pZp
2

∆x2

(%l−1 − 2%l + %l+1

%l
+ Cn,l +

%l+1 − %l−1

2%l
Bn,l

)
with %l±1/2 = %l+%l±1

2
, Bn,l =

Ṽn,l+1−Ṽn,l−1

2
and Cn,l =

Ṽn,l+1−2Ṽn,l+Ṽn,l−1

2
+

B2
n,l

4
.

Since we assume that no quantum effect occurs at boundaries, the discretized system is

completed with the following boundary conditions

%2
0 = Ndop(xL), %2

2ÑQ−1
= Ndop(xR), (70)

A0 = log
(%2

0

ni

)
+ VG(xL), A2ÑQ−1 = log

(%2
2ÑQ−1

ni

)
+ VG(xR). (71)

Finally, we impose the interface conditions (64)-(65). Using the Boltzmann statistics, the

term containing the quantum quasi-Fermi energy variables in (62) enters as a multiplication

factor. Consequently, the quantum density (58) and the quantum current (61) can be written

in a simpler form. Thanks to the computed quantities (66) and (67), the interface conditions

are thus expressed explicitly:

%2
ÑQ−1

= ΛL
1 e

A
ÑQ−1 + ΛR

1 e
A
ÑQ , (72)

%2
ÑQ

= ΛL
2 e

A
ÑQ−1 + ΛR

2 e
A
ÑQ , (73)

D%2
ÑQ−3/2

AÑQ−2 − AÑQ−1

∆x
= Θ−1

(
e
A
ÑQ−1 − eAÑQ

)
, (74)

D%2
ÑQ+1/2

AÑQ − AÑQ+1

∆x
= Θ−1

(
e
A
ÑQ−1 − eAÑQ

)
. (75)

The full nonlinear system (68)-(75) is solved by means of a Newton algorithm. All the entries

of the Jacobian matrix can be evaluated explicitly. The resulting linear system is solved by a

GMRES solver with incomplete LU factorization for preconditioning.

• Finally, thanks to Aq(xI1) and Aq(xI2) that we just computed, we can complete the quantum

density Nn
s (58) using (62). We are now able to define, for each energy band n, the charge

density of the hybrid model

Nn
1D(x) =

Nn
s (x) for x ∈ S,

Nn
q (x) for x ∈ Q.

In preparation for self-consistent computations, we can also compute a 3D density N3D simi-

larly to (50).
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4.3 Coupling with the Poisson equation

We now consider that the macroscopic potential V is solution of the 3D Poisson equation (51).

Because of the highly nonlinear coupling between the density and the potential equations, we

use an iterative method of Gummel type [17] that we quickly remind here.

Let V old
P be a given electrostatic potential. We define the potential energy V = −qV old

P and

we compute the 3D density N3D coming from the hybrid Schrödinger Quantum Drift-Diffusion

approach described in the previous Subsection. Then, we solve the 3D Poisson equation using

piecewise linear finite elements on a prismatic mesh (see [19] for details), modified according

to the Gummel iteration algorithm, as in [10], that is

−∇
(
εr(z)∇V new

P ) =
q

ε0
Ndop −

q

ε0
N3D[V old

P ]
(

1 + q(V new
P − V old

P )
)
. (76)

We repeat it until the quantity ‖V old
P − V new

P ‖L∞ becomes sufficiently small.

For the device presented in the next Section, a potential is applied between the two

electron reservoirs (Source and Drain). We first consider the whole iterative system at thermal

equilibrium (zero applied Drain-Source voltage VDS ). Once the convergence is reached, we

increment VDS and start a new iteration. For the simulations presented in this paper, a

reasonable increment step is 0.02 V.

5 Presentation of numerical results

In this paper, we compare the numerical results obtained with five different approaches:

- approach S: the Schrödinger model proposed in [9] is used in the entire domain (xL, xR),

- approach DD: the Drift-Diffusion model proposed in [20] is used in the entire domain (xL, xR),

- approach QDD: the Quantum Drift-Diffusion proposed in Section 3 is used in the entire do-

main (xL, xR),

- approach S-DD: the hybrid approach detailed in [19] couples spatially the Schrödinger sys-

tem with the Drift-Diffusion model,

- approach S-QDD: the hybrid approach described in Section 4 couples spatially the Schrödinger

system with the Quantum Drift-Diffusion model.

5.1 A Gate-all-around Carbon Nanotube Field-Effect Transistor

Numerical simulations are carried out for a Carbon Nanotube Field-Effect Transistor (CNT-

FET). A section along the transport direction (x-axis) is presented in Fig.1. It contains a

(10,0) zig-zag single-walled CNT (represented in green and yellow in Fig.1) surrounded by

a layer of dielectric SiO2 (εr,ox = 3.9) of 1.4 nm thickness acting as an insulator (in red in

Fig.1). In Fig.2, a representation of carbon atom positions is presented for the (10,0) zig-zag

CNT. They are placed on a circle of 0.78 nm diameter. The relative permittivity of a CNT
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is a device dependent quantity, that here has been taken as εr,c = 13. In the last part of this

section, we will also consider the case of an anisotropic permittivity.

Figure 1: Schematic longitudinal section of the CNTFET.

Figure 2: 3D (left) and 2D (right) representation of atom positions in a (10,0) ‘zig-zag” CNT.

The transport direction is composed of a 10 nm active zone, with a doping concentration

N−dop = 1021 m−3, sandwiched between a 10 nm Source region and a 10 nm Drain region, with

large doping (N+
dop = 1027m−3). Finally, a Gate is imposed all-around the transversal structure

to modulate the number of free electrons. Since the effect of changing the gate voltage is as

expected in the experiments that we did, we present here only results corresponding to a gate

voltage VGS equal to VGS = −0.1 V and we refer to [19] for a discussion on the gate voltage

impact.

Along this paper, the transport-Poisson problems are solved for the 9 first conduction

bands. As described precisely in [19], this choice is widely sufficient since for our (10,0)

zig-zag CNT, the energy levels increase quickly and consequently only the first bands give a

significant contribution to the total current. These energy bands are not all non degenerated

as required by Assumption 2.1. However, it numerically turns out that, for the device under

consideration with the gate-all-around, the off-diagonal terms in the potential matrix are

negligible and a decoupled system can still be considered.

Finally, we would like to make some comments about the electron mobility constant µ̃

that is related to the diffusive constant D (expressed in scaled form in (15)) by the Einstein

relation. For strongly confined structures, it is a device dependent physical parameter and

a well established value is not found in the literature. Therefore, we first discuss how this
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Figure 3: Mobility influence on the current-voltage characteristics obtained with the S-QDD

approach.

value affects the computed current in our simulations. Solving the transport problem with

the QDD model provides a current which is proportional to the mobility constant. It is not

the case with the S-QDD model as we can see in Fig.3 where the output current-voltage

characteristics obtained with the S-QDD model are presented for different mobilities. We

notice that the two typical regimes (an ohmic regime for small values of VDS and then a

quasi-saturation regime) are always observed. But, above all, we observe that for mobilities

larger than 5× 10−3 m2.V −1.s−1 the current is virtually not modified.

Since our goal is to discuss the effects of the quantum correction term in the QDD and

S-QDD models rather than to give a quantitative description of IV curves, we fix in the sequel

the electron mobility value. As done in [19], we have chosen µ̃ = 0.5× 10−4 m2.V −1.s−1. The

output current-voltage characteristics obtained with this choice are presented in Fig.4 for the

five different approaches. Due to this small mobility constant (that corresponds to a highly

collisional regime), the DD and the QDD currents are much smaller than the Schrödinger

current. The two hybrid approaches (S-DD and S-QDD) that take into account both electron-

phonon collisions in the reservoirs and ballistic quantum effects in the active zone, give an

intermediate current that is however closer to the quantum one.

Figure 4: Current-Voltage characteristics obtained with the five different models.
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5.2 Effects of the quantum correction term

First, we start to present 2D slices along the transport direction (x-axis in the pictures), cut-

ting the cross-section in the middle. Fig.5 represents the self-consistent potential at thermal

equilibrium and Figs.6-7 represent the density in logarithm scale respectively at equilibrium

and for an applied voltage VDS = 0.2 V. The left pictures are obtained with the DD model in-

Figure 5: 2D slice of the potential energy (eV) at thermal equilibrium (left: DD model, right:

QDD model).

Figure 6: 2D slice of the density in logarithm scale at thermal equilibrium (left: DD model,

right: QDD model).

Figure 7: 2D slice of the density in logarithm scale for VDS = 0.2 V (left: DD model, right:

QDD model).
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stead the right ones with the QDD approach. Clearly, confined electron channels are apparent

between Source and Drain in the carbon regions whereas the oxide layer acts as insulator. We

observe that the quantum correction term added in the QDD approach has a non negligible

effect close to the doping discontinuities (x=10 nm and x=20 nm). In particular, the density

is smoother with QDD than with DD.

In order to perform a better comparison, we also present 1D profiles. It corresponds to

averaged quantities resulting from an integration of the 3D quantities over the 2D wire section

divided by the wire section area. The potential (on the left) and the density (on the right) are

presented at thermal equilibrium in Fig.8 and for an applied voltage VDS = 0.2 V in Fig.9.

For a better visualization, it is also interesting to plot the inverse of the density (Fig.10).

In all figures, three approaches are compared : the Schrödinger model in dashed lines, the

Drift-Diffusion one in dotted lines and the Quantum-Drift-Diffusion one in solid lines. The

results confirm that the transport in such confined structures is strongly governed by quantum

effects. The DD model that is purely classical gives not enough accurate results.

Figure 8: Comparison of the potential energy (left) and the density (right) at thermal equi-

librium. Curves obtained with S (dashed), DD (dotted) and QDD (solid).

Figure 9: Comparison of the potential energy (left) and the density (right) for VDS = 0.2 V.

Curves obtained with S (dashed), DD (dotted) and QDD (solid).
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Figure 10: Comparison of the inverse of the density at thermal equilibrium (left) and for

VDS = 0.2 V (right). Curves obtained with S (dashed), DD (dotted) and QDD (solid).

5.3 Hybrid strategy

We are now interested in the spatial hybrid strategies. In Figs.11-12, again three approaches

are compared : the Schrödinger model in dashed lines, the hybrid Schrödinger-Drift-Diffusion

one in dotted lines and the hybrid Schrödinger-Quantum-Drift-Diffusion one in solid lines. The

potential (on the left) and the inverse of the density (on the right) is presented at thermal

equilibrium in Fig.11 and for an applied voltage VDS = 0.2 V in Fig.12. The clear difference

observed between the S-DD and the S-QDD curves emphasizes that the quantum correction

plays an important role not only in the active zone but also in the collisional reservoirs.

Figure 11: Comparison of the potential energy (left) and the inverse of the density (right) at

thermal equilibrium. Curves obtained with S (dashed), S-DD (dotted) and S-QDD (solid).

Finally, we also would like to highlight that the computational cost of the S-QDD approach

is much cheaper than the one of the full Schrödinger model. In particular, the large number of

Schrödinger equations at each iteration step (one for each energy band and each wave vector)

are performed on a smaller domain (divided by 3 for our device).
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Figure 12: Comparison of the potential energy (left) and the inverse of the density (right) for

VDS = 0.2 V. Curves obtained with S (dashed), S-DD (dotted) and S-QDD (solid).

5.4 Interface positions

For the S-QDD model, we now study the influence of the interface positions. In previous

figures, the interfaces were located at xI1 = 10 nm and xI2 = 20 nm (at doping discontinuities).

In Figs.13-15, in the left pictures, xI2 is fixed at 20 nm and we move xI1 , and inversely, in the

right pictures, xI1 is fixed at 10 nm and we move xI2 . The potential is presented in Fig.13,

the inverse of density in Fig.14 and the Current-Voltage characteristics in Fig.15. On the one

hand, we observe perceptible differences when one interface is placed inside the active zone

(see Fig.14 for instance). On the other hand, in Fig.15, the saturation current stays almost

unchanged when the interface xI2 goes to Drain, instead the saturation current increases up

to the quantum value when the interface xI1 reaches Source. These results are qualitatively

similar to those presented in [19] for the S-DD model and they confirm that modeling electron

transport (collisional vs ballistic) is important, specially in the Source.

Figure 13: Potential energy at thermal equilibrium obtained with S-QDD, moving the left

interface position xI1 (left) and the right interface position xI2 (right).
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Figure 14: Inverse of the density at thermal equilibrium obtained with S-QDD, moving the

left interface position xI1 (left) and the right interface position xI2 (right).

Figure 15: Current-Voltage characteristics obtained with S-QDD, moving the left interface

position xI1 (left) and the right interface position xI2 (right).

5.5 Anisotropic permittivity

To finish, we would like to say few words about the relative permittivity of the CNT. Up to

here, we have taken εr,c = 13. However, the polarizability in a CNT is a complex phenomenon

[23], that depends on the geometry and that has different values in the longitudinal and in

the transverse directions. In Figs.16-17, we present the potential, the density and the IV

curves obtained with S-QDD for the isotropic case (solid lines) and for an anisotropic case

that corresponds to a longitudinal permittivity εr,c,l = 142 and a transversal one εr,c,t = 10.9

(dashed lines). As we can see, the qualitative behavior of the results is preserved but a signif-

icant increase of the current value is noticed due to the larger permittivity in the longitudinal

direction. A similar behavior is observed for full Schrödinger. The 3D electrostatic effects are

important and have to be investigated more deeply in the future.
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Figure 16: Potential energy (left) and density (right) at thermal equilibrium obtained with

S-QDD in the isotropic case (solid curves) and in the anisotropic case (dashed curves).

Figure 17: Current-Voltage characteristics obtained with S-QDD in the isotropic case (solid

curves) and in the anisotropic case (dashed curves).

6 Conclusion

In this work, we derive, using an entropy minimization technique, a QDD model in the context

of strongly confined nanostructures integrating the atomistic information of the transversal

section through the definition of effective quantities. Numerical simulations performed for a

gate-all-around CNTFET allow to verify that the quantum correction appearing in this QDD

model improves significatively the results compared to those obtained with the analogous DD

model [20].

In a second part, we use this QDD model into a hybrid strategy, spatially coupling it

with the effective mass Schrödinger model proposed in [9] and imposing the continuity of the

electron density and the current at interfaces. Numerical simulations show a clear difference

between the S-DD and the S-QDD results, showing that the novel quantum correction plays

an important role also in the collisional reservoirs.

IV curves obtained with a hybrid approach are less sensitive to the device dependent

mobility constant than those corresponding to full macroscopic models (DD or QDD). Ad-

ditionally, in comparison with the full quantum ballistic model [9], the computational cost
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of the hybrid strategy is much cheaper, since the large number of Schrödinger equations is

performed on a smaller domain and a single macroscopic equation is used elsewhere.
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