

Design and Synthesis of a New Non-Covalent

Caspase-3 Inhibitor with Neuroprotective Property

Pietro Spanu,¹ Ajay Chandgudge,² Fausta Ulgheri,¹ Giovanni Loriga,¹ Maria Pia Fuggetta,³ Amalia M. Dolga,⁴ Philip H. Elsinga,⁵ Paula Kopschina Feltes,⁵ Erik F. J. de Vries,⁵ Alexander Domling^{2,6}

¹Istituto di Chimica Biomolecolare - CNR, Italy ; ²Department of Drug Design, University of Groningen, The Netherlands; ³Istituto di Farmacologia Traslazionale - CNR, Italy; ⁴Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands; ⁵Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, The Netherlands; ⁶Palacky University, CATRIN, Department of Innovative Chemistry, Olomouc – Holice, Czech Republic

pietro.spanu@cnr.it

INTRODUCTION

Caspases, the family of cysteine aspartate specific proteases, are well known as killer enzymes driving cell death via apoptosis or pyroptosis.¹ However, the latest findings on the caspases indicate important and non-lethal roles of these enzymes ranging from immune response, cell fate determination, cell proliferation and cellular remodeling.² Caspase-3 is the key enzyme in apoptotic processes and when activated executes cell death catalyzing the specific cleavage of many key cellular proteins. It is a key mediator of neuronal programmed cell death and plays an essential role in the development of the nervous system.³

REFERENCES

1) a) B. Favaloro et al. Aging (Albany. NY) 2012, 4: 330-349. b) B. Howley, H. O. Fearnhead J. Cell. Mol. Med. 2008, 12: 1502-1516. c) G. Morris et al. Mol. Neurobiol. 2018, 55: 5767-5786. d) E. A. Miao et al. Immunol. Rev. 2011, 243: 206-214. Y. Nakajima, E. Kuranaga Cell Death Differ. 2017, 24: 1422-1430. b) S. M. Man, T-D. Kanneganti Nat. Rev. Immunol. 2016, 16: 7-21.
 L. Lossi et al. Int. J. Mol. Sci. 2018, 19: 3999.

Control

Glutamate

- 4) A. Mukherjee, D. W. Williams Cell Death Differ. 2017, 24: 1411-1421

following glutamate challenge

- 5) M. D'Amelio et al. *Nat. Neurosci.* 2011, 14: 69-76.
 6) M. D'Amelio et al. *Cell Death Differ.* 2010, 17: 1104-1114.
- J.-Q. Du et al. J. Biol. Chem. 2008. 283: 30205-3021

her. 2021, 140: 111696. b) W. Boston-Howes et al. J. Biol. Chem. 2006, 281: 14076-14084. c) S. Brecht et al. Mol. Brain Res. 2001, 94: 25-34 a) M. Wang et al. Bio

01-30 November 2023 | Online

The 9th International Electronic Conference on **Medicinal Chemistry**

