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Abstract 17 
Non-targeted NMR-based approach has received great attention as a rapid method for food product authenticity assessment. 18 
The availability of a database containing many comparable NMR spectra produced by different spectrometers is crucial to 19 
develop functional classifiers able to discriminate rapidly the commodity class of a given food product. Nevertheless, variability 20 
in spectrometer features may hamper the production of comparable spectra due to inherent variations in signal resolution. In 21 
this paper, we report on the development of a class-discrimination model for grape juice authentication by application of non-22 
targeted NMR spectroscopy. Different approaches for the pre-treatment of data will be described along with details about the 23 
model validation. The developed model performed excellently (95.4 to 100% correct predictions) even when it was tested against 24 
650 spectra produced by 65 spectrometers with different configurations (magnetic field strength, manufacturer, age). This study 25 
may boost the use of non-targeted NMR methods for food control. 26 

 27 

Keywords: 28 
Non-targeted NMR-based metabolomics approach 29 
Interlaboratory variability 30 
Fingerprinting 31 
Metabolite profiling 32 
Method validation 33 
Food authenticity 34 
Grape juice 35 
Chemometric analysis 36 
 37 
1. Introduction 38 



 

 

2 

Food control has been historically achieved through a direct approach, namely by identification and quantification of a primary 39 
marker indicated as responsible for a food authenticity issue according to specific legal limits (targeted approach). Nevertheless, 40 
the possibility to obtain a larger amount of data more rapidly made the use of non-targeted approaches progressively more 41 
common for food control thanks also to the many advances in the analytical techniques and in the chemometric applica-42 
tions.(Granato et al., 2018; Medina, Pereira, Silva, Perestrelo, & Câmara, 2019; Oliveri, 2017) Non-targeted methods offer the 43 
possibility to extract rapidly and in non-destructive way information which can be advantageously used to unveil the compounds 44 
that may affect the authenticity of the food sample under investigation. Such analytical methods can be performed according to 45 
two alternative approaches, namely the profiling and the fingerprinting. In the first case (profiling) the identity of the compounds 46 
of interest is well known and established before the statistical data elaboration. Conversely, in the second case (fingerprinting) 47 
the analysis is performed with no a priori identification of the compounds contained in the sample mixture.(Ballin & Laursen, 48 
2019) Both the aforementioned approaches can produce a large amount of data which can be exploited to assess the authen-49 
ticity of a big variety of food products. Nuclear Magnetic Resonance (NMR) spectroscopy is gaining growing attention in this 50 
field, as demonstrated by an increasing number of applications reported in the recent literature (Consonni & Cagliani, 2019; 51 
Sundekilde, Eggers, & Bertram, 2019) The interest in non-targeted NMR methods is mainly due to its ability to generate highly 52 
reliable instrumental responses.(Emwas et al., 2019) Indeed, when a single sample is analyzed by different NMR spectrometers, 53 
statistically equivalent NMR spectra are generated. This aspect opens the way to the creation of a community-built system 54 
containing NMR spectra which can be safely compared and can be exploited to solve many analytical issues. For instance, for 55 
a given food fraud problem, as schematically represented in figure 1, NMR spectra of several samples, suitably selected to 56 
represent a class of a food product, may be provided either by a single spectrometer or by different instruments according to an 57 
agreed and validated procedure (including sampling, sample preparation, spectra acquisition, and processing details). The re-58 
peatability and the reproducibility of the produced spectra should be verified upon the application of opportunely defined criteria 59 
(figure 1, step 1). Then, only the laboratories producing comparable NMR spectra should be eligible for feeding the database 60 
containing NMR spectra of food samples (figure 1, step 2). The stored NMR spectra would be exploited to develop a classifier 61 
properly designed to unveil the fraud (figure 1, step 3). Finally, the same laboratories which resulted eligible to feed the database 62 
(admitted to step 2) could test the classifier by submission of the NMR spectra of an unknown sample. As a result, the commodity 63 
class, and, ultimately, the authenticity of the unknow sample should be established (figure 1, step 4). 64 

Figure 1 here 65 
Figure 1. Flowchart of the development of a classifier for food fraud detection by application of non-targeted NMR methods. 66 

Despite the great interest in the described non-targeted NMR method to date no standardized procedures (protocols and mate-67 
rials) have been introduced to apply routinely this analytical strategy for the detection of food counterfeits and determining the 68 
authenticity of food products. In the context of an ongoing project, we gave a contribution to the harmonization of the experi-69 
mental procedures of the NMR methods in food control. Based on the large amount of data produced by interlaboratory com-70 
parisons (ILCs),(Gallo, Intini, Mastrorilli, Latronico, Scapicchio, Cremonini, et al., 2015; Gallo et al., 2016, 2017) we demon-71 
strated that targeted and non-targeted NMR methods can provide comparable results when the same sample is analyzed by 72 
spectrometers that are different in terms of magnetic field strength, manufacturer, hardware configurations and age. In particular, 73 
two selection criteria were adopted to assess the statistical equivalence of the spectra produced by different spectrometers 74 
during an interlaboratory comparison: a quality parameter, Qp-score, and the interlaboratory coefficient of variation, CV%.(Gallo, 75 
Intini, Mastrorilli, Latronico, Scapicchio, Triggiani, et al., 2015; Gallo et al., 2020) Besides, exploiting the unique capability of 76 
NMR spectroscopy compared to other analytical techniques to generate equivalent signal intensity regardless of the spectrom-77 
eter configuration,(Bharti & Roy, 2012) we developed an NMR-based community-built calibration system which was able to 78 
assess the performance of the laboratories and to perform quantitative analysis (qNMR).(Musio et al., 2020) Nevertheless, one 79 
inherent issue observed when the same sample is analyzed by different spectrometers is that, while the intensity of the NMR 80 
signal is usually independent on the spectrometer configuration, the shape and the resolution of the signal is subjected to small 81 
variations which, not surprisingly, can affect the reliability of the non-target analysis. Indeed, the magnetic field strengths and 82 
the procedures adopted for the pre-treatment of data (normalization, peak alignment, scaling) play a crucial role to obtain high 83 
levels of repeatability and reproducibility of statistical results. (Craig, Cloarec, Holmes, Nicholson, & Lindon, 2006; Euceda, 84 
Giskeodegård, & Bathen, 2015; van den Berg, Hoefsloot, Westerhuis, Smilde, & van der Werf, 2006) In the present paper, we 85 
explored the effect of data-pre-treatment (buckets size and data scaling) on the performance of a class-discrimination system 86 
upon the statistical elaboration of the large number of data produced during an interlaboratory comparison. As proof of concept, 87 
samples of grape juice extracted from two different cultivars (cv.), Primitivo and Negroamaro, were analyzed by 65 different 88 
spectrometers applying the same protocol. Both the profiling and the fingerprinting approaches were explored and the chemo-89 
metric analysis was based on i) a training set constituted of 100 NMR spectra recorded by a single spectrometer for 50 grape 90 
juice cv. Primitivo and 50 grape juice cv. Negroamaro and ii) a test set constituted of 650 NMR spectra produced by 65 different 91 
NMR spectrometers for one grape juice sample cv. Primitivo and one grape juice sample cv. Negroamaro (5 repetitions per 92 
sample per spectrometer). This study should demonstrate that the judicious pre-treatment of data is crucial to make the spectra 93 
produced by different spectrometers statistically equivalent. Only in this case, they may be used for the development of classi-94 
fiers able to predict the commodity class of a food sample and, thus, allow to assess its authenticity. Considering the high 95 
throughput of non-targeted NMR methods, this potentiality is of great interest to the scientific community involved in food control.  96 

Experimental section 97 
2.1. Materials  98 
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3-(Trimethylsilyl)-2,2,3,3-tetradeutero-propionic acid sodium salt (TSP, CAS N. 24493-21-8, 99 %D, Armar Chemicals, Döttin-99 
gen, Switzerland), sodium azide (NaN3, CAS N. 26628-22-8; ≥99.5%, Sigma-Aldrich, Milan, Italy), deuterium oxide (D2O, CAS. 100 
N. 7789-20-0, 99.86 %D, Eurisotop, Saclay, France) and methanol-d4 (CD3OD, CAS. N. 811-98-3, 99.80 %D, Eurisotop, Saclay, 101 
France) were used for sample preparation. NMR tubes (Norell 509-UP 7) were provided by Norell, Landisville NJ, US. The NMR 102 
samples were prepared using the automated system for liquid handling (SamplePro Tube, Bruker BioSpin). Grape samples (cv. 103 
Primitivo and cv. Negroamaro; Centro di Ricerca, Sperimentazione e Formazione in Agricoltura "Basile-Caramia (CRSFA), 104 
Locorotondo, Bari, Italy) were collected according to official recommendations (Regulations (CE) n. 834/2007, n. 889/2008, n. 105 
1235/2008 and following modifications). 100 grape samples (50 of cv. Primitivo and 50 of cv. Negroamaro) were collected as 106 
follows: 30 berries were harvested randomly from different parts of the same plant for each sample. The samples were labeled 107 
according to the plant of origin, which was marked with a number and a letter, indicating respectively the vine-row and the sector 108 
of the vine-row to which the plant belonged. Two bigger samples (1 Kg of cv. Primitivo and 1 Kg of cv. Negroamaro) were 109 
collected randomly from 3 plants and labeled according to the same procedure. The samples were refrigerated at 4°C and 110 
transferred from the field to the laboratory, where they were stored at –20°C until analysis. 111 

2.2. Experimental procedure  112 

The interlaboratory comparison was organized according to EN ISO/IEC 17043:2010 and reference normative therein (Con-113 
formity assessment - General requirements for proficiency testing) with 52 registered participants, 76 available spectrometers 114 
of which 65 producing results spectrometers [300 MHz (2), 400 MHz (22), 500 MHz (18), 600 MHz (18) and 700 MHz (5); Bruker 115 
(52), Agilent (9) and Jeol (4) manufacturers]. The ILC participants were furnished with three test NMR tubes, labeled as T, X, 116 
and Y. Tube T contained pure methanol-d4 (CD3OD, 99.80 %D) and was used as an NMR thermometer to calibrate the temper-117 
ature of each spectrometer at 298.1 ± 0.1 K. Tubes X and Y, containing aqueous solutions of grape juice (cv. Primitivo and cv. 118 
Negroamaro, respectively), were prepared as follows: 10 berries were defrosted at room temperature for 60 minutes. They were 119 
mechanically pressed and the resulting grape juice (~ 5 mL) was centrifuged (Ettich Rotofix 32A, 2500 g, 15 min). The super-120 
natant (1.08 mL) was combined with a solution of NaN3 (84.6 mg / 50 mL) in buffer [(HC2O4)–/(C2O4)2– 0.11 M, pH 4.2]. 318 µL 121 
of this solution was combined stepwise with a volume of the buffer solution (222 µL) and a volume of a TSP/D2O solution (60 122 
µL, 0.10 g of TSP in 50 g of D2O).  123 

2.3. Data acquisition and processing  124 

For each sample the participants were asked to perform five repetitions of a 1D 1H NOESY NMR experiment,(Mckay, 2011) 125 
preceded by a selective pre-saturation step to remove the residual water signal. The 5-fold replication was needed to comply 126 
with conditions for intermediate precision, i.e. same NMR tube, same spectrometer, same user, at least 24 h delay between 127 
runs, removal of the NMR tube from the magnet from run to run. The participants received experimental guidelines for setting 128 
the acquisition parameters according to the spectrometer manufacturer requirements. 129 
For Varian/Agilent spectrometers, guidelines included: pulse program (NOESY); size of fid (np, 128 K); spectral width (sw, 20 130 
ppm); transmitter offset (tof): ca. 4.70 ppm (chemical shift value was set on the residual water signal); 90° hard pulse (pw, 131 
optimized by manual or automatic procedures keeping the pulse length as short as possible (< 10 µs)); steady state (ss, 8); 132 
number of transients (nt, 64); mixing time (mixN, 0.01 s); recycle delay (d1, 5 s); no sspul (sspul = ’n’); no ZQ filter (Gzqfilt = ’n’); 133 
no homo spoil during mixing time (gt1 = 0, gzlvl1 = 0 and gstab = 0); presaturation during the whole length of d1, centered at 134 
the HDO residual signal with a nutation frequency of about 25 Hz [satmode = ’yn’, satdly = d1, satfrq = tof; satpwr was set to 135 
yield r1 of about 25 after running the command getpower(satpwr,tn):r1]; receiver gain optimization (once optimized for tube P, 136 
the obtained receiver gain value was also used for the tube N). 137 
For Bruker spectrometers, guidelines included: pulse program: noesypr1d; size of FID (TD, 128 K); spectral width (SW, 20 ppm); 138 
transmitter offset, ca. 4.70 ppm (chemical shift value was set on the residual water signal); 90° hard pulse (p1, optimized by 139 
manual or automatic procedures keeping the pulse length as short as possible (< 10 µs); power level for presaturation (pl9, 140 
calculated by command “pulse 25Hz” after optimization of p1); dummy scans (ds, 8); number of scans (ns, 64); mixing time (d8, 141 
0.01 s); recycle delay (d1, 5 s); receiver gain optimization (once optimized for tube P, the obtained receiver gain value was also 142 
used for the tube N). 143 
For Jeol spectrometers, guidelines included: pulse program: noesy_abs; y_points = 1; size of fid (x_point = 131072); spectral 144 
width (x_sweep = 20); transmitter offset (x_offset = 4.7); 90º hard pulse (x_pulse = x90; x_atn = xatn) to be optimized by manual 145 
or automatic procedures, keeping pulse length as short as possible (< 10 µs); steady state (x_prescans = 8); number of transi-146 
ents (scans = 64); mixing time (mix_time = 0.01); recycle delay (relaxation_delay = 5); presaturation during the whole length of 147 
recycle delay, centered at the HDO residual signal with a γB2 power of about 25 Hz (irr_mode = presaturation; irr-offset = 148 
x_offset; presat_time_flag = y); the following formula was used to calculate the value of irr attenuator corresponding to 25 Hz: 149 
irr attenuation = x_atn + 20log(10.000/x90); receiver gain optimization (once optimized for tube P, the obtained receiver gain 150 
value was also used for the tube N).  151 
The NMR raw data sets were uploaded by each laboratory on the website http://nmr.mxcs.it/index.php developed according to 152 
internationally agreed procedures.(International Organization for Standardization (ISO), 2005; ISO, 2012) 153 

2.4. Data analysis  154 

The 650 FIDs relative to the 1D 1H NOESY NMR experiments produced for tubes X and tubes Y (5 replicates x 2 tubes x 65 155 
spectrometers) and uploaded by the ILC participants onto the dedicated platform, were re-processed by a single operator and 156 
segmented into regular (0.04 ppm or 0.01 ppm as indicated) and variable-sized (as indicated) intervals (buckets) in the range 157 
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of [9.50, 0.50] ppm. For the sake of clarity, in the following tubes X and Y are indicated as P (cv. Primitivo) and N (cv. Ne-158 
groamaro), respectively. The underlying area of each bucket was calculated and normalized to the total intensity. The areas of 159 
the buckets in the region [5.10, 4.15] ppm, corresponding to the residual water signal, were set to 0. The data matrices were 160 
imported into SIMCA 13.0.3 (Umetrics, Umea, Sweden), and buckets were mean-centered (Ctr) or subjected to Unit Variance 161 
(UV) scaling after mean-centering as indicated. Analogously, the 1D 1H NOESY NMR spectra of 50 grape samples cv. Primitivo 162 
and 50 grape samples cv. Negroamaro were obtained using the spectrometer at the provider’s disposal working at 400 MHz 163 
(Bruker Avance 400) and processed by the same operator. As an unsupervised approach, Principal Component Analysis (PCA) 164 
was used to have an overview of data. Partial Least Square – Discriminant Analysis (PLS-DA) was used as a supervised 165 
technique to build predictive statistical models for the a priori defined class of observations (in the present case, the class was 166 
the variety). Spectra constituted the observations and buckets were the x-variables.(Szymańska, Saccenti, Smilde, & 167 
Westerhuis, 2012) Predictions were based on the highest values predicted for the y-variable (YPredPS). 168 

3. Results and discussionThe discrimination of samples having very similar compositions is a highly demanding task in 169 
analytical chemistry. To evaluate the power of non-targeted NMR methods in such task, the grape cultivars Primitivo (P) 170 
and Negroamaro (N) were chosen as a proof of concept because of the similarity of their metabolic compositions, especially 171 
if sugars and organic acids are considered. Moreover, the fact that test samples P and N gave NMR spectra which were 172 
almost superimposable (Figure S1), made this study even more challenging.  173 

3.1. NMR data pre-treatment for class-discrimination 174 

The PCA was applied to the mean-centered (Ctr) regular buckets (0.04 ppm) obtained from the spectra of tubes P (cv. Primitivo) 175 
and N (cv. Negroamaro). The first two principal components (PC1 vs PC2) explained 84% of the variance (R2X[1] = 0.732 and 176 
R2X[2] = 0.105, where R2 indicated the goodness-of-fit), with a noticeable clustering of the observations in the score plot (figure 177 
2a). The distinction between the two classes (P and N) could be visualized at higher principal components, PC4 vs PC5 (figure 178 
2b), explaining together less than 6% of the variance of the x-variables (R2X[4] = 0.035 and R2X[5] = 0.021). The observed 179 
clustering at the first two principal components was strongly correlated to the magnetic field strength of the spectrometers used 180 
to generate the spectra (figure 2c), with the observations scattering primarily along the PC1 (at higher PC1 values corresponded 181 
lower magnetic field strengths).The loading plot p[1] vs p[2] revealed that the buckets included in the spectral region [3.15 – 182 
4.15 ppm] referring to sugars (fructose and glucose) gave the highest contribution to the distribution of the observations accord-183 
ing to the magnetic field strength (figure 2d).  184 

Figures 2a-d here 185 
Figure 2. PCA applied to the 325 spectra P and the 325 spectra N by using Ctr-scaled 0.04 ppm-sized bucketing. a, b) Score plots t[1] vs t[2] 186 
(a) and t[4] vs t[5] (b) where the observations are colored according to the belonging tube class: P (blue square), N (green circle); c) score plot 187 
t[1] vs t[2] where the observations are colored according to the magnetic field strength of the spectrometers: 300 MHz (red circle), 400 MHz 188 
(blue square), 500 MHz (green triangle), 600 MHz (light blue rhombus), 700 MHz (yellow inverted triangle); d) loading plot p[1] vs p[2]. 189 
Such behavior was observed also when smaller regular buckets (0.01 ppm) were considered, in which case the observations 190 
clustered remarkably along with the first principal component (PC1), explaining alone 72.1% (R2X[1] = 0.721) of the x-variables 191 
variance (Figure S2, supporting materials). Still, the distinction between the two classes P and N could be appreciated only at 192 
higher PCs (PC6 and PC7, with R2X[6] = 0.00673 and R2X[7] = 0.00489). 193 
In figure 3, the effect exerted by the magnetic field strength on the bucket areas is illustrated. Signals are distributed in a single 194 
bucket or adjacent buckets depending on the magnetic field strength. As a result, the area of the same bucket is also dependent 195 
on the operating magnetic field strength, giving rise to a magnetic field dependent variance contribution which may lead to 196 
misleading observations clustering. Considering the relatively high concentration of glucose and fructose compared to the other 197 
metabolites contained in grape juice, the high observed contribution of these buckets to scores distributions was justified. 198 

Figure 3 here 199 
Figure 3. Average spectra (3.15 – 4.15 ppm region) obtained for the tube P by spectrometers with different magnetic field strengths (300, 400, 200 
500, 600, and 700 MHz). The dashed lines delimited the regular rectangular buckets (0.04 ppm). 201 
With this information in our hand, the application of the variable-sized bucketing (VSB) was evaluated in this study as a useful 202 
alternative approach to overcome the intrinsic effect of the different spectrometers features on the sample grouping. For this 203 
purpose, 26 variable sized buckets (B1 – B26, figure 4) were selected upon evaluating the overlaid 650 spectra (325 samples 204 
P and 325 samples N). The metabolites associated with the selected buckets were characterized by referring to Chenomx library 205 
(table S1). The size of each bucket was defined in such a way that a signal or a group of signals (when more signals were 206 
overlapped) was always included in the bucket independently of the applied magnetic field strength. 207 

Figure 4 here 208 
Figure 4. Variable size bucketing scheme generating 26 buckets (B1 – B26). 1D 1H NOESY spectra normalized to the total intensity of tube P 209 
(blue spectrum) and tube N (green spectrum), respectively. 210 
When the variable size bucketing was applied, the observations clustered predominantly according to the class P vs N along 211 
the PC1 (R2X[1] = 0.706) as shown in the score plot t[1] vs t[2] relative to PC1 vs PC2 (Figure S4a), while no relation with the 212 
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strength of the operative magnetic field could be extrapolated (figure S4b). According to the loading plot p[1] vs p[2] (figure S4c) 213 
the highest contribution to the class discrimination was due to the buckets related to ethanol (B26 at 1.16 ppm), fructose (B16 214 
at 4.055 ppm), and malic, citric and succinic acids (B18 at 2.800 ppm and B19 at 2.625) and this result can be safely ascribed 215 
to the differences between the two cultivars.Since the application of mean-centering, without any scaling, could cause an over-216 
estimation of the more intense buckets at the expense of the weaker ones, the effect of a different scaling on the distribution of 217 
the observations was evaluated upon application of the Unit Variance (UV) scaling (1/SDj, where SDj is the standard deviation 218 
of variable j computed around the mean). 219 

Figures 5a-f here 220 
Figure 5. PCA applied to the 325 spectra P and the 325 spectra N by using UV-scaled 0.04 ppm buckets (a, b, and c) and the 26 UV-scaled 221 
variable size buckets (d, e, and f). a,d) Score plots t[1] vs t[2]; the observations are coloured according to the belonging tube class: P (blue 222 
square), N (green circle); b, e) score plots t[1] vs t[2]; the observations are coloured according to the magnetic strength of the spectrometer: 223 
300 MHz (red circle), 400 MHz (blue square), 500 MHz (green triangle), 600 MHz (light blue rhombus), 700 MHz (yellow inverted triangle); c, f) 224 
loading plots p[1] vs p[2].  225 
Interestingly, when the PCA was performed on the UV-scaled regular buckets (0.04 ppm) the observations did not distribute 226 
according to the magnetic strength (figure 5b) as observed previously for the mean-centered 0.04 ppm regular buckets (figure 227 
2). Still, a marked separation according to the different class P vs N could be observed only at higher PCs, namely along the 228 
PC4 (R2X[4] = 0.102). On the contrary, good class discrimination was obtained already at the first two PCs when the 26 variable 229 
sized buckets were subjected to UV-scaling before PCA analysis, with observations grouping predominantly on the plane de-230 
fined by PC1 (R2X[1] = 0.395) and PC2 (R2X[2] = 0.272) and explaining together 66.7% of x-variance (Figure 5d-e). Importantly, 231 
when the spectroscopic data were UV-scaled, the less abundant metabolites started to contribute markedly to the class discrim-232 
ination, as demonstrated in the loading plots (compare figures 5c, 5f with figures 2c, 2f). Among them, chlorogenate (7.64 – 233 
7.70 ppm), arginine (7.21 – 7.29 ppm), and phenylalanine (7.43 – 7.35) exerted the highest contribution. The observed results 234 
were confirmed by analyzing the mean spectra obtained in the four different studied cases. As shown in figure 7a, when the 235 
regular bucketed data (0.04 ppm) were mean-centered the variability was exclusively observed in the region related to the 236 
sugars (3.120 – 5.32 ppm) with a predominant influence of the operative magnetic strength (figure S5a). Such behavior was still 237 
observed in the case of UV-scaled regular bucketed (0.04 ppm) data, although the variability could be detected also in spectral 238 
regions related to less abundant metabolites (figure S5c). A drastic different variability was observed in the mean spectrum 239 
obtained from the variable size bucketed data both in the case of the mean-centering approach (figure S5b) and in the UV-240 
scaling one (figure S5d). No correlation between the spectral variability and the magnetic field strength was observed, since the 241 
variable-sized bucketing approach allowed to overcome any signal shape variations, naturally existing in spectra produced by 242 
spectrometers operating at different magnetic field strength. Also, the contribution of almost all the selected buckets (B1 – B26) 243 
became crucial towards class discrimination. 244 

3.2. Class-discrimination system development  245 

A class-discrimination system was designed to identify the cultivar of two different groups of grape juice samples by comparison 246 
with a representative grape juice population (Figure 8). In particular, a limit case was evaluated with a single NMR spectrometer 247 
producing the training spectra and many spectrometers producing the test spectra (1 training spectrometer vs n testing spec-248 
trometers). The PLS-DA was applied to exploit the statistically significant difference between the two classes of grape juice (cv. 249 
Primitivo and cv. Negroamaro), as observed during the explorative PCA analysis. The training set was opportunely composed 250 
of 100 spectra related to 100 grape juice samples (50 samples cv. Primitivo and 50 samples cv. Negroamaro) deriving from 100 251 
different plants. The test set consisted of 650 spectra related to 2 grape juice samples (5 repetitions of one sample cv. Primitivo, 252 
tube P; 5 repetitions of one sample cv. Negroamaro, tube N) produced by 65 different NMR spectrometers. The grape samples 253 
used to produce the test set were collected from plants that were different from those involved in the production of the training 254 
set. The test set was produced by a single spectrometer (Bruker Avance 400 MHz) and processed by a single operator (the 255 
same operator who processed the 650 spectra P and N) using Topspin – Amix application. The previously considered ap-256 
proaches for data processing (mean-centering and UV-scaling on both regular and variable-sized buckets) were explored also 257 
for the latter training dataset. The most extended grouping was observed when the PCA was conducted on the 26 UV-scaled 258 
variable-sized buckets (figure S3), which were ultimately selected as a training dataset for the PLS-DA. The best PLS-DA model 259 
was chosen based on the highest values of cumulative R2Y and Q2Y (where Q2 was the goodness of prediction in 7-fold cross-260 
validation) and upon passing the permutation tests (figure S4 and table S1). The optimal PLS-DA model was obtained upon 261 
removal of 6 samples (figures S5a and S5b), which resulted outliers, according to the Hotelling’s T2 plot (confidence interval 262 
95%) relative to the PCA-class performed singularly on 50 samples cv. Primitivo and 50 samples cv. Negroamaro (figure S6). 263 
The resulting values of R2Y(cum) = 0.851 and Q2Y(cum) = 0.797 were in agreement with the threshold values identifying good 264 
classification model capability (Q2Y(cum) > 0.5 and (R2 - Q2) < 0.2).  265 

Figure 6 here 266 
Figure 6. Class discrimination system designed in the present study 267 

The model was subjected to two validation steps, which were characterized by an increasing index of risk (Figure 6 and table 268 
S3). The first test set (TS1) was composed by 44 spectra related to 44 tubes (22 tubes P and 22 tubes N) randomly chosen 269 
from the 130 tubes (65 tubes P and 65 tubes N) delivered to the ILC participants but analyzed by the same spectrometer (400 270 
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MHz) used for producing the training spectra. The second test set (TS2) consisted of the 650 spectra generated by the 65 271 
different spectrometers involved in the ILC. While the first validation step could be considered of medium risk (1 spectrometer 272 
vs:1 spectrometer approach), as both the training data set and the test data set (TS1) were generated by the same spectrome-273 
ter/operator, the second validation step should be considered of high risk (1 spectrometer vs n spectrometers approach), be-274 
cause the test set was originated from different sources and was produced under high variability (different operators and/or 275 
instrumental features) compared to the training set. The prediction capability of the developed model resulted excellent when it 276 
was validated by querying TS1 with 100% of corrected prediction. Furthermore, 95.38% of spectra (620/650) were classified 277 
correctly when TS2 was queried. The prediction capability improved (98.21%) when 90/650 spectra, which resulted outliers 278 
according to the Hotelling’s T2 test (95% confidence interval), were removed from TS2 (figure S6). No correlation could be 279 
observed between the nature of the outliers and the magnetic field strength of the spectrometers they derived from, thus con-280 
firming that variable sized bucketing approach (profiling) allows minimizing the effect of the signal shape variations on the out-281 
comes of the statistical analysis. 282 

 283 

4. Conclusion 284 

We reported on the development of a grape juice class-discrimination system based on non-targeted NMR analysis. To the best 285 
of our knowledge, this is the first example of a food class-discrimination model validated by the approach “1 training spectrometer 286 
vs n testing spectrometers”. The NMR spectra included in the training set were recorded by a single spectrometer and the NMR 287 
spectra used for the model validation were generated by a conspicuous number of differently configured NMR spectrometers. 288 
It was ascertained that, among the two data pre-treatment strategies, namely fingerprinting and profiling, the latter allows us to 289 
reach the best discrimination performance and to minimize the influence of the magnetic field strength on the results. The 290 
combination of fingerprinting and profiling strategies helped to identify the variables characterizing the two cultivars of the grape 291 
juice and demonstrated exemplarily the power of this analytical tool to get a huge amount of information in a short time and a 292 
non-destructive manner compared to other analytical spectroscopic techniques. The  developed models for class prediction 293 
performed excellently (95.4% to 100%), despite the highly variable operative conditions (different spectrometers and many 294 
operators). Further efforts should be addressed to set up an “n training spectrometer vs n testing spectrometers” system with 295 
the aim to exploit to the largest extent the advantages of the non-targeted NMR analysis in food control. Indeed, the creation of 296 
a database containing NMR spectra of different food products suitably categorized on the bases of their commodity classes and 297 
the development of proper food classifiers based on the stored NMR data may give a boost to food fraud-fighting. Finally, the 298 
proposed discrimination strategy may help overcome, to some extent, the lack of official guidelines regulating the use of non-299 
targeted NMR analyses and, promote the possible development of community-built discrimination/classification systems based 300 
on NMR spectroscopy. 301 
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